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Reachability analysis for time Petri nets
without overlappings of firing intervals*

E.V. Okunishnikova

This paper discusses a subclass of Merlin’s time Petri nets called here time Petri
nets without overlappings of firing intervals. In addition to the existing enumerative
procedure for time nets, a new technique of reachability analysis for nets in the
subclass is presented. Correctness of the presented method is proved. The sufficient
condition of the boundedness property is formulated.

Introduction

The basic Petri net model [8] is widely used to specify a large class of con-
current systems which can be represented by abstracting away from time
aspects. Several factors contribute to success of Petri nets: a clear picto-
rial representation of the structure of the designed systems, the possibility -
of specifying the systems at different levels of abstraction as well as meth-
ods and algorithms proposed for analyzing the behavioural properties of
designed systems. Nevertheless, the basic Petri net model is not suitable for
modelling a lot of systems whose behaviour is based on explicit temporal
parameters. Examples of such systems are communication protocols, most
of them highly depend on time for reliability or performance aspects.’

Several authors have extended the basic Petri net model with timing
constraints. These timed models can be conditionally divided in two classes:
with fixed and variable delays. Petri nets with fixed delays [15, 16, 17] allow
for simple analysis methods but are not very expressive, because durations
of most activities are variable in many of the real-time systems. Extensions
(1, 5, 9, 10] which model this variability are more interesting. In the paper,
we deal with an extension introduced by Merlin [9].

Merlin’s time Petri nets (TPN’s for short) use delays specified by an
interval. The delay of a transition firing is specified by its minimum and
maximum value. These nets are very difficult to analyse. In general, there
exists an infinite number of possible firing times, and firing of a transition
induces some constraints on the transitions that remain enabled. A reach-
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ability analysis technique for time Petri nets was presented in [2, 3], but it
is rather complex.

In the paper, we consider the subcla.ss of time nets introduced in [11]. We
call this subclass a TPN’s without overlappings of firing intervals. The sub-
class is specifed by two restrictions on the dynamical behaviour of Merlin’s
time nets.

The main purpose of the paper is to propose a new reachability analysis
technique for time nets in the subclass. Specific features of time nets without
overlappings of firing intervals allow us to present a method of reachability
analysis which is much simpler than the enumerative procedure for usual
time nets.

1. Time Petri Nets

We use the following definitions.

Definition 1. An ordinary Petri netis a 4-tuple N = (P, T, F, M,), where
P and T are the node sets of a directed bipartite graph, , F is the arc set,
and M, assigns a nonnegative integer to each element of P.

The sets P and T are called the set of places and the set of transitions,
respectively. F is called the flow relation or the incidence function, and M,
is called the initial marking of N.

The predecessors of a place p (transition t) are called its input transitions
(input places) and are denoted by *p (*t). Also, the successors of a place p
(transition t) are called its output transitions (output places) and are denoted
by p* (t*).

Definition 2. A transition ¢ is enabled in the net N by a given marking M
when all of its input places have at least one token.

An enabled transition ¢ can fire. When this happens, a token is removed
from each input place of ¢ and a token is added to each output place. This
defines a new marking.

1.1. Definition of time Petri nets

We use the definition of time Petri nets given in (2, 3].
Definition 3. A Time Petri Netis a 3-tuple NT = (N, T, SI), where:

1) N is a ordinary Petri net.

2) T is the time set totally ordered by the relation <. Interv(7) repre-
sents the set of all closed left bounded intervals.
3) SI: T — Interv(T) is a static firing interval function.

Note that this definition does not restrict the set of times. Time can be
either discrete or continuous.
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The function SI associates two times with each transition, SI(t;) =
[ef, B;] for a transition ;. We call the interval [ef, B!] the static firing
interval of the transition t;, the left bound a; the static earliest firing time
(static EFT for short), and the right bound 8! the static latest firing time
(static LFT for short). :

The class of all time Petri nets will be denoted by A.

Definition 4. A transition ¢ is enabledin a time net NT by a marking M iff
it is enabled by M in the Petri net N (in the net without time restrictions).
The set of enabled transitions is denoted by enabled(M).

Some transitions may be enabled by the marking M, but not all of them

may be allowed to fire due to the firing constraints of transitions (EFT’s .
and LFT’s).

Definition 5. States in TPN’s will be pairs § = (M, I) in which:

1) M is a marking;

2) I: enabled(M) — Interv(T)is a firing interval function. I associates
the time interval in which a transition is allowed to fire with each
enabled transition.

It will appear that for states other than the initial state, firing intervals
are in general case different from the static firing intervals. Their lower
bounds will be called EFT and their upper bounds LFT, written as a; and
B:, respectively.

Times o} and 3! as well as times a; and f; are relative to the moment
at which the transition ¢; is enabled. If 7 is an absolute time at which
the transition is-enabled, then it can fire in the interval [T+ af, 7+ 8]
(Ir + @i, 7+ B]) unless it is disabled before T + B (Tt + B;) by firing of
another transition. In other words, ¢; may not fire, while being continuously
enabled, before 7 + a? or 7 + a; and should fire before or at time 7 + 3} or
T+ [B; at the latest.

Firing of a transition is an instantaneous event and "takes no time”:
firing of a transition at time 7 leads to a new state defined at the same time |
T.

It should be noted that in the paper we consider only TPN’s such that
none of their transitions may become enabled more than once "simultane-
ously”. This means that for any marking M and for any enabled transition
t the following holds: 3p : M(p) < 2 % F(p,t), i.e., there is at least one place
which prevents ¢ to be firable twice. TPN’s with this property are called
T-Safe TPN’s. )

Let us denote the smallest of the LFT of all enabled transitions by
deadline(S).

Definition 6. A transition ¢; is firable in the TPN NT at a time 7 from a
state §' = (M, T) iff both of the following conditions hold:
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1) t; € enabled(M);
2) a; < 1 < deadline(S).

-Note that 2) holds because the transition which has the minimum LEFT
should fire at the time deadline(S). Firing of this transition modifies the
marking and the state of TPN. We will use firable(S) to denote the set of
transitions which are firable from the state S at some time from their firing
intervals.

1.2. Firing rule between states

Firing of a transition ¢; at a time 7 from a state S, = (M, 1) leads to a
new state Sy = (My, I,) computed as follows: ’

1) a new marking M, is defined for all places as:

M,(p) = My(p) — F(p,t;) + F(t,p), as usually in Petri nets;
2) a new value of the firing interval function I, is computed as follows:

a) a new firing interval is empty for all transitions which are not
enabled by the marking M,:

L(t;)=0 V t; ¢ enabled(M,);

b) if transition is enabled by the marking M; and is not in conflict
with ¢;, then its interval is shifted by the value of T towards the
time origin (restricted to nonnegative values):

I(t;) = [maz (0, a; - 7), B; — 7]
V t; € enabled(M,) N enabled(M,) & °*t;n° t; =0;

c) all other transitions have their intervals set to their static firing
intervals:
L) = SI(Y).

The firing time 7 is relative to the moment at which the state 51 has
been reached. It can be seen as given by a virtual clock, local to transition,
which should have the same time value as clocks of the other transitions in
the net. The absolute firing time can be defined (when needed) as "7 + the
absolute time at which the state S, has been reached”.

The firing rule above defines the reachability relation among the states
of time Petri nets.

Definition 7. The state S, is said to be directly reachable from S1 by the
firing of transition ¢;. This is also denoted by S, [ ;) ..

A state S, is reachable from 8, iff there exists a sequence of transitions
o =1, ...t,_, such that S,[(t;,,71)) ... [(%i,_,, Ta-1))Sn, where 7; is the firing
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time of the transition ti;. This is denoted by S, [0) S, orby S, [) S, when
the sequence is not taken into account.

A sequence of pairs (t;,,7) ... (tins7a) is called a firing schedule (FS)
which is firable from the state 8 and leads to the state S,,. ’

The sequence of successively firable transitjons by e ti,_, is called a firing
sequence.

Since a transition may fire at any time from its firing interval, the firing
sequence %, ...t;, , may lead not only to the state Sn. So, several firing
schedules may correspond to the same firing sequence.

The behaviour of a TPN is characterized by the set of states reachable
from the initial state or by the set of firing schedules feasible from its initial
state. Unfortunately, representing the behaviour of a TPN by its reachable
states is generally impossible. This is due to the fact that the time may
be continuous and then transitions may fire at any time in their allowed
intervals. In this case the state has an unbounded number of successors.

1.3. State classes and the enumerative method

A general approach to analysis of the behaviour of TPN’s has been presented
in [2] and [3].

A state is reached from the initial state by firing of some firing schedule
which corresponds to a firing sequence o. All feasible firing schedules corre-
sponding to the firing sequence ¢ define a set of states which are reachable
by firing of 0. It was proposed in [2, 3] to consider this set of states as the
state class assqciated with the firing sequence .

Definition 8. The state class associated with a, firing sequence o is a pair
C = (M, D), where: :

1) M is a marking of the class, all states in the class have the same
marking; :

2) D is a firing domain of the class expressed as a solution set for the
following system of linear inequalities:
@ S z; < B3; V t; € enabled(M),
Ti —T; < %; Vi, t; € enabled( M) with ¢ # ;.

The initial state class is defined as the class containing the initial state,

Observe that time constraints of a state may be also defined as a solution
set of a system of inequalities.

The system with the above form is in a canonical form iff a; is the
smallest possible value of the variable i, (3 is the largest possible value of
the variable z;, and 7ij is the largest possible value of the difference z; — z;.

In practice, it is interesting to compute recursively the set of classes, i.e.
to derive the class associated with the sequence o.f from the class associated
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with the sequence ¢ reached by firing of the transition ¢.

Definition 9. A transition t; is firable from a class C = (M, D) iff both of
the following conditions hold:

1) t; is enabled by the marking M;

2} there is a vector in the domain D whose component corresponding to
the transition i; is not greater than any other component. This is true
iff the following system of inequalities is consistent:

a; <z; <PB; Vt €enabled( M),
z; —zx <Y V1, t € enabled(M) with t; # t;,
z; < T; Vie enabled( M) with t; # ti.

Firing of the transition ¢; from the a state class C; = (M), D) associated
with the sequence o leads to a new state class C, = (M,, D,) associated
with the sequence o.t;. The class C, = (M,, D,) reached from the class
C: = (M,, D) by firing of the transition ¢; is computed as follows:

1) a new marking M, is defined as in Petri nets;
2) a new domain D, is computed from the domain D, by a four-step
procedure [2, 3, 11]. Details of the method are not given here.

Definition 10. Two classes are called equal iff both of their markings are
equal and their firing domains are equal.

Since the domains are computed in the canonical form, comparison for
equality can be done efficiently.

The reachability relation defined by the above firing rule allows us to
build a tree of state classes: its root is an initial class and there is an
arc labelled with a transition ¢ going from a class C; to a class C; iff the
transition ¢ is firable from C; and its firing leads to the class C;. It follows
from the definition of the classes that each class can have only a bounded
number of successors.

1.4. Some properties of TPN’s

We denote R(M,) the set of markings of a TPN which can be reached from
its initial marking M,.

'The Reachability problem is whether.or not a given marking belongs
to R(M,). '

The Boundedness problem is whether or not all markings in R(M,)
are bounded, i.e. are such that all of their components are smaller than
some integer constant K. ‘

The following properties of TPN’s are well known:

1. The Reachability and Boundedness problems for time Petri nets are
undecidable [7].
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.2. If static EFT’s and LFT’s for all transitions are chosen among rational
numbers, then the number of the state classes of a TPN is bounded if
and only if the net is bounded [3].

The following sufficient condition for the boundedness property provides
a sufficient condition for the finiteness of the set of classes [3].

3. A TPN is bounded if there is no a pair of the state classes C; =
(M;, D) and C, = (M,, D,) reachable from its initial state class such
that:

1) C, is reachable from C;;
2) My > M, and M, # M,;
3) D] = Dg.

This condition is not necessary, but can be used to stop enumeration of
the classes if the behavior of the net is not the one expected. When TPN
is bounded, its graph of state classes allows checking the properties, such as
liveness properties, that characterize its correct behavior.

2. Modelling the Time Communication Protocol

The analysis of the Alternating Bit Protocol (ABP for short) is a wellknown
example [2, 3] of using TPN’s for modelling and verification of the time
dependent protocol. The ABP uses timing constraints in its specification: a
recovery mechanism for losses of messages is implemented using timeouts.

This protocol transmits messages between two processes, a Sender and a
Receiver, allowing only one message in transit at a time. The protocol is a
stop-and-wait data transfer protocol. The Sender waits for the acknowledg-
ment of the last message before sending a new message. Hypotheses on the
behavior of the environment are that messages or acknowledgments may be
lost during the transmission. Recovering from losses is done using a timeout
and retransmitting: the Sender records the time at which it sends a message
and if its acknowledgment does not return within a given time, the message
is retransmitted.

Messages are numbered prior to the transmission with modulo-2 sequence
numbers. This allows the Receiver to decide whether the next message it
receives is a new message or a duplicate of the last received message when
an acknowledgment was lost. The Receiver waits for a message with a par-
ticular sequence number. If a message with the correct sequence number
arrives, the Receiver returns the acknowledgment with the same sequence
number. Thereafter both Sender and Receiver change the sequence num-
ber. If a message has the wrong sequence number, the Receiver sends the
acknowledgment with the sequence number of the received message. -
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Figure 1

Figure 1 gives a TPN model for the ABP. There are no time constraints,
i.e. the intervals [0, 00], are given for sending the first copies of the numbered
messages. Equal estimates (between 0 and 1) are given for losses and recep-
tion of the messages and acknowledgments. Retransmission of the message
occurs at a time comprised between 5 and 6 units after the last copy of the

message has been sent.

The following meanings are given for the transitions:

t1 (t4) — Send Packet 0 (1)
t2 (¢5) — Resend Packet 0 (1)
ts (ts) — Receive Ack 0 (1)
t13 (t15) — Lose Packet 0 (1)

t7 (t10) — Receive and Release Packet 0 (1)
ts (t12) — Receive and Reject Packet 0 (1)
tg (hl) — Send Ack 0 (1)

t14 (t1e) — Lose Ack 0 (1)

This net is bounded and live. The reachability graph for this one con-
tains 16 classes [3]. It is clear from these classes that only one message or
acknowledgment will be in transmit at a time (all places in the net hold
at most one token in any marking). This assures that the retransmission
timeout is correctly set. Furthermore, no duplicate message may be released



Reachability analysis for TPN’s without overlappings of firing intervals 31

because the transitions ¢; and t10 alternate along all paths of the graph. The
transfer of messages actually occurs (the net is live).

3. Time Petri nets without overlappings of firing
intervals

It is clear that TPN’s are not easy to analyze. This was ihe reason for intro-
ducing the subclass of TPN’s [11). When introducing it, we have a purpose
to present a subclass of TPN’s whose analysis would be a more simple prob-
lem. The subclass has been proposed to model timeout protocols. It has
been defined in conformity with a formal model of protocols solving the
sequence transmission problem which was proposed by Halpern and Zuck
in [6]. Since any structural restrictions are not admissible in modelling of
real systems, this subclass is defined by restrictions on the set of enabled
transitions which should be fulfilled in any reachable state. The obtained
subclass is called time Petri nets without overlappings of firing intervals.

3.1. The definition of TPN’s without overlappings of firing
intervals '

The idea is that a net from the subclass should satisfy the following restric-
tions:

— firing intervals of two enabled transitions either do not intersect or are
equal in any reachable state;

- if two transitions have equal firings intervals in some state, then they
should be in a ”fair” conflict. The notion of a fair conflict means the
following. If both transitions are firable in some reachable state, then
in any state when one of them is firable, the other is also firable. The
sets of input places may be unequal.

But if there is no transition in the net whose EFT is equal to its LFT,
then it is sufficient to require that simultaneously enabled transitions
are in a usual conflict.

The first condition means that if two transitions are simultaneously en-
abled, then none of them has preference and can fire earlier. The second
one tells us that the net is concurrence free: only one of the simultane-
ously enabled transitions can fire. Unlike untimed concurrence free Petri
nets, only simultaneously enabled transitions should be conflicted. The nets
which satisfy these conditions behave like state-machine nets with one to-

ken. These nets cannot model the systems with concurrent events but can
describe timeouts.
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A similar approach to the definition of a subclass of Merlin’s time nets
has been used in [14]. This paper introduces the subclass with the property:
if two transitions are enabled in some state, then they are in conflict and
have the same EFT. Unlike TPN’s without overlappings of firing intervals,
in this subclass two transitions cannot be enabled if LFT of one of them is
smaller than EFT of the other. Another way to propose a subclass of TPN’s
has been chosen in [4]. This paper defines simple time Petri nets which are
safe (with at most one token per place in any state) Merlin’s nets with equal
EFT and LFT for any transition. Such a property essentially simplifies the
‘analysis but turns time nets into nets with fixed delays and, as a result,
strongly decreases the expressiveness of the model.

The net which models ABP in Fig. 1 is a TPN without overlappings of
firing intervals.

In [11], we use a notion of absolute (global) time to more clear define
TPN’s without overlappings of firing intervals. The time T = 0 is associated
with the marking M,. The origin of times is not shifted after each firing
in the firing time. It should be obvious that the set of firable transitions
in any state of the TPN’s without overlappings of firing intervals is either
one transition or the set of transitions which are in conflict with each other.
Hence, EFT of any transition enabled after next firing will be not smaller
“than the firing time. So, it is unimportant to compute new firing intervals
with respect to the origin of the global time scale or with respect to the time
of the last firing. ' -

Definition 11. A TPN NT = (N,7,SI) is a time Petri net without over-
lappings of firing intervals iff it satisfies the following requirements:

R1. If transitions t;, t; are enabled in some state § = (M, I) of the net
NT, then
either I(t,') n I(tj) = 0 or I(f,‘) = I(tj).

R2. If there are simultaneously enabled - transitions in some state § —
(M, I), then they should be in a fair conflict:
I(t.) = I(tj) - .t; n* tj # 0 &
VSn = (Ma,1,) So[) Sn ti € firable(S,) <t € firable(S,).

The class of TPN’s without overlappings of firing intervals is denoted by
Niz.

3.2. Some properties of TPN’s without overlappings of
firing intervals ' :

TPN’s in the class Ay, have the following properties.
1. The Reachability and Boundedness problems for TPN’s without over-
lappings of time intervals are undecidable.
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This fact follows straightforward from the proof that reachability and
boundedness problems are undecidable for TPN’s [7, 11].

Let us first introduce the notion of free languages of TPN’s.

A free language of a time net is the set L/ (NT) of firing sequences which
are feasible from an initial state, i. e., L/(NT)={ o € T* | Si[0,-)}.

2. The class of all free languages generated by TPN’s without overlap-
piiigs of firing intervals is strictly contained in the class of all free languages
generated by all TPN’s.

It is obvious that the class of free languages of all TPN’s contains the
class of free languages of nets in the class Aj,. Figure 2 presents the time
net whose language cannot be generated by a net in the class Mg It proves
that the relation is strict. Details can be found in [13].

Ps3 P1®<—

i _tt2
[0,5] (1,2]
pn ()
1
(1,2]
Figure 2

4. Reachability analysis of TPN’s without
overlappings of firing intervals

In this section, we will consider some special features of the dynamical be-
haviour of TPN’s in the class N,. So, firing of all firing schedules which
correspond to the same firing sequence determines the set of states. Here
it will be shown that, for any state in the state class, the set of transitions
firable from this state is the same. Thus it is not necessary to consider all '
feasible firing schedules in order to characterize the behaviour of the TPN
without overlappings of firing intervals. It is sufficient to consider one of
all feasible firing values for any fired transition in order to discover all the
sequences of transitions firable in the net.
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4.1. The notion of equivalence for states

Let NT = (N, T,SI) be a time net in the class MNi2. We define the equiva-
lence of two states in the following manner:

Definition 12. Let §, = (M, 1,) and S, =. (M3, I,) be reachable states of
NT.

The sets of enabled transitions enabled(M,) and enabled( M,) are defined
as being equivalent iff they are equal and satisfy the following requirements:

1) if I(t:) = Li(;), then I,(t;) = I(t;) for any enabled transitions i, t;.

2) if transitions ¢, t;-are enabled and LFT of ¢; is smaller than EFT of
t; in the state ), then this is also true in the state S,.

The states S; and S, are equivalent iff their markings are equal and their
sets of enabled transitions are equivalent.

Observe that the enabledness of transitions is defined in a sense of usual
Petri nets and does not depend on the firing constraints of transitions (EFT’s
and LFT’s). Hence, the equality of markings means the equality of the sets
of enabled transitions. '

Theorem 1. If static EFT’s and LFT’s are rational numbers for all tran-
sitions, then all the states of TPN NT in the class N2 which are reached
by the same firing sequence are equivalent.

The proof is given in [12].

- The net in Fig. 3(a) illustrates the necessity of introducing the notion
of a fair conflict. Let S; and 5] be the states which are reached by a firing
transition ¢; at the times r = 1 and r = 3, respectively. It is obvious that
B3 < ay in the state §; and transitions 13, t3 are simultaneously enabled in
the state S7. If the condition R2 of definition 11 requires that simultaneously
enabled transitions should be in conflict, then the net in Fig. 3(a) is the net
in the class M};. But the states reachable by the same firing sequence are
not equivalent in this net. However, if static EFT of at least one transition
is not equal to its static LF'T, then there exists a firing sequence whose firing
leads to the state where the firing intervals of ¢, and 13 intersect but are not
equal. :
Hence, if the net does not contain transitions with firing intervals of zero
length, then it is sufficient to require in definition 11 that simultaneously
enabled transitions should be in the usual conflict,

The net in Fig. 3(b) illustrates the necessity of restricting static EFT’s
and LFT’s of transitions to rational numbers. Let the time set 7 be the
set of natural numbers with an additional element 7, the states S, and S
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be the states reached by firing of schedules (t1,0)(ts,1) and (2,,0)(ts,2),
respectively. The first schedule gives 8; < a, in the state S2. The second
one leads to the state S; with 8, < a,. So, the states which are reachable
by the same firing sequence are not equivalent.

If we consider the set of real numbers as the set of times, then the net -
in Fig 3(b) is not the net without overlappings of firing intervals. The firing
‘'schedule (t,,0)(ts, m—2) leads to the state when two nonconflicted- transitions
are simultaneously enabled. It is shown in [12] that if the time set is the
set of real numbers then the static EFT’s and LFT’s may be chosen among
real numbers.

Further we suppose that static EFT’s and LFT’s for all transitions are
rational numbers. '

Corollary 1. firable(S,) = firable(S}) fo;' any states S,, S, which are
reached by the same firing sequence.

This property is not fulfilled for any TPN. It is not true for the net in
Fig. 4. Let 5; and ] be the states which are reached by firing transition ¢, at
the times 7 = 0 and r = 2, respectively. It is obvious that f irable(S,) = {t,}
and firable(S]) = {1y, ts}, i. e. firable($,) # firable(S?).

Corollary 2. If some firing schedule (t;,,1,) ... (ti,,7n) 18 feasible from the
initial state of a net NT in the class N, then the schedules (tiy,01) . (8,

a,) (undelayed or immediate firing) and (t;,,8) ... (%, 8,) are also feasible
from the initial state.
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It is obvious that this property is not valid for any time net. In the net
in Fig. 5(a), only the sequence t,t,t3 can fire immediately. The sequence
tyt,t3 is also firable in the net but t, fires at or after the time 7 = a3 = 1.
Hence, t; will fire at the moment at least one'time unit later than it becomes
firable.

Figure 5(b) presents a TPN in the class A}, where both undelayed firing
sequences t;l,t3 and t,t,15 are feasible from the initial state.

(1, 1] [0, 2]

Figure 5

The execution of a time net when all firings occur immediately will be
called an ezecution in the mazimal rate.

4.2. Construction of a reduced reachability graph

Let us consider the net NT in the class Aj;. In general, the number of
reachable states of NT may be infinite. But all the states reachable by the
firing schedules which correspond to the same firing sequence ¢;, ... 1;, are
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equivalent. This allows us to consider one state from an equivalence class in
reachability analysis.

While construction of a reduced reachability graph we will consider only
the states which are reachable by the execution of a net in the maximal rate.
It allows us to avoid a special consideration of transitions which have the
LFT’s equal to infinity.

- The formal procedure for the reachability graph construction is described
below.

Procedure RG — Reachability Graph.
Given — a net NT in the class Ma.

Compute — the graph G = (V,E) where V is the set of nodes and E
is the set of labelled arcs. Each node in V is a reachable state. There is an
arc from a state §; to a state S; labelled with t, if ¢ is firable from S; and
its firing at EFT leads to ;. :

1. Initially V = {80}, E = 0. The initial node is unmarked.
2. While there is an unmarked node in V do

a) select any unmarked node S; € V and mark it.
b) compute the set firable(S;).
c) for all t € firable(S;) do

i) Compute the state S; which is reachable from S; by firing ¢
at its EFT.

ii) if there is a state S\ in V which is equivalent to §; then the
arc from S; to S, labelled with ¢ is added to the graph.
‘Otherwise, the state S; is added to V and the arc from S;
to S; labelled with ¢ is added to E.

It is clear that the construction of a reduced reachability graph is simpler
than enumeration of the reachable state classes. The number of computa- .
tions executed at any step reduces. Moreover, the size of necessary informa-
tion decreases. Let § be a state of TPN N T. If a transition ¢; is enabled in
the state S, then its time constraints are EFT a; and LFT B;. By definition )
of the state classes [2, 3], there exists the state class C which contains S and
the firing domain of C contains for !; one inequality of the form a; < z; < B;
and inequalities of the form z; — zj < vi; for any enabled transition t; with
i # j. However, calculating the reduced reachability graph makes no sense
if the graph cannot be used to deduce the properties of the net. Hence, it
is necessary to prove that the proposed procedure is correct. '

Let a net NT be a time net without overlappings of firing intervals.

Theorem 2. Any firing sequence which is Jeasible from the initial state in
the net NT is a path in the reduced reachability graph of NT.
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The proof is given in [12, 13].

Observe that the opposite does not hold, since an influence of firing in the
net on the firing intervals of transitions which remain enabled is not taken
into account. It is obvious that the time net in Fig. 6(a) is in the class A;,.
The set of enabled transitions contains the transitions t1, t3, and their firing
intervals do not intersect at any reachable state. The reduced reachability
graph is presented in Fig. 6(b). There is a cyclic path t¥*t, ... t¥/t, ... in the
graph with arbitrary values k;. But only the sequence (t3¢,)"t!t, ... is firable

from the initial state in the net.
t
(1,1)

° B <y
1 t
t 1,1
1,1 By < a
a) b)

Figure 6

The theorem above tells us that if a marking is reachable in the net N T
then it will be a node of a reduced reachability graph. Then, no reachable
marking will be lost.

Theorem 3. The reduced reachability graph is finite if and only if the net
NT is bounded.

The proof can be found in [12, 13].

This theorem guarantees that, when TPN is bounded, the construction
of the reduced reachability graph will be finished. Moreover, any sufficient
condition for boundedness property provides a sufficient condition for the
finiteness of the reachability graph. We define the following sufficient con-
dition of boundedness of a time net without overlappings of firing intervals
similary to the sufficient condition of boundedness for the state classes (3]

Corollary 3. A TPN NT without overlappings of firing intervals is bound-
ed, if no pair of states Sy = (M, 1I,) and S; = (M,,I,), reachable from the
initial state, sutisfies the following conditions:

1) S, is reachable from §,. '

2) My > M, and M, # M,.

3) The sets enabled(M,) and enabled(M,) are equivalent.



Reachability analysis for TPN’s without overlappings of firing intervals 39

The proof is given in [12, 13].

Unfortunately, this condition is not necessary. The condition fails for
the net represented in Fig. 7(a). However, the net is bounded: the reduced
reachability graph shown in Fig. 7(b) contains 5 nodes.

(1,0, 0,0)
1t
0,1,1,0 0,1,1, 1
3,3] ( ) ( )
t
t3 ! t
(0,1,0,0) —2d(1,0,0, 1)

(b)
Figure 7

This sufficient condition is useful for stopping costruction of the reach-
ability graph as soon as possible if the behaviour_of the net is not the one
expected. When a TPN without overlappings of firing intervals is bounded,
its reduced reachability graph allows us to prove the properties which char-
acterize its correct behaviour. For example, we can use the graph to prove
boundedness, absence of deadlocks, etc. Finally, the reachability graph can-
be used for performance evaluation of the system modelled by a net. But it
requires the information about time distances between enabled transitions,

since not any path in the reduced reachability graph is a feasible firing se-
quence.

Conclusion

In this paper, a technique of reachability analysis for TPN’s without over-
lappings of firing intervals [11] is presented. This technique constructs a
reduced reachability graph. As its nodes, the graph contains only the states
which are reachable by undelayed firing sequences, i.e. the firing sequences
where all transitions fire at their EFT’s. This makes the procedure of the

reachability graph construction simpler than the analogous procedure for
usual time nets 2, 3].
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The correctness of the presented procedure is proved.

Since TPN’s without overlappings of firing intervals are as expressive
as the Turing machines [11], no necessary and sufficient condition can be
stated for the boundedness property. A sufficient condition is defined in
the paper which allows us to stop the construction of the reachability graph
as early as possible, if the behaviour of the net is not the one expected.
If the net is bounded, the reduced reachability graph can be completely
constructed. The proved correctness of the technique allows us to use the
reduced reachability graph in a proof that the net has the specific properties.
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