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The adjoint problem and sensitivity
‘algorithms for the model of atmospheric
hydrodynamics in o-coordinates*

V.V. Penenko and E.A. Tsvetova

Variational statement of the hydrodynamical atmospheric problem in &-coordi-
nates is considered. The system of the adjoint equations and algorithms for the
sensitivity investigation of the numerical model to the variations of input param-
eters are constructed. The example of the system organization of the direct and
adjoint problems and the schemes of their realization for the typical combination |
of time approximations are given.

1. Introduction

The paper is devoted to the development of the inverse methodology of
modelling for the aims of monitoring, forecast and ecological design. The
constructive aspects of the realization of this methodology are considered.
They are connected with derivation of the direct and adjoint systems of
equations and the sensitivity methods for the models. The adjoint equations
are used in various applications to the modelling of natural processes [1-3, 6].
They are actively introduced in monitoring and data assimilation procedures
(8].

Here we consider the hydrodynamical model in o-coordinates. It is the
model that is the most popular in the investigations of the climatic changes,
general circulation of the atmosphere and the weather forecasting. As we
know, the adjoint equations have not been constructed yet for them, may be
due to the complexity of the such kind of models. It seems for us that the
application of inverse methodology to these models is very important from
the practical point of view.

The algorithmic construction are provided in the frames of general ap-
proach described in [3-5, 7]. But the o-model posesses the specific characters
which make the construction of its variational form and the ajoint equations
not so simple..

This work was initiated according to the plans of cooperation between
National Research Center for Marine Environmental Forecasts (Beijing,
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China) and Computing Center of the Siberian Division of Russia Academy
of Sciences (Novosibirsk). One of the aims of this cooperation is to construct
the adjoint problems and algorithms for the sensitivity investigations and
data assimilation applied to the Beijing University Model (BUM) [9].

2. Statement of the problem

2.1. Governing system of basic model. Let us write governing system
of equations of atmospheric hydrodynamics: the equations of motion
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the thermodynamic equation
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the water vapour continuity equation
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the equation for the surface pressure variations

O o, 178 (muy 8
wtm [ (a_z(E)’*ay( ")) do =o. (7)
The latter equation is the result of vertical integration of the continuity

equation. The sigmadot (&) equation is also obtained by vertical integration
of the continuity equation .
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is used to calculate ®, where ®, is the surface geopotential. The operators
D(y) (4), in which ¢ denotes u, v, T or ¢, are the turbulent exchange
operators, 1 is the diabatic heating rate, @, is the source term in the
water vapour equation,

M(p) = m? (-‘%(%) + ;y(w)) + ;;(wﬁ), (10)

where ¢ = 7u, 7v, #T, 7q; 0 = (p — pr)/7, ® = ps — pT, P is pressure, p, is
a surface pressure, pr is the pressure at the top of the model atmosphere,
u, v, ¢ are the components of vector velocity @, ® is geopotential, T is
temperature, f is the Coriolis parameter, R is the gas constant for the dry
air, m is the map scale factor, ¢, is a specific heat at a constant pressure.

2.2. The structure of the state function and trial functions. Let us
define the state function vector for the system (1)-(10) and introduce some
auxilary notations which we shall need later on

¢={pi, i=1,8} ={u,v,T,q,6,x,9,7} € Q(Dy),

¢ = {¢f, i = 1,8} = {u",v",T", ¢",6", X", ", 7"} € Q*(Dy),
={¢i, i =18} = {U,V,T,§,%, x, ®,n/m} € Q(Dy),

¥* = {¥, i=T8 = {U", V", ", ¢", £, x", ®", 7*} € Q*(Dy),

87 ={bpi, i=T8}, &= {0y, i=T18},

{¥i, ¥} = {rpi/m,mp}/m}, i=1,5,

8pi = (mépi + pidm)/m, §p; = (mbyh; — piér)/m, i=T15,

¢={ci,(:=1,8)} = {1,1,¢cp,¢4,1,1,1,1}.

Here Q(D;) is the space of sufficiently smooth functions @ which satisfy
the boundary conditions; x is the auxiliary function of the same structure
as g; ¢" is a vector-function with sufficiently smooth components (“trial”
functions), which are introduced for the formal definition of the main integral
identity corresponding to the origin problem; Q*(D;) is the space of the tna.l
functions. Both vectors ¢ and ¢* are of the same time-space structure. 1/)
and 1/)“ are the auxiliary definitions for the state and trial functions; @ and

(11)
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61/; are the variations of the state functions; ¢; (# =1,8) are the coefficients
which serve to equalize the physical dimensions of different terms in the inner
product; Dy = D x[0,#]; S; = S x[0,7); @ = @ x[0,1); D=Sx[0<o< 1]
S ={a <z <bec<y< d}; Qis the lateral boundary of D, [0,7] is the
time interval. The functions & and ¥ and their variations 87 and 8¢ are
one-to-one interrelated by the formulas of the variations in the vicinity of
unperturbed values of the state vector.

Besides the state functions, the definition of the parameter vector and
its variations is introduced

Y ={Y;, i=1,N} € R(Dy),

12
§Y ={8Y;, i=T,N}, Y +(oY € R(Dy), (12
where N is a number of the given parameters and R(D;) is a range of their
admissible values, ( is a real parameter. The vector-function of the initial
state (°(Z), source functions Q7, @, coefficients of the equations, boundary
values of the state function and other prescribed values are included in the
parameter vector. The variations of the parameters are considered in the
vicinity of the prescribed unperturbed values of the Y.
The specific feature of the o-coordinate model is in the fact that there is
a some redundancy in the system (1)-(8). First, as the continuity equation
(5) as the two its consiquences (7), (8) are used. Second, the time differtial
operators are applied to the product of the state functions. To take this
into account and to simplify the algorithmic realization, we introduce the
dual definitions of the state and trial functions (11) and include auxiliary
components in them.

2.3. Boundary conditions. The boundary conditions for the state func-
tions are defined by the physical closure of the model. For ¢ it is

=0 at o0=0,1. (13)

The condition of the continuous approach to the background processes is
used in the limited area models. In global models, the periodic conditions
are involved. The interaction between the air and underlaying surface is
taken into account at the low boundary in the frames of the boundary or
surface layer parameterizations. The conditions of the interection with the
higher atmospheric layers are exploited at the upper boundary. The form of
these conditions are dependent on the description of the turbulent exchange
operators. The boundary conditions for @* are given in the connection with
the conditions for the state functions. They are the consequences of the
variational formulation of the model.
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3. Formulation of integral identity

First of all, it is necessary to introduce the scalar product in the space of
the state functlons

(#1,P2) j Zc.(fpl,gpg,) dDdt+ cs/S mmedS dt, (14)

t;_

where @}, @2 € Q(D,), dD = dS do, dS = dx dy/m?2.

Let G; = Gi(@), i = 1,8, are the left-hand sides of the equations (1)-(4),
(6), (8), (5), (7), accordingly, except the time derivatives. Then, using the
operator notations, let us rewrite the system (1)-(8) in the operator form

31/)

B +G() = (15)

where G(¢) = {G;, i = T,8}, B is the (8 x 8) square matrix defined by the
local time structure of the model: B = {b;; = 1, for i = 1,4, 8; b;; = 0, for
i=5,7; bzg = 1; the rest b;; = 0, for i, = 1,8, i # j}.

The next point is to construct the main integral identity for the model.
To this aim, the equations (1)—(4), (6), (8), (5), (7) are scalar multiplied by
the arbitrary sufficiently smooth functions ¢* € Q(D;) in the accordance
with (14)

16,6 = (8% +06).7) = [ (S a(Z v aid)er +

i=1

8
esGsd™ + ceGox* + ¢ ’;{t iy G7)<I>*}dD dt +
on/m .
[9'63( it +Gs)ﬂ' mdSdt = 0. (16)

After substitution the expressions for G; and ¢; (i = T,8) into (16), the
identity can be transformed to the form which is more convinient for the
construction of the discrete approximations and derivation of the main re-
lations of the sensitivity theory of the mathematical models.

4
Iew') = [ ‘{z (5 + M)+ D)) i +

FUY = V) = (CorQrT" +1C,Qeq") fm+
RTm . L00T*\ 8
WT + (@ —‘P—ba—)a(ﬂ/m)-l-
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. o 1
s+ ] N(o")do' - o ] N(o’)da’]x*-}-

( 0P a® 8@]

rZ v )_‘_E*aa

oz dy

0P a%*
oz Vv

Oy
j;. { (%(ﬂ/m) + ]01 N(o)do’) }ﬂ'*m dSdt +

/ Un®*m dQdt + f 8,72 (x/m)ymdSdt = 0, (17)
Q S ot

:m(U ) +52 Al ]}mdDdt +

where
M) = m| o (U4 Z) + i(v«/z,--'ﬁ) + (36 2)],
= (r/0)(E" - £T%) + m(U* — UT") 2% o m(V* =~ VT

au oV
N(o) = (a—- + B_y)

on
a ?

U, is the normal components of the vectors U, = (U, V), dQ = {dz do/m;
dydo/m}.

As it is seen, in the first integrand the group of terms is organized posess-
ing the antisymmetric character with respect to the functions ¥ and &*.
These terms are responsible for the mutial energy exchange between the dif-
ferent parts of thé model. The forms (M (%), ¢*), ¢ = 1,4, correspond to the
transport operators, and (D(v), ") is the symmetric integral form of the
diffusive operators. It is seen from (8), (9) that the functions ¢ and & are ex-
pressed by the other components of the state function and that is why they
can be excluded from the system. Unfortunately, such procedure makes the
formulas more complicated. To avoid these undesirable consequences, the
three components with their multipliers *, x*, ®* are additionary included
in (17).

The transport operators M(y;) posess the properties of antisymmery
and energy balance:

f (%%+M(¢i))‘ﬂ?md0dt= j (a‘;i +M (7)) pim dDdt+A(¥:, 27), (18)

j (3;?' + M(‘l’l))‘Pim dDdt = 0.5A(v;, ¢:), (19)
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A @) = [ wiolimdD+ [ Unpigimindoae, i=T
t

The turbulent operators D(v;), (i = 1,4), are defined at the surfaces ¢ =
const in such a way that they are divergent, symmetric with respect to the
¥i, @i and non-positive in Dy. In particular,

. a O
D(¥) = mdiv, p; grad, ¥; + %WE&J‘,
where y;, v; are the turbulent coefficients, s marks the horizontal operators.
To complete the statement of the problem with turbulence, let us take the
following boundary conditions

(20)

0; -
ki 3":" = (1) €D, (21)
0P A O _
V'Fa" =0 at o= 0; v,—aa =7 at o =1. (22)

The functions r; in (21) are defined from the real conditions of the approach
of the corresponding fields to their background values. 7; in (22) are cal-
culated with the help of the boundary or the surface layer models, which
describe the regimes of the interaction of the atmosphere with the under-
laying surface.

In the absence of turbulent exchange operators and external sources, af-
ter the substitution * = @, = {u,v,1,q,0,0,9,0} into the integral identity
(17), it turns to the energy balance equation

I(@, @) = f l 2 2 2 !
@, Pa) = l2/ m(u® + v+ 2¢,T + ¢4 )dD+/<I>,,1rdS] +
D s 0

1
5 T (u? + v2 + 2¢,T + ¢,¢° + 20)dQdt = 0.  (23)
Qe
The same property of energy balance should posess both the discrete
analoque of (17) and the numerical model constructed on its basis.

4. The technique of the discrete approximations

Being based on the integral identity (17), we shall obtain now the discrete
appoximations of the model with the help of variational principle. The
following successive steps are done:

1. The grid domain D} is introduced in the domain D; = D x [0,]. Here
and further index h denotes a discrete analog. To simplify the algorithmic
constructions, let us take the regular grids, which are obtained by means of
the Cartesian product of the one-dimensional grids in each space direction:
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D:'=wi‘xw;' X w X wh. (24)

h

h(s = z,y, 0,t) is one-dimensional grid, for example,

Here w
wh = {z; =2,y 4+ Az;, i=1,1, zo=a, z1 =b}. (25)

The other grids are defined in the same way.
2. The finite-dimensional analogs of functional spaces are defined on the
grid D} '
QD) = Q*D}),  Q(D) = Q™(Dy)- (26)

Then, the finite-dimensional analogs of the functions are
FeQ D), ¢ eQ™D}),
‘ﬁ(*)h = {995:331 = gp{*)(z;, yM:ak’tj)}: (27)

where ¢(*)(z,y, 0,t) is any component of the functions @ or &*.

In physical sense, the structure of the pair @" and @*h is the same as
that of the pair @ € Q(D;) and @* € Q*(Dy). In its turn, each component
of the state vector is the vector which consists of the values of functions
defined at the points of the D}.

3. The integrals are approximated by quadratures defined on the grids
D} and SP. For simplicity, we shall choose those quadratures from the
variety of them, which are obtained by the successive application of one-
dimensional quadrature formulas.

It should be mentioned that

e uniform calculation formulas can be obtained only, when the quadra-
ture has got one and the same weight coefficients in each grid point;

e the error of quadrature is global for the model as a whole, i.e., it
cannot be unproved by the use of more precise appoximations of the
integrands.

4. The integrands are appoximated by finite differences or finite elements
techniques or their combination. It is desirable to choose those ones from
the admissible set, that their accuracy could not decrease the accuracy of
the quadratures. There are some simple rules which are necessary to follow.

4.1. Symmeterized forms corresponding to the turbulent operators have
to be appoximated by symmetrical finite-difference forms.

Antisymmetrical, with respect to ¥ and ¢*, expressions which corre-
spond to the transport operators should be appoximated by the antisym-
metric finite-difference forms taking (18), (19) into account. Antisymmetric
addends which are responsible for the concordence of the energy exchanges
in the system should be approximated by antisymmetric discrete relations.
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Discrete analogs of operators div and grad have to be in a mutual agree-
ment in the sense of the scalar product (14) and integral identity (17).

It is worth to note that for the problems of environmental forecasting
and design it is nessessary to use the schemes which are as divergent and
energy-balanced as monotonic and transportive. To construct such schemes
we use the techique of the appoximation of the operators M (;) — D(vx)
proposed in {6]. It is based on the variational methods with finite elements
obtained from the solution of the local adjoint problems for these operators.

4.2. Quadratures for the integrals

1 1 4
.[o pdo, j; wdd’, /0 pdo’ (28)

must be in a mutual accordance at 0 < ¢ < 1. The integral operators

o 1
f pdo’, f pdo’, 0<ao<1, (29)
0 o

are mutually adjoint with respect to scalar product

/Ol(cp(a) [:r w(a')da’) da:/ﬂl(d;(a') /: (p(a)da)da’. (30)

This property has to be conserved in the discrete analogs.

4.3. For the approximation in time, we use the splitting schemes or
the combinations of exlicit-implicit and explicit schemes. It depends on the
problem under consideration.

4.4. Making the above mentioned successive steps, we obtain the discrete
analog of (17).

Let us denote it as

"M@, @) =0, @FeQMDM, ¢ eQ™D}). (31)

By analogy with (16) we can present (31) as

M&8) = (BAG+ AW),9) =0, (32)
A=), rw=(2)" (33)

Sum functional 7*(, ¢*) is the function of the grid components of the func-
tions ¥" or Z* and g*h.

The discrete analog of balance energy equation (23) is obtained if to
substitute the vector @** = @" into (31)

"3, ¢.) =0. (34)
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It is important to keep in mind that functional I*(i3, #*) is linear dependent
on the grid components of the vector @*", and it is non-linear with respect
to the components of the vector @".

The algorithms of the construction of the sum analog of the integral
identity are described in more detailes in [3].

Using the variational calculus techniques we obtain the discrete appoxi-
mations of the basic system of equations (1)—(8) from the stationarity con-
ditions for the sum functional with respect to the arbitrary and independent
variations of grid components of the function %*h.

These conditions are written as the system of equations

o1 (3,7")
*J

=0, (35)
O;mi

where ¢* = ¢%, @ = 1,8. The set of indexes (¢,m, k, j) runs successively
the whole variaty of the grid domain point numbers, including those parts
of the boundary where the values of state functions are not qiven.

Thus, the family of energy-balanced discrete models is obtained.

5. The algorithm of the construction of adjoint
operators and sensitivity functions

Hereby we briefly describe the algorithm of the construction of adjoint equa-
tions.

Adjoint system in differential form is qenerated from the functional
I(p, ¢*) with the help of the stationarity conditions with respect to inde-
pendent and arbitrary variations of the components of the state function 1.
The similar procedure for the discrete form of (17) will give us the discrete
analog of the adjoint equations.

There is one essential difference between the construction of the direct
and adjoint problems. It is due to non-linearity of the functionals I(g, ")
and I'*(, $*) with respect to the components of the state function @. There-
fore it is necessary, first, to linearize these functionals. After that all opera-
tions are fulfilled by analogy with the construction of the direct problem.

5.1. The scheme of the algoritm for the construction of the adjoint
operators.
1. First we construct the integral and sum functionals of the forms

1(3¢), M@ e).

2. Then we introduce the vector of perturbed values of the state function
as
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¥p = ¥ + 5% € Q(Dy), (36)

where 1/; is the known state function, 51,5 is the vector of variations, § is a
real parameter. In the discrete case, the components of all these vectors
Py, ¥, 6%, are given in the grid points of the domain D!, The connection
between these vectors and &, ¢ is given in (11). The unperturbed state
function % in (36) is the solution of the direct problem with the prescribed
values of the parameters (12). Similarly (36), the vector of perturbed values
of parameters can be defined as

Y, =Y +&5Y, (37)

where Y is given and 8Y is the vector of variations (12). It is supposed that
Y, Y, € {R(D:), R"(D})}.

3. Now we shall describe the basic operations of the algorithm.

3.1. First we substitute ¢, instead of ¢ in the expressions of functionals.

3.2. Then we linearize the functionals in the vicinity of ¢ and extract
the terms with the components of 43 by means of the operations

a -
0 -
&-rh(m €63, @ )e=0 = CH(§, 69, 7). (39)

3.3. Now we put together the expressions including the variations of the
components of the state function ¢, as it is prescribed by the definition of
the inner product (14)

- ¢ T ‘_a-'u " =

CH(@, 6%, 3) = (BA] + AL()F", 69)"

where A7 is the adjoint operator to A;. The last is the operator of the
discrete approximation of the time derivatives; A} () is the operator of the
adjoint problem with respect to the space variables; A}*(g) is its discrete
analog; B%}E + A} (P)@" is the operator of the adjoint problem, B is the
weight matrix. In the discrete case, the operator of the adjoint problem is
obtained from the algorithm

(40)

0 - o T e A % * e * *
P CM@ 64, F") = BAjo™ + AP (@)7", " e Q™M(D}).  (41)
imk

Here all indexes ¢, m, k, j run the whole set of the point numbers of the
grid domain D}. The concrete structure of the operators A; and A} for the
three-time-level numerical schemes will be described later on.

3.4. Finaly, the adjoint problem is formulated in the following way
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BAjo* + AR =1, @) =0, (42)

where 7j is some given vector. Usually it is generated by the quality func-
tional of the model.

3.5. The construction of the main sensitivity relation is made according
to the algorithm

I VI g 5 o g
81N, ") = &1’"(%% Y +88Y)e=0 = RM@,7°,6Y),  (43)
where 3, ¢* are the solution of the (35) and (42) with the unpertubed values
of Y.
3.6. The calculation of the sensitivity function is made by the formula

art a

v hy— —= X =1 N
3],; - BJK‘R (‘P!‘P 16Y)1 i 11N' (44)

6. The adjoint problem and sensitivity functions
for the model in o-coordinates

The specific character of the presentation of the hydrodynamical model in o-
coordinates is aslo seen in the structure of the ajoint equations. To take this
into account, the insertion of the integral identity (17) to the general scheme
of the variational principles of discretization and sensitivity investigations,
described in Sections 3 and 4, is made with the help of the dual presentation
of the state and trial function and their variations.

The main functional of the model in (17)

I(@,¢) = 1(3,¢,Y)

has got the rather complicated dependence on its arguments. That is why,
for the convinience, we shall describe all formulas in the differential form
keeping in mind that all operations are carried out in the discrete form.
First, let us extract three groups of the terms connected with (1) the trans-
port operators, (2) turbulence operators, (3) the energy exchange in the
system. Then, after linearization and variation procedures, the results are
reorganized in two groups: (1) terms with the variations 89 (see (39), (40)),
and (2) terms with the variations 8Y (see (43)). Finally, the first group
generates the adjoint problems (41), (42), and the second one — the main
sensitivity relation (43) and the sensitivity functions themselves (44).

6.1. The form with the transport operators. The following terms in
(17) are of this type
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A (@, @) = /D‘{ic,(a¢’+M ))w }mdDdt

=1

4

_ Zc‘{jz;,( ‘969? (@)¢}) $im dD dt +

-
P

~ 2
[ wigimaly+ [ UnbigiT-deae},  (a5)

where

. . mdp* Vmde'] Lmdp*
M (@)¢ = m[U T By] r do
is the operator formally adjoint to M ('qb) The boundary conditions & = 0
at 0 = 0,1 are taken into account in (45). The variation of the functional

A;(F, @) is in the form:

IR dey . ]
8A, (&, &) =Zc,~{L(—— ;Z‘ +M*(95')<p2‘)51/);mdDdt +./D<51/J,-(p,~mdD|3}—

i=1 ¢

o
D,
F)))

) a""’+6v2 (= ) 3”;'+

4
LIC

ic,(i:r—)tb,%%;}m dDdt +
=1

]D,{?r: Z[m cn/),(mU grad, ¢} +E%‘P‘)]}md1)dt+

=1
R, (‘5? ‘Pi!‘sy)a ‘ (46)

m2

Ry (o, &;, 6}7) = / {5Un z Ca"f’l‘?; Z C,Un5’![),(,9‘ - -

i=1
on 2 »
- Z m2e;Un i} }dQ dt. (47)
i=1

6.2. The form with the turbulent operators.

4
A2(@, & ]D S ci(D(wi)gl)mdDdt + A +

t =1

4
Z c;{f ripimdQdt + / TioimdS dt}, (48)
Qs S

=1
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A,-:—/
D

- ., V0BT
1 ci (mu,— grad, ¥; grad, ¢} + -rr_a%%) m*dDdt

ti=
or
4
[ S aD(ewamdpa.
D =y
The uniform boundary conditions agreed with (21), (22) are taken for the
functions ¢f, i = T, 4,
Iy} dy
an do

The variations of the functional A;(@,#*) are

=0, (Z,t) € Q, =0 at 6=0,1. (49)

4
6425, 7) = [ S0 e DW)SImdD di+ Ba(@,,67),  (50)

ti=1

where
4
s e g . Vi 097 00Ty o
Rg(gﬂ, @i, (SY) = 2 C,‘{Lt [6}1, grad, v, grad; ¢} + Ea—a%']m dDdt +
f Sriptm dQdt + j Sriptm det}, (51)
Qe St

8u;, 8v;, 8r;, 87; (i = 1,4) are the variations of Y.

6.3. The form with the operators of the energy exchanges. The
rest terms in (17) belong to the third group. They are connected with the
operators of the energetic exhange, the continuity equation and the two
its consequences. Inspite of their cumbersome form they can be directly
variated without difficalties. That is why we do not write them here.

Getting together the results of the variations of three groups, we ob-
tain the common expression for the variation of (17). Formally, it is the
superposition of (38) and (43).

6.4. The adjoint system. In accordance with (41), (42), the conditions
of the independence of the variations of the functional d/{3, &*) on the

variations of the components of the state function 8¢ = {8¢;, i = 1,8} give
us the system of adjoint equations
ou*
ot

* - aQ* *aﬂ- 3 1 = ! ! L !
+ M*u" + fu -m(a—$+aT 3—3+5—£(Lxda—j;ax da))_,

4 _' 2 a *
Yo a5 )wgt - D) +m =0, (52)

i=1
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av* a0 ar 0 ! ' 1 r kgt )
_ ok fo Kk il LA B * _ d _
at+Mv lu m(ay+aT 6y+3y(,[,xda [)ax a)
1 m2y | B¢!
i — '._’._D *) + =0, 53
;C(n)d’ay (v*) + m (53)
oT* Rm
— * - *" * - 4
o T MT ‘et D(T*) + 13 =0, (54)
SO Mgt - D) =0, (55)
oU* 9v*y 9L* 0eT 8w
m( 9c T ﬂy) 50 T 9o 55(;) ~m =0, (56)
. arT* 9 & Oy} _
X —T_ﬁg—iz:;c:wt%"{'qﬁ_oa (57)
®* — raT* + 17 = 0, (58)
6 » a(27r+pT/G') - E 'm_' *
é?(” /m)+——_—7r(1r+p;r/a)r +0(E T+
a * * a * *
m((‘)_z:a(U -UT") + aya(V VT )) +

]

1 - . F: 1ok
2 Y micws(Uegrad, o + (B/m) 32 ) —m =0, (59)
=1

a=(RT)/(r+ pr/o).
The conditions

uw=0 v'=0 T"'=0, ¢"=0 =r"=0 att=t (60)

are obtained from the same reasons. The discrete analog of the ajoint equa-
tions and the scheme of their solution are the consequences of both the
integral identity and the scheme of realization of the direct problem. The
equations (56)-(58) are axiliary. The time integration, starting with ¢t = ¢,
is made in the inverse direction.

The components 7 = {#;, i = 1,8} are introduced into the system to
solve the problems of the sensitivity for the dynamical model. The concrete
form of this vector is obtained by the gradients of the quality functional.
The vector-gradient is calculated with respect to the components .

6.5. Dependence on the input parameters. If to suppose that the
function ¢~ satisfies the homogenious system (52)-(59) ( i.e., at 7 = 0), and
the condition (60), it is obtained
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o (g;, @

s16,67) = ( 2 )6?)53(@@:5?)

4
= ]D (c30QrT™ + c46Q,q")dD dt + /D 3 bt |,_gm dD +
t i=1

Ri(@, 7", 6Y) + Ra($, &7, 8Y) + Ra(3, 7, 6Y), (61)
where R,, R; are given by (47), (51), and

R3(3, &, 6V) = /ﬂ (®*6U, + Uz6® + (U: — UpT*)67 — nT*8U, }m d2 dt —

fs (T*6(®,7) + 7°67)|,_dS. (62)

6.6. The sensitivity relations. To study the model behaviour, let us
introduce the set of general characterictics, which take the form of the func-
tionals defined on the set of the values ¢

(@ = [ F(PwndmdDdt, k=TE, k>r,  (63)
D,

where Fy () are the given functions differentiable with respect to 3, wy (7, t)
is non-negative functions defined in Dj.
The variations of functionals

§Ji(?) = (gradp Ji(9),6Y), k=TK, (64)

are used as the measure of the model sensitivity, where
gradp Ji (@) = {BJ;;(@'), i= l,N}

is the set of the sensitivity functions of (63) to the variations of the param-
eters Y in the vicinity of undisturbed their values Y.

The algorithm for the calculation of variations consists of some steps:

1. The direct problem with the undisturbed values of the parameter
vector is solved in the discrete form (35). As a result, the solution ¢ is
obtained.

2. The set of the vectors are calculated

A
Tk = 2Ji(P) _ {mu OF:(P) -(.@
o 0v;
3. The set of the adjoint problems (52)-(60) with the source term
{#k, k =1,K} are solved. The result is {G}, k=1, K}.
4. With the use of {@, @}, k = 1, K}, the sensitivity formulas are con-
structed as

wi(,t), i=T8}), k=T K. (65
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5IH(@) = RM3,@1,87), k=TK, (66)

where R (g3, 93};,6}7) is obtained from (61) by the substitution of the values
=g k=1K.

To find out the expressions for the sensitivity functions, the coefficients
with the same components of the vector of variations §Y in (64) and (66)
are equated with each other. This action is equivalent to the calculations of

S —
grady J} (@) = {3—6}73"(%%5}*), i=TN}, k=TK.  (67)

The differentiation in (67) is carried out on the whole set of the components
of 8Y in its discrete form. If to subsitute the concrete values of {{, @y,

k =1, K} into the formulas, the numerial values of the sensitivity functions
are obtained.

7. The system organization of the direct and
adjoint problems

The structure of the ajoint system is uniquely defined by the structure of
both the direct problem and the integral identity, and by the ways of their
discretization. For the description of the direct problem it is enough to
present its local structure and the time behaviour. But it is not the case
for the adjoit problem and sensitivity methods. It is neccessary to describe
complitely both the local and global structures of the direct and adjoint
problems simultaniously. In principle, it is reached by the discretization
of the integral identity. The different combinations of the approximation in
time, which provide the stable computations, are used in modern models. In
this sense the typical example of the time approximations is the atmospheric
model of the Beijing University (BUM) [9]. We take this model as one of
the basic models for the construction of the algorithms of the sensitivity
theory. Now we describe the system organization of the direct and ajoint
problem for this type of models. (The system organization for the models
with splitting schemes was described in {3-4]). To make it as simple as
possible, we leave the local space structure and physical sense of the state
functions out of the present description. They are presented in (11) and
(27). We concentrate on the time structure. For conviniency, the notations
for the operators and the state and the trial vectors are slightly changed:

the vectors are reorganized as blocks and the only shown index of the block
is the time index.

7.1. The time structure of the state functions. Three kinds of time
approximations are used in the BUM model realization:
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a) two-step two-level Euler-Backward-Matsuno scheme (EBM);
b) three-layer leap-frog scheme, (LF);
¢) smoothing procedure (S).

Lef us define the following notations: ¢ is the state function in the LF
scheme and at the first step of EBM scheme; ¢ is an auxiliary function at
the second step of EBM scheme; ¢* the state function after smooting; 8 is
a number of steps on EBM scheme (8 = 8); a is a number of steps on LF
scheme (a = 40); K is a number of cycles of (a + 3) steps in time; j is a
current step number in the combined scheme {EBM; LF; S}; K (o + 8) is
the number of the time steps.

Computations are cyclically repeated in (a + 3 + 1) steps (uncluding
smoothing). For the convinience, let us introduce a block structure of the
state functions of the model

&= {&r, k=0,K} = {ox, k=0,K@B+a+1)},

where k is an index of a vector-block. It coincides with the cycle number;
& is a current index running the whole time interval, k € 0, K (28 + o + 1).
Each block ®; consists of 28 + o + 1 vectors:

& = {9k = {Phrs P1ks Piks - - -+ PBk> PBks PB+1kr « + - Pat Bk} |

where j € 0,a+ 8 is the current index of the state function in the k-th
block.
The relation between the indexes j, k and the time step number £ is

E=k(f+a)+j, k=0,K, j=0,0+0.

Smoothing procedure does not increase the time step number ¢, ;. =
Pok+1 Poo = Po is the initial state function.

As for the relations between the indexes &, k of the block-vectors and
the index « in the current numeration, they are defined as

Kk =kM + 23, 155,
Pik = Pxy

k=kM+3ji+8, j>B,
Gik=tx, K=kM+2j-1, j<B,
O =, K=kM+7],
M=234+a+1.
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7.2. Definition of the scalar product in time. Let

. . K ,8-1 - R a+p -
@)= LS [(@5 Bt + Gy b)) + 3 (65, F2at). (69)
k=0 * =0 =g

This is the discrete analog of (14). Here and further the expressions of the

form (;, 1,5,) denote the scalar product of the corresponding vector functions
with respect to the space variables in (14).

7.3. The time structure of the basic sum functional. Now we discuss
the structure of the appoximations for the integrals and derivatives in time.
They are included in the definition of the scalar product (14) and integral
identity (17). Namely, the formula (68) is the appoximation of the integral
in time in (14) and (17). In this section we do not touch the space structure
at all.

The following sum identity corresponds to the basic model

I(é ‘i; {z:{(‘.p”-1 2 + Ajpi - fJ)‘f"JHAt +
k—O j=0
(B + A - ) @it} +

e Pi+l — Pj-1

> [(FELE + Avps) w2t +

i=8

‘Pg = Pa .

(PG~ Sorppasn)iteht) =0, (69)

where A;; is the operator of basic model (32), (33) calculated at the time

moment ¢;; with the state functions pj; fijk is the operator of basic model
calculated with the function @jy, i.e.,

{Ajr; A} = {GM(@ix); GM(B51) )5

fik is a vector of right-hand sides of the discrete equations of the model at
the time moment ¢ ; fjk is a vector of right-hand sides at the time moment
tjk calculated on the second step of the EBM scheme. For simplicity the
matrix B is formally omited here. Nevertheless, it is taken into account in
the structure of the time-difference operator.

7.4. Algorithm of the direct model realization in time. The algo-
rithm of the realization of basic model in time can be written as the following
succession of items:
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1. Inital data: g, £ = 0.
The beginning of the k-th cycle:
2. Scheme EBM (3 time steps)
Pitl =i | a o f o
( At + AJ""PJ fJ - O)k,

(—“‘*—-‘P”;; 2t A - fi = 0),, i=0,8-1

w

. Scheme LF (o time steps)

Pi+l — ¥i-1 Ain) — F. — F— B atB—1
(—2At + Aj(p;) fJ—O)ks j=B,a+8-1.

s

. Smoothing (1 step)

(90;;1:% — Sjp; = G)k’ j=a+p.

5. k=k+1.
6. Repetition of the items 2-4.

7. The end of the computation at k = K + 1. The vector g is the final
result.

7.5. Construction of the adjoint system of equations. The adjoint
system of equations is obtained from the stationary conditions of the sum
functional (69) under arbitrary and independent variations of the compo-
nents of the state function @ in the vicinity of their unperturbed. values. As
such values, the solution of the direct problem with the given input param-
eters is used.

Formally, the algorithm of the construction of the adjoint system (38)-
(42) is described by the operator formula

i}
[i LI

9 . I
[3—th(q> + 55‘1”‘1’)]5=o =0, (70)

k=1, (K+1)M, M=2+a+1.

To construct the general form of the ajoint problem and algorithm for its
realization, let us fulfil all essential operations on the block level without
description of their inner structure.

Successively providing all operations, one obtaines the following algo-
rithm for the solution of the adjoint problem:
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L. ok 11)(a+p) 18 Biven, J = (K +1)(a+5).
. First two steps are carried out

N

©7 =93 +AtSjes, @i = =20tAG_ 9]

w

. The adjoint LF scheme is
;= @i —2AtATYS L, F=d=2,...,J—a.
4. Transition from the adjoint LF scheme to the adjoint EBM scheme
i=J—o, @ =-AtA]_ ¢}, (71)
‘P;-—l = QE’; + SP; + ‘P;+1 - AtA;—.l: SE’; (72)
. The adjont EBM scheme

w

Pipr = —AtAi05,  0F = @iy + W — ALATE]
j=Jd-a=-2...,0—(a+8).

It should be mentioned that

* — ax(3)
J-(a+8) = A (at)"

It means that smoothed solution of the direct problem is used at this
step.

6. J=J—(a+p). If J #0, then the calculations should be continued
cyclically starting with item 2. If J = 0, the calculation are finished.
And ¢j is the solution of the adjoint problem at the time moment
t=40.

The following definitions are accepted above: A*, A* S* are the adjoint
operators with respect to the linearized operators A, A, S of the direct
problem, i.e., A* = A}({g) from (40)-(42). Linearization is provided in
the vicinity of the undisturbed state. Indexes of the operators show the
current time step numbers. The operators A; and A; depend on the solution
of the direct problem at the moment ¢t = ¢;. In contrast to the direct

problem, integration of the adjont problem is carried out in the opposite
time direction.

8. Conclusion

The presented algorithms of the construction of the direct and adjoint equa-
tions for the numerical models are the basis for the development of the
methods for the combined use of the models and measured data. The rea-
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lization of the direct and feed-back relations between models and data are
provided by the sensitivity methods. They take part in the optimal tech-
nique of the assimilation of observations and in the identification of the
models. This is the means for the realization of the inverse methodology
for studying the natural processes and for the solution of the problems of
environmental protection.
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