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Numerical methods
- of model quality estimations
and assimilation of observations

V.V.Penenko

The methods of the combined use of mathematical models and observed data for the en-
vironmental monitoring and forecasting purposes are described. The interaction between
models and data are based on variational principle. It includes the reconstruction of
state functions, identification of parameters and diagnostic estimation of the model qual-
ity on the observed data; consistence of information from diverse observational systems;
investigation of model sensitivity to the variations of input parameters; observational
experiment design. The application of these techniques to ‘the models of atmospheric

_hydrodynamics and transport of pollutants are presented.

1. Introduction

The questions concerned with specification of input parameters and initial
data for mathematical models always arise when solving different problems
}elated to the physics of atmosphere, ocean and environmental protection.
Information obtained from observations in real conditions is usually used
for this purpose. .

Let us formulate the problem in a more general way and consider math-
ematical models together with observational data. In this case mathemat-
ical models will be used for the estimation of initial fields, reconstruction
of the field time-spatial structure and more precise definition of the pa-
rameters for the models themselves with the help of the measured data.
Diagnostic quality estimation of the model will be made simultaneously
with assimilation of observations.

For the solution of this problem it is convenient to use optimization
methods, combined with methods for investigation of the model sensitivity.
Such combination results in the closed formulation of the problems and to
the logical in its sense organization of interaction between the mathematical
model and the actual information. Adjoint problems play an essential role
in the realization of this approach. '
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At present a considerable experience has been gained in the application
of optimization methods and adjoint equations in different fields of science
and technology [1-5]. Problems of analysis and assimilation of observations
using numerical models offer wide possibilities for the utilization of these
methods. Detailed review of different applications of variational methods
in meteorology is given in [6]. This paper is based on the results of the
works described in [7-13].

Data assimilation with optimization makes it possible to use simul-
taneously all the available data in such a form which is obtained from
measurements.

Three types of basic elements must be defined in order to represent the
methods for the assimilation of observations and the diagnosis of the model
quality;

* mathematical models of investigated processes,
¢ mathematical models of “measurements”,

¢ criteria for the model quality and assimilation of observations.

Models of the processes are well-known. Models of observations describe
the transformation in which state functions correspond to the set of ob-
served quantities. Observations can be contact, indirect and remote. Their
sense determines the structure of the corresponding model. For example,
if contact measurements give the state function values, then let us take the
appropriate interpolation procedure as a model of such observations. In
this case interpolation must be carried out from the simulated fields to the
measurements, i.e., the state function values, calculated with the models,
are transferred to the set of points, where measurements are made.

2. Statement of the problem and constuction
of the discrete approximations

State functions and parameters are the major definitions in the descrip-
tion of mathematical models. Their physical meaning and the difference
between them depend on the specific formulation of the model. In the prob-
lems of geophysical hydrothermodynamics and environment, velocity vector
components, temperature, pressure, density, humidity and concentrations
of pollutants refer to the state functions. These functions determine the
system behaviour at every point of the model integration domain. The val-
ues of turbulent coefficients, integration domain characteristics, coefficients
of equations and boundary conditions, the source characteristics, etc., will
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be given as parameters. The fields of initial values can be also referred
either to the unknown parameters or to the state functions.

For the convenience of further description let us take advantage of the
operational notations. Write the model equations in the form :

-

¢ 3Y)= f(%
—aT'f'G(‘PsY)"f(m’t)’ : ()

G€Q(Ds), Y €R(Dy).
The following notations are used here:

@ — state vector,

Y — parameter vector,
B - diagonal matrix, some diagonal elements of which can be zero,

G(&, Y) — non-linear matrix operator, depending on the state function
and parameters,

f — function of sources,

D, = D x [0,],

D — domain of the spacial variables 7,

[0,2] — time interval,

Q(D;) — space of state functions satisfying the boundary conditions,

R(D;) — range of admissible parameter values.

For the considered class of problems operator G(3,Y) is defined by
the hydrothermodynamic equations of the “atmosphere-ocean-earth” sys-
tem and by the relations at the interface boundaries. It includes all the
terms of equations except the time derivatives. With respect to the state
function components J this is a non-linear matrix operator with partial
derivatives. In the stationary case B-matrix is zero.

The mathematical model (1) implicitly defines the transformation, in
which the set of parameter values Y and the initial state P correspond to
the set of the state function values.

The computational algorithm for the solution of problem (1) fulfils the
constructive realization of transformation

F=@F LY, P). (&0eD; Y eRD) (2)

determining the state vector as a function of independent variables, the
model input parameters and initial data.
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The genera,]ized representation in the form of the integral identity

16.7.6) = (B +G@.) - ,¢) =0,

FeQ(Dy), ¢ €Q (D), YeRD)

is used for the construction of discrete analog of the model (1). Here @*
an arbitrary sufficiently smooth function, Q*(D;) is the space of sufficiently
smooth functions defined in D;. The functional I{Z, Y, &) in (3) is formed
so that all the equations of the model (1), initial and boundary conditions,
conditions at the interface boundaries and external sources were included
in it simultaneously. Main requirements for the choice of the functional
identity are as follows: o

3)

e model descriptions for sufficiently smooth functions in the forms (1)
and (3) must be equivalent;

o equations for the balance energy, mass, moments, substance amount,
etc. can be obtained from the identity (3) by definite specification of
trial function @* without additional differentiation and integration.

These requirements determine the structure and the type of boundary con-
ditions of functions ¢*. Examples of the integral identity construction for
the considered class of models are given in Sections 7, 8 and in [10, 12].

One thing should be mentioned. If the energetic functional is introduced
for the “atmosphere-ocean-earth” system and an identity of the type (3)
is built on it, then the conditions for the fluxes at the atmosphere-ocean,
atmosphere-soil, ocean-continent interface appear to be natural for the vari-
ational functional. Due to this the solution of questions, associated with the
approximation of boundary conditions and the concordance of the process
scales is made easier. :

Depending on the aims of investigation, specification of the domain
D;, and the functions 3, J* definition the identity is obtained for the
entire “atmosphere-ocean-earth” system or for every subsystem. Domain
decomposition is obtained by the specification of trial functions F*.

Procedures of data assimilation require high degree of concordance be-
tween different clements of numerical model and computational algorithms.
Such agreement is provided with the help of the integral identity (3) and
its discrete analogs.

Let us briefly describe the method of the discrete approximation con-
struction. To be concrete, the finite-difference approximation is consid-
ered. Discrete analogs will be denoted by the superscript h. A grid D}
will be introduced into the domains D and the discrete analogs QM DF),
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Q*h(Dl), R*(D!) of the corresponding functional spaces will be defined
on it. Then the integral identity (3) will be approximated. In the gen-
eral case it includes 4-multiple integrals in time and spatial coordinates.
Let us replace the integrals by cubic formulas, and the derivatives - by fi-
nite differences. Fractional steps will be introduced in time, and the space
will be decomposed into subdomains when required. Then the method of
weak approximation will be used, and separate terms of the identity will
be approximated at different fractional steps. The properties of energetic
balance, inherent in the identity (3) must be conserved. As a result the
summation analog of the identity (3) will be obtained

", V.¢") =0, FeQ Db, & eQ™MD}), YeR'DH (4

Numerical schemes for the model (1) will be obtained from the station-
arity conditions of the functional [ (g, Y, @*) at arbitrary and independent
variations of the grid functions @ € Q(D;) and &* € Q*(Dy) in the grid
nodes D} [10).

Constructively these conditions are realized by the operations

)
aG

—
r

M@ Y, 5) =0, & €Q (D). (5)

Differentiation is realized with respect to the function grid components at
every grid point. Thus, (5) gives the set of basic equations approximating
the system (1) with the boundary conditions in the grid nodes. In this case
approximation is understood as weak. lts accuracy depends on deviation
between functionals I(&, Y. ) and I"(3. Y., ) in the corresponding
functional spaces. If the smoothness of the functions 3 and ¢* is sufficient,
the obtained approximation has accuracy in a usual sense, i.e., locally at
every grid point D! .
The set of equations adjoint to the equation (5) is obtained similarly

2mE T enan =0, FeQiob. ®)
Here 7j(Z, t) is some given function. Its form is defined at specific utilizations
of the adjoint problem. This will be considered later.

Boundary conditions in problems (5) and (6) are taken into account by
coefficients and parameters of discrete equations. This is a consequence of
the summation functional.

In the construction of identity (+4) equations (5) and (G) there represent
splitting-up schemes due to the utilization of fractional steps in time and
decomposition into subdomains.
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If the original model (1) is non-linear, then identities (3) and (4) are
linear relative to functions @* and non-linear relative to state functions
@. That is why linearization of the summation functional relative to some
specified value of the state vector is presented in the operations (6). The
notation for it will be 3,, and for the state vector variation in the neigh-
bourhood , it will be §3. If the state vector ¢ is represented in the
form

P =Gt 605, GatE65€ QMDY (7
where £ is the real parameter, the algorithm for the construction of adjoint
equations (6) will be rewritten as follows:

3 8 hy = - ;=%
%{[0_61 (Pa+865,Y,0 )]

£=0} + 7(T,t) = 0. (8)

Differentiation is made relative to all the vector components 0@(Z, ), in
all the grid nodes (&,1) € D!. The number of the splitting stages is
determined by the assignment of the number of fractional steps in time and
the number of subdomains, and also by the type of quadrature formulas in
time and space. Description of specific approximations and methods for the
realization of splitting-up schemes is given in [3, 5, 10, 12). Note only, that
the stability of computational algorithms in this way of the numerical model
construction is provided by the property of energetic balance inherent in
identity (3). The numerical model is constructed using this property. The
set of adjoint equations is a consequence of approximations of the basic
model.

3. Model sensitivity functions to variations
of input parameters

Belore passing on to the description of algorithms for the observation as-
similation let us consider the supplementary algorithm in the calculation
of the model sensitivity function.

Investigation of the model sensitivity to the variations of input parame-
ters is a necessary step in the solution of the numerical simulation problems.
This is especially necessary in the studying of the real physical system be-
haviour with the help of numerical models. In this case sensitivity functions
play a substantial role. In accordance with their definition they represent
partial derivatives of the investigated stato function characteristios with
respect Lo model parameters.

If the model is considered together with the observational data, then
the sensitivity functions make it possible to realize interrelations hetween
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observations and models. Actually, algorithmically the sensitivity inves-
tigation gives numerical values of the gradients that are required for the
realization of optimization methods. By the way, we pose the problem of
data assimilation by the models as a problem of optimization.

As a measure of the model sensitivity it is convenient to take some set
of the model generalized characteristics. They are specified on the sets of
the state functions @ € Q*(D?) and parameters Y € R*(D}). Functionals
of the form

Bi(F) = / k(& OF(@(E, 1)dDdt, k=T, K 9)
D,

will refer to this tyvpe of characteristics. Here Fi(3) are some functions of
& and xi(Z,t) are non-negative weight functions, satisfying the conditions
of normalization

/ xo(Z,t)dDdt, k=T,K. (10)
D.

In particular, functions x(Z,t) can have finite support in D;. A limit-
ing case is when one point is a support. Then the Dirac delta-function is the
weight function ¢ xx(Z,t). In finite dimensional case this is the Kronecker
delta-function. Discrete analogs of the functionals (9) are determined by
the replacement of integrals by cubage formulas. As for the functionals
(9), let us assume that they are continuous, limited and differentiable on
the set of functions J € Q(D;), and their discrete analogs — on the set of
functions @ € QH( D).

It follows that the functions

0%i(P)

K(E,1) = grad;@}(¢) = 9 (1)

bl =3

:=1.k, (#1)e D!

defined on the set of state function values in the grid nodes of D} must
exist.
In this case we obtain the algorithm

= i a = v -
6®4(P) = (grady &, 6Y) = b—E-I"(‘p, Yo+ €8V, 7)o, (12)
a i} hy = s - R
gradp @ = -367{3—61 (¥, Yo + £5Y,§9k)|5=0}, k=1, (13)

for the calculation of the variations §®.(J3) of the functionals &,(3) (9)
and the sensitivity functions gradp®,. Here £ is the real parameter, 8}’
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is the vector of parameter variations, Yo is the vector of non-perturbed
parameter values, @ is the solution of the basic problem (6) at Y = Yj, &
is the solution of the adjoint problem (8) at the condition ] =7 = 0 and
with the source function 7x(Z,1), calculated by (11).

The basic problem is solved once, and the adjoint problem is solved so
many times as there are functionals (9). Integration of equations for the
basic problems is fulfilled in the forward time direction, and for the adjoint
problem - in the inverse direction.

4. Algorithm for assimilation of observations
and the diagnosis of the model quality

Let us assume that there is a set of points DJ* in the domain D, in which
the measurements for the specified characteristics of the state functions are
obtained. The set of observed values will be denoted by ¥,.(Z,t), and by
¥ = H(P) the set of values calculated with the help of the measurement
models with simulated state function. The deviation between measured
and calculated characteristics of the investigated processes is estimated by
the difference . L. B
v, -V =V, - HE).

Functions ¥,, and ¥ are obtained on the set D* and the function
@ is obtained on the set D}. Thus, the model of measurements gives
some aproximation of the measured quantity in DJ* and this approximation
originates from the state functions calculated in D} by the model of the
processes.

So far we have considered the model for the investigated phenomena,
defined by expression (1) in the ideal situation. In real conditions, however,
mathematical models of the processes and measurements, the measurements
themselves and initial fields have errors. These errors can be both random
and determined.

So the model with errors will be taken instead of the model (1)

0@ =

B+ GM@,Y) = f(7,t) + &(3,1), (14)
¥ = H(@) + X(Z,1), (15)
@(0) = & + &(7), (16)
Y =Y, + {(&,1). (17)

Here G*(3, Y) is the matrix discrete analog of the model operator (1), H()
is the set of the measurement models, ¢° and Y, are given estimates of the
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initial fields @(0) and parameter vector Vi €(&,1), X(&, 1), &), {(&,1)
are errors of the basic and model, the measurement models and estimates
for the initial state and parameters. All the models are discretized in
space and time. However, the expression for the derivative of the state
function in time was formally left in the equation (14) for the convenience
of presentation.

Let us formulate the quality criterion for the assimilation model in the
form of the functional

J(@)= (( (2,;’9+G" 9)-7) R (B———+G"<,o,¥)—f))

+((p0-2) 2 (20 - 7)) %)

* ((Y - f;)TL'l (}7 - }—:a))nh{D?),

where the index T denotes the operation of transposition. The vectors are
arranged in columns. Floating time interval [to,2;] C [0,7] is taken in the
domain D7 in which observational data are accumulated for one assimila-
tion cycle. In particular, both intervals [to,ts] and [0,7] can coincide.

All the four terms in the quality functional (18) have the form of scalar
products with positively- deﬁned weight matrices R, S, P;', L™1. They are
defined in the domain D!, D*, D", Rh(D}) respectively a,nd are respon-
sible for the minimality of model errors, deviations between the measured
and calculated characteristics of the investigated fields, the errors of the
iinitial state and the eirors of the model parameters. Weight matrices R,
S, Py', L~! are the parameters of the assimilation model. Their choice
depends on the researcher. If given information about the errors of the cor-
responding terms exists, it is desirable to take this information into account
in the specification of these matrices.

The choice of the quality criterion itself and of the weight matrices in
it is a complex problem for non-linear models. Special research is necessary
in this direction.

In the solution of practical problems application of the criterion in
the form (11) gives quite acceptable results. This is provided first of all
by the minimization principle for the vector norms of the corresponding
deviations that is the basis of this criterion. The second favourable factor
is the presence of good given estimates for the unknown quantities.
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Now let us pass on to the description of the basic algorithm for the
solution of the problem of data assimilation.

The source function f(#,t) in model (14) will be included in the set of
parameters ¥. The error function £(#,1) will be considered as an auxiliary
variable. It will be denoted by

§a.1) = F(7,0)= BSE + GHg.T) - fiz.) (19)

and (18) will be rewritten in the form

1, F) = (FTRF)  + ((w (@) 5 (G - A (‘@)))Dm

t

+ (0 - &) r5t (e - ) (20)
(-0,

The vector of initial data (3(0) and the vector of the model parameters
Y are unknown quantities. In this case Y, and Y are supposed to belong
to the range of admissible values R"(D}).

In this case the estimation problems of the state function and the qual-
ity of the model can be considered as a minimization problem for the quality
functional (20) on the set of functions {F(0), F(&,1), Y}

This problem must be solved under condition that the state function
satisfies the set of equations for the basic model

B2 Mg V) - f=F (21)
at
with free initial conditions, i.c., the vector 3(0) is not specified and only
its preliminary estimate ¢° is known. The parameter vector Y at qiven
estimate Y, is also to be defined more exactly.

Algorithms based on the employment of the Lagrange multipliers and
the maximum principle can be applied in this formulation for the solution
of optimization problem. Applying the method of the Lagrange multipliers
the equivalent formulation of the model with the functional

Jo(@, F) = J(3, F) + M@, Y, &) (22)

is obtained. The second term in (22) is constructed in the same way as
the functional of the basic identity (3) and its discrete analogs (4). In this
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case the functionf from (1) is replaced by the sum F.=f+F,ie.,
hy = v o* ()(,3 - Y7 B o h
I(QQ’YWO):(BE'*'G(‘P,Y)_FB’Q’) . (23)
The vector ¢* in expressions (22) and (23) is the vector of the Lagrange
multipliers. In the construction of (3) and (4) it was assumed that ¢~
is an arbitrary sufficiently smooth function. That is why the functionals
in (4) and (23) coincide in their form but differ in their meaning. The
difference is in the concrete definition of the function as the solution for
the corresponding adjoint problem such as (6), (8).
Stationarity conditions of the functional (22) leads to the set of equa-
tions

03

B +GM3,Y)- f=F, (24)
%‘: AT = v —t_aﬁT(()a) I _ (.= .
-0 i - D s (4, Aig)),. oo
F (@), = 0, | (26)
F0) =+ P5'BF(0),  t=0, (@
F(Z,t) = R™YZ, )G (T, 1). - (28)
- " Il -
Y =Y, - LT'—IM@, Y. 3"), 29
a o7 (6, Y.¢87) | | (_ )
N/ P '
AB I = ge[Ghg+ed 3 ) 15:0. (30)

The expression in the right-hand side of equations (25) {S(¥,, — H(3))}m
is calculated at the points (&,t) € DJ*, all the other operations of the
system (24)-(30) - at grid points D} and D*. An interesting feature of the
direct and adjoint operators H () in the models of observations manifests
itself here. The “direct” operator H({) transfers information from the grid
D , on which the basic model is working, to the measurements grid DJ".
The adjoint operator dHT(F)/dF acts in the opp051te way, it trauefers
information from the grid D to Dk

Linearization of the operator G"((p,}’) from the oasic model determined
by the relation (30), is a consequence of linearization in (8). In (27)—(29)
there are inverse and weight matrices from the quality functional. This
fact must be taken into account in the choice of weight matrices as these
matrices have very large dimension in practical problems.

Solution for the discrete analogs of the system (24)-(30) is found with
the help of iterative procedures of the gradient type. The preliminary
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estimates for the initial state [@(0)](® = @°, model errors [F](© = F(0)
and parameters [Y](®) = ¥, are specified as initial data for iterations. If
qiven information for the calculation of initial error estimate by the formula
(19) is absent, then it is assumed that [F}(®) = 0. Functions of sensitivity
to the parameter variations are calculated under the condition that these
variations are small. In order to.guarantee the validity of this assumption
the condition for the iterated vectors AY™ = ¥"+! — ¥" of the form

(WAY,6Y ) paippy < €

will be introduced. Here ¢ is the given small quantity, n is an iteration
index and W is the positive weight matrix. For calculation it is convinient
to take W as a diagonal matrix which satisfies the normalization condition
(W?,?)Rh(l):\) = 1. Here Y is the vector of the parameter scales. Al-
though the introduced limitations make the computational algorithm some-
what more complex, it allows to control the parameter behaviour during
iterations. The function of the model errors f(f, t), calculated by formula
(28), plays an important role in the diagnostic estimate of the model. It
shows the ability of the model to describe specific situations, characterized
by the assimilated information li!'m. If after iterations for the solution of
the system (24)-(30) the function value F(Z,t) exceeds some term in the
left-hand side of the system (24), this means that the model cannot sat-
isfactorily describe this situation. In this case it is necessary to analyze
the results of observations additionally and make corrections in the model
itself when required. We consider the problem of the observation assim-
ilation in the general formulation. But it is necessary to remember that
the effectiveness of algorithms for its solution depends on the number of
degrees of freedom in the model. That is why, it is reasonable to consider
several variants with a smaller number of the unknown functions.

1. The model is assumed to be exact and all parameters are defined,
ie, F = 0,Y = Y,. Only the vector of initial state is unknown.
Solution procedure for the equations (28) and (29) is excluded from
the algorithm.

2. It is assumed that the model is exact, /' = 0. Parameters must
be defined more precisely, 3(0) and Y are sought. Equation (28) is
excluded from the algorithm.

3. The parameters ¥ = Y, are supposed to be known. The vector
estimates F' and (0) are sought. Equations (29) are excluded.

Other variants are also possible, depending on the aims of investiga-
tion. The first variant with the unknown vector of initial state is the most
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economical. In all the cases it is desirable that the functions of sensitivity
to the model parameters were calculated by (13). They give additional
information about the model quality and the tendencies of some factors’
influence.

In problem (24)—(28) the formal duplication of the dimension was ob-
tained due to the introduction of a new function @*. Apart from the state
function ¢ solution of the adjoint problem (25) is found. However, this
is completely compensated by the realization simplicity of the assimilation
scheme with the iterative methods of the gradient type. Moreover, calcula-
tion of sensitivity functions using adjoint equations gives us a new quality
of the modeling process.

5. An alternative realization scheme
for the assimilation of observations

For the convenience of presentation it will be assumed that the models of
processes and observations are linear and that B is a non-singular matrix.

For the nonlinear models linearization of the type (30) in the neigh-
bourhood of the given state vector can be used instead of G*(@,Y) and
H(Z). Linear versions of the model operators will be redenoted in the
following way . .

GN@Y) — A5, H($) — C9, (31)
where 4 and C are some linear matrix operators defined on the set of
functions ¢ € Q*(D}).

Time interval [to, 1], in which measurement data are taken into account
is a generalized parameter of the measurement assimilation procedure. In
order to show the dependence of functions &, &, F, Y on the data in
this interval, let us introduce the following notations A = A(Z,t,t5). The
parameter can take any value in the time interval [0,7], in which the model
is considered. Then let us introduce the transformation

(Z.t,ty) = &,t) - P(Z,1)&(F, ¢, 15), (32)
where ¢(#,t) is the vector of the same structure and dimensionality as the
state vector ¢ and P(#,t) is the square matrix. In order to find ¢ and P
let us substitute (32) into (24)-(29) taking into account renotation (31).
After the transformation we obtain

% + Af=-BPB'CTS(¥,, -CH+ f
(33)

_ (B%'i +BPB'AT 4 AP+ R7' + BPB"‘CTSCP) .
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Let the matrix P and vector ¢ be chosen so that the coefficient at 3
in (33) vanished and that conditions (26) and (27) were satisfied.
The result is the set of equations

% +A§= f- BPB-'CTS(¥,, - CJ), (34)
B%_‘: +BPB'AT + AP+ R™' + BPBT'CTSCP =0,  (35)

§l0) = ¢&°, P(%,0) = P.
It follows from condition (26) and equation (32) that
{f:’:(f!tfvtf) = QT(:i:’tf)' (36)

Any current time moment ¢ € [0, ] can be chosen as ¢;. Taking this into
account the set of equations is obtained from (34)-(36) for the estimation
of state at any time moment

25

5 HAF= f-BPB~'CTS(¥,, — C§H), (37)

F= @51, ¢l o) = ). (38)
The matrix P = P(F,t) is found from the solution of the equation (35).

With the B = F set of equations (37), (38) equation (35) coincides with

the scheme of the Kalman filter for problem (14)-(16) in the linear case
[2, 14].

In the non-linear case it is impossible to construct a completely equiva-
lent realization scheme such as the Kalman filter for the assimilation prob-
lem. Here we can speak only about approximate schemes of the filter type.
For example, at 3 = F the scheme of the first order of accuracy

O (3)
03

0(;9. b, = g
r th 7y = _ IJ
L+ G = [P

3(7,0) = ()

.
S(¥ - H(d)),
| 508 - i) 39)

is obtained [2]. Here the matrix 12 = P(#,1) is found from the approximate
equation similar to (35)

or T o T o
- rPA AP I Fot) = IJ‘__nSﬁ‘]),
ol + Al (£.1) 7 0g (10)

P(E0) = Py(¥).
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Thus, excluding the adjoint function and the algorithm for its deter-
mination from the set of equations we obtain the realization scheme of the
observational assimilation procedure of the Kalman filtering type.

In the current models of the given class the degrees of freedom in
the dimension of the state vector are in the range 10® — 107. It will be
denoted by n. Then the weight matrix has n? dimensions. It is known
that the construction and realization of the computationally stable solution
algorithm for the matrix equations such as (35), (40) is a very complex
problem. The analysis of these equations shows that the matrix P(Z,t) is
completely defined by the matrices R, Py, S of the quality functional and
by the operators of the models for the processes and observations.

The choice of realization scheme naturally depends on the researcher.
In this case the scheme with adjoint equations is clearly preferable.

The construction of the quality functional can be chosen, so that it
allows to include all information available from different observational sys-
tems. Then all measurement data are taken into account by the source
terms in the adjoint problem (6)-(25). Interrelation between the math-
ematical models and observations is carried out through the solutions of
the adjoint problem. Similarly, observations and parameters are related
through the sensitivity functions. Three principal points of the observa-
tional assimilation models are: large dimensionality, computational sta-
bility, inter-coordination of algorithms at all the stages of computation.
We are solving those problems with the help of the variational principle,
splitting-up method and the appropriate iterative procedures.

6. Experiment design

State function Z plays an important role in the understanding of physical
processes in the climatic system. But it is difficult to estimate the observed
system’s behaviour only with this function. In particular, this is due to
the fact that not all the characteristics of the investigated processes can
be measured directly. Introduction of adjoint problems allows to relate
mathematical models with observations in virtue of sensitivity relations
(12) and functions (13). From (12) it follows that sensitivity functions
really are influence functions of corresponding parameter variations with
respect to the functional variations. As a consequence these functions
and sensitivity relations (12) may be used to provide optimal desigh of
observational experiments in order to estimate the functionals (9). In sach
a case using the influence functions for specific areas can be calculated
and optimal plans for observations can be constructed. Calculation of the
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influence functions is especially useful in the solution of problems on the
limited territory. In this case estimates for the areas of influence for the
considered territory help to understand how to treat boundary conditions
on the lateral boundaries and how to realize interaction between models of
different scales.

Estimates for the areas of influence and distribution of observational
devices depend on the type of the functional being estimated and on the
criterion of optimality. As an €éxample let us consider the functional

(3, 1) = /D (%, 1)X(, 1)dD, (41)

depending continuously on time in the interval [ty,t;]. Suppose that the
state function values J(Z,0) are given at the initial time moment t = tg,
and the weight function values X(Z,t) are given at the time moment t = ;.
The weight ¥(&,t) function can be interpreted as distribution function of
observational devices. Let us formulate the observational experiment to
estimate the functional ®(¢3,). Construction of a plan for the experiment
in this case can consist in the determination of the weight function Y(&,1),
such that at ¢ = #; it is equal to X(Z,¢;) and so that the functional value
®(7,15) at the moment of the experiment’s end t = ¢ does not depend on
the variations of the state function, i.e., 6®(3.t;) = 0.

Solution of this problem for the linear model is given by the solution
of the adjoint problem (6) with the conditions @*(%,t;) = X(&,t;) and
7(£,t) = 0. If functional being estimated is given in more general form (9),
we take adjoint problem in form (6)—(11).

7. Model of atmospheric hydrodynamics

To illustrate application of the above approaches, let us discuss two for-
mulations of conorete problems of mathematical similation of atmospheric
hydrothermodynamics and transport of atmospheric pollution.

More details of the models and methods of their practical realization
are described in [7, 9, 10, 12].

As the first example, we consider a model of atmospheric hydrother-
modynamics in diabatic approximation on a sphere in isobaric coordinates.
Variational formulation (3)-(8) of the problem is most convenient for con-
structing descrete approximations and computational algorithms. There-
fore we do not represent the model as a system of differential equations.
Let us define it as integral identity [10]:



Numerical methods of model quality estimations 85

[
N
Y]
_"<|
!
p
il

/ { (Au,u™) + (Av,v*) + o (AT, T")

D

+ (! + Ctge)(uu* — v*u) + (@*gradH — dgradH™)

+ g (T‘r"’ - @T—TT*) - aeT‘}dDdt (42)

+ / (%—fﬂ" - Qg{:fi)lmndsm +Ip(4,¢")

41 /(uu*+vv*+aTT*)dD+]ﬁHH' ]| ds =0,
2 D S

P=Pa
where

10(#¢) = [ {m[Dr(@)Dr(@) + Du(@)DAT)]

du du Jdv Ov*
— ) 43
+X1(3P3P+3P3P) 43)

oo 1 gan+ia_T§)£)+ T oT™
M2 a’sin?0dy 0y ~ a® 00 00 ’23 op

+/ (v Ty + v™rg + aT'q,)| _. dSdt,
S, P=Pa

Z—|}dpat

DT(u’)za sinf \ 8y 08

L 1 dv  Jd(u sind)
D_.,('Its) = (l_.;ﬂ—g (a'l,f' ——") [ (44)

d
1 d‘P - *
5 [(W - 3% ) + (¢ ugrad ¢ — i grade®)|,

1 (Bu + a(v sinﬂ)) ,

(Ap.™)

Z=(u,v,T,H,71), G = (w0, T H* ),
ily = (u.v), i, = (u",v"),

Dy = D x [o,1], S =8 x[0,1], (45)
D={(Sx[pr,pa)}, S={0<¥<2r,0<0< 7},

dD = dSdp. dS = asinfdd¥,

The system of notations is as follows:

u, vy T — components of the velocity vector in the direction of cordinates
U, 6, p, respectively;
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t — time;
1, @ — longitude and supplement to latitude;
p (p7 € p < Pa)s PTs Pa — pressure and it’s upper and lower boundaries;

T, H — deviation of temperature and geopotential from their standard
values T and H, repettively;

p — standard density;
a — Earth‘s radius;
! — Coriolis parameter;

g1, Xi (1 =1,2) — turbulence coefficients in horisontal and vertical
directions respectively;

¢ — heat flux per unit volume;

7. — adiadbatic temperature gradient;

v - %T— — standard temperature gradient;

Tyy To — functions deﬁnfng dynamic interaction of the atmosphere and
the Earth‘s surface;

gs — function of the heat flux on the Earth‘s surface;

o — scale factor.

Components of vector function @* are arbitrary, sufficiently smooth
functions. The input parameter vector can be defined by

3 a ‘)'
Y = (‘P #1”!12,X1,X2,€1T¢,Teaqs,PaT '('jT’lsaal) 3 (46)

where @° is the initial value of vector ¢ at t = 0. The integral identity (43)
deﬁnes a generalized solution of the problem. It takes into consideration
differential equations, boundary and initial conditions. ‘Periodicity condi-
tions of functions on a sphere are involved in the definition of a class of
functions to which the generalized solution belongs.

Identity (43) is discretized as follows. At first we introduce in the
domain D; the grid domain D}, then approximate integrals and integrands
by quadrature and finite difference formulas, respectively. The fractional
step approach is used for time approximation. Expressions of the same type
in (43) must be approximated in the seme manner. This ensures the energy
balance of discrete approximations obtained from stationary conditions of
the summation functional (5) and (6).

Principles of construction numerical methods for atmosphere and ocean
dynamics problems are following the idea. of splitting described in [3, 10].
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Here we will discuss only the structure of the basic relation (29) for real-
ization of the feed-back between variations of functionals and parameters.
We assume that some of the parameters get perturbations

6}_; = (6‘1303 61”! 6#’2’ ‘5X11 6/\/21 6Ea 67—1,{}, 6T93 6‘]5) (47)

and sensitivity of the model is estimated by variations of a functional
®(F). Write down the formula (12) to compute variations of the func-
tional by variations of the parameter vector. Let @ = (u,v,T,H,T) be
solution of problem (5) for unpertured values of the parameters and ¢* =
(u*,v*,T*, H*,7*) be solution of the adjoint problem (8) provided that
@* =0 at t =t and the source is equal to

o R
&, 1) = grad;& = %EEQ (& + £86)| e (48)

where the supercript h denotes discrete approximation of functional &(),
£ is a real parameter, § is variation of the state vector in the vicinity of
the unperturbed value @. With the above notations expression (13) is as

follows

59(3) =/ {oT 8¢ + 8y (D2(i,) D () + Dy( ) Dl 7))
D

o (Lo, 20y
M dp dp  dp Op

1 9TaT* 19T oT” oT oT*
vl ST Y L. — :
+ 0{6#2(&25&;29 dy o + az a0 08 ) \2 dp Op ]}dDdt
+ / (u"87y + v™ 87 + aT‘(‘?ﬁs)\p:p dSdt (49)
5S¢ ¢

+ £ [/ (u*6u® + v*ée° + oT*6T°)dD + /ﬁH*‘sHO\ = dS] )
2L /p * o

Comparing expressions (12) and (49) we obtain formulas for computa-
tion of compounents of the vector grad;®, for example,

od
m
o dudu*  OvovT

o (%%*a—pap)-
ad ad

.
— =u .
“O0Ty |P=P“ du®

= (DT(ﬁs)DT(ﬁ:) + Ds(ﬁs)Ds(ﬁ:))

(50)

:u*| . etc.
t=o0
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Substituting expressions for the components of vector grady® into the
right-hand side of (29), we arrive at the system of equations for finding the
model‘s parameters with respect to variations of the functional ®(g).

8. Model of the pollution transport

Simulation of the atmosphere and ocean dynamics is only a part of the en-
vironmental problems. Of great importance in the study of human impact
on the environment is the problem of simulation of pollution transport.
Mathematically this problem is formulated as follows [12, 13]. Let us find
solution of the pollution transport equation in D§ € Dy

dyp

d . a ) "
A2 + dgrade + C(p) — 979, " divgugrad g = f(Z,t) (51)

ot

under the conditions

a2 4 Bpt fi=0 atz=x(3),
9z
(52)
2"3-—0 at z =z
Vaz_ = <H,

where the following notations are used:

@ = {¢;, i = 1,n} — function of pollutants concentrations;
4 — velocity vector of air particles;

v, i — turbulent exchange coefficients;

f(&,t) — distribution of pollution sources;

a, # — functions defining conditions of interaction of pollution with the
Earth‘s surface;

fs — distribution of surface sources;

z,(&) — Earth‘s surface relief;

zy — upper boundary of air mass;

C{p) — operator of pollutants transformation.

Operations of differentions in (51), (52) are carried out with respect to com-
ponents @;(Z,t), 7 = 1,n of function ¢(Z,t). Generaly the operator C(y) is
nonlinear and it describes the transformations of pollutants due to chemical

and photochemical reactions. Atmosphere pollutants are multy-component.
A number of components is the input parameter of the model. We consider



Numerical methods of model quality estimations 89

the chemical transformation in the regions with a high antropogenic load
which is specific for large industrial areas.

Index s denotes the operators in horizontal directions. Initial conditions
for problem (51) are determined from measured concentrations of pollution
in D?. The structure of this domain is similar to D; in the atmosphere
dynamics model. Therefore we will use the notation of (45) adding super-
script 0. Information about the state of the atmosphere is input for the
pollution transport model. The deposition velocity of pollutants is included
in the vertical component of vector .

To construct a numerical model, let us write a variational formulation
of problem (51)-(52)

. . do do*
I(p.¢") = /D [(Agow?) + (Coren) + 0522

+ pgrad, e grad,o" — fg:'] dDdt (53)

+ [ L(Bow + 1) dSdte 5 [ eprlidn =0,
sp o sTes 2 De

where ¢* is an arbitrary, sufficiently smooth function, and (Ay,@*) is de-
fined by expression (45). If D? does not coincide with Dy, in (53) there
appears integral of the lateral boundary of D°. Function ¢ in its physical
sense is non-negative. Therefore, in discretization of the model, besides
ordinary requirements of approximation and stability, we must make sure
that the condition of non-negativity unknown function is met.

9. Conclusion

Thus, application of adjoint problems to mathematical modelling extends
the model capabilities in their interaction with the observational informa-
tion. In the first place this is the construction of quantitative methods
for the sensitivity analysis and the realization of direct relations and feed-
backs between the models and observations. There is no doubt that the
first-level models, i.e., the models of the processes and measurements, must
be sufficiently complete in their physical content. Their imperfection man-
ifests itself in the diagnostic estimation of the quality in the process of
observational assimilation.

Application of variational principles and optimization methods makes
internal functional relations between different elements of the models more
close, This is especially useful when the model interacts with the data.
Sufficiently complete utilization of all the available information by means
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of optimization methods leads to the decrease of influence of different un-
certainties and opens possibilities for formulations of new problems. Ad-
joint problems are widely used in the combined models for the dynamics
of atmosphere, ocean and environment. It is necessary to introduce the
control of sources of anthropogenic influence into such models using some
criteria and restrictions together with the traditional procedure of the field
reconstruction.
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