Joint NCC & 1S Bull., Comp.Science, 5(1996), 1-22
© 1996 NCC Publisher

On a symbolic method of verification for
definite iteration over data structures”

V.A. Nepomniaschy

A verification method is proposed for definite iteration over different data struc-
tures. The method is based on a replacement operation which expresses the def-
inite iteration effect in a symbolic form and belongs to a specification language.
The method includes a proof rule for the iteration without invariants and inductive
proof principles for proving verification conditions which contain the replacement
operation. As a case study, a parallel replacement operation for arrays is considered
in order to simplify the proof of verification conditions.

1. Introduction

Formal program verification which means the proof of consistency between
programs and their specifications is successfully developed. The axiomat-
ic style of verification is based on the Hoare method [7] which consists of
the following stages: constructing the pre-, post-conditions and loop in-
variants; deriving verification conditions with the help of proof rules and
proving them. The construction of loop invariants is a difficult stage of the
verification process.

The functional style of verification proposed by Mills and others [1, 9, 12]
assumes that each loop is annotated with a function expressing the loop
effect. The functions are closely related to loop invariants but differences
can be noticed [4]. As before, the construction of the functions associated
with loops is a difficult problem.

Loops can be divided in two groups called definite and indefinite itera-
tions. Typical examples are Pascal for- and while-loops. Definite iteration
has the advantage over indefinite one because of its termination provided
the loop body terminates. Definite iteration is iteration over all elements
of a list, set, file, array, tree or other data structure. It is often used in
application programs [19)].

The verification styles mentioned above are oriented to indefinite itera-
tion. To verify definite iteration we can at first transform it to indefinite

*This work is partially supported by grant INTAS-RFBR 95-0378 from International
Association for the promotion of cooperation with scientists from the New Independent
States of the former Soviet Union (INTAS) and Russian Foundation for Basic Research
(RFBR).

2 V.A. Nepomniaschy

one and then use the approaches mentioned above, but we lose their benefits
which we achieve by using definite iteration. So, it is of interest to simpli-
fy the verification of definite iteration. In [2, 6, 8] advantages of for-loops
over unordered and linear ordered sets are discussed, and proof rules which
take into account the specific character of the for-loops are proposed. In
[19] the functional method for verifying definite iteration is described. In
both approaches verification of definite iteration remains a difficult problem
because the construction of loop invariants or the functions associated with
loops is needed. '

In [13, 14, 15, 18] we proposed a symbolic method of verifying loops over
unordered and linear ordered sets which is different from the mentioned
approaches. This method was suitable to loops which had the statement of
assignment to array elements as the loop body. The main idea of the method
is to use the symbols of invariants instead of the invariants in verification
conditions and a special technique based on the loop properties for proving
the verification conditions. Thus, the symbolic method allows us to verify
the for-loops without loop invariants or their analogs.

The purpose of this paper is to develop the symbolic method of veri-
fication for definite iteration without restrictions on the loop bodies. The
method is based on a replacement operation introduced in the specification
language which represents the effect of the iteration by means of a symbolic
form. The iteration invariant can be expressed with the help of the replace-
ment operation. To prove verification conditions containing the replacement
operation, a proof technique is proposed which includes axioms for this op-
eration and inductive proof principles. In order to simplify the proof of
verification conditions for loop bodies with arrays, a parallel replacement
operation is considered. The use of the method is demonstrated by some
examples. |

The rest of this paper consists of 8 sections. In Section 2 the notion of
data structures is defined and useful functions over the structures are intro-
duced. Definite iteration over data structures and its axiomatic semantics
are described in Section 3. In Section 4 the replacement operation is defined
and a proof rule using the operation instead of a loop invariant is given.
Inductive proof principles for proving assertions containing the replacement
operation are presented in Sections 5 and 6. A case of study of loop bodies
with arrays is considered in Sections 7 and 8. In conclusion, results and
perspectives of the symbolic verification method are discussed. Proofs of all
theorems are given in Appendix.

2. Data structures

We introduce the following notation. Boolean operations are denoted by
symbols A (conjunction), v (disjunction), — (implication), - (negation), «
(equivalence). We suppose that all free variables are bound by universal

On a symbolic method of verification for definile iteration 3

quantifiers in axioms, theorems and other formulas. Let {s;, s3, ..., s,}
be the multiset which consists of elements s,, ..., s,. The membership of
s in the multiset T is denoted by s € T. Let T, — T, be the difference of
multisets 7y and T,. For the function f(z) we denote f’(z) = =, f(z) =
fUf @) (i=1, 2, ..0).

Let us remind the notion of data structures which contain a finite number
of elements [19]. Let memb(S) be the multiset of elements of the structure
S, and |memb(S)| be the power of the multiset memb(S). For a structure
S the following three operations are defined: empty(S) is a predicate whose
value is true if memb(S) is empty and false otherwise; choo(S) is a function
which returns an element s of memb(5); rest(S) is a function which returns
a structure S’ of the same type as S such that memb(S’) = memb(S) -
{choo(S)}. The functions choo(S) and rest(S) will be undefined if and only
if empty(S). Typical examples of the structures are sets, sequences, lists,
strings, arrays, files and trees.

We introduce a number of useful functions related to a structure § in
the case of —~empty(S). We denote s; = choo(rest"}(§))fori=1, ..., n
provided —empty(rest"~'(5)) and empty(rest*(S)). So, memb(S) = {s;,
835 +..5 Sn}. Here last(S) is a partial function such that last(S) = s,.
next(S, s) is a partial function such that next(S,s;_;) =s;fori =2, ..., n.
nezt(S,s) will be undefined for s ¢ memb(S) or s = last(S). For elements
of memb(S§) we will use the order relation such that s; < s; & 1 < j.

Let str(s) denote a structure § which contains the only element s. The
following axiom defines the structure str(s).

Ax1. ~empty(str(s)) A empty(rest(str(s))) A choo(str(s)) = s.

Let M = [my, ..., my] denote a vector which consists of elements
m; (1 < i < k) ordered by the relation < such that m; < m; & i < j. We
will use pred(m;) (j =1, ..., k) to denote the set {m; | 1 <i< j}ifj>1
and the empty set if j = 1. We will consider the vector M = [m, ..., m;]
as a structure such that choo(M) = m,, rest(M) = [ma, ..., my] (if
k > 2), empty(rest(M)) (if k = 1). We consider m € M to be a shorthand
for m € memb(M). Let con(M,, M;) be the concatenation operation of
vectors M, and M,. X

For a structure § we assume that vec(S) = [sy, ..., s,]) if ~empty(S),
memb(S§) = {51, ..., sn} and s; = choo(rest'~}(§)) (i =1, ..., n). The
following axioms define the function vee(§) for all cases.

Ax2. empty(S) — empty(vee(S)).
Ax3. ~empty(S) — choo(vec(S)) = choo(S)A
rest(rec(S)) = vee(rest(5)).

For structures 5, and S let us define a concatenation operation con(S,,
52 by the following axioms.

4 V.A. Nepomniaschy

Ax4. empty(S,) — con(Sy,52) = Sa.

Ax5. ~empty(S1) — choo(con(5),S2)) = choo(S51)A
rest(con(S1, 52)) = con(rest(S1),S2)-

We consider con(S, s), con(s,S), con(S1, S2, S3) to be a shorthand
for con(S, str(s)), con(str(s), §), con(con(S1, S,), S3) respectively. No-
tice that the axioms Ax4 and Ax5 hold for vectors 5, and S;. Hence the
concatenation operation for structures generalizes the same operation for
vectors. It should be noted that the axioms Ax1-Ax5 imply the following
theorems expressing some important properties of the concatenation opera-
tion for structures.

Thl. ~empty(§) — con(choo(S), rest(§)) = 5,
Th2. con(vec(S), vec(Sy)) = vec(con(S:, S2)).

For a structure § we introduce a useful function head(S) which returns
a structure such that vec(head(S)) = [s1, ..., Sn-1] provided vee(§) =
[s1, -+ 8n]. The function is defined by the following axioms.

Ax6. |memb(S)| < 1 & empty(head(S)).

AxT. ~empty(head(S)) — (choo(head(§)) = choo(S) A
rest(head(S)) = head(rest(S))).

It follows from the axioms that an important property symmetric to Thl
is satisfied.

Th3. —~empty(S) — con(head(S), last(5)) = S.

3. Definite iteration over structures

We recall the notion of definite iteration over structures from [19]. Let us
consider the statement

for z in S do v := body(v, z) end (1)

where S is the structure, z is the variable called the loop parameter, v is the
data vector of the loop body (z ¢ v) and v := body(v, =) represents the loop
body computation. We suppose that the loop body uses variables from v
(and z), does not change the loop parameter z and iterates over all elements
of the structure S. So, the loop body terminates for every z € memb(S).

Operational semantics of iteration (1) is defined as follows. Let v, be
the vector of initial values of variables from the vector v. The result of the
iteration is v = vo if empty(S). If ~empty(S) and vee(S) = [81, ---» Snls
the loop body iterates sequentially for z defined as s;, Sz, ..., Sn.

To describe the axiomatic semantics of iteration (1), we introduce the
following notation. Let P, @, inv and prog denote a pre-condition, a post-
condition, an invariant, and a program fragment, respectively.

On a symbolic method of verification for definite ileration 5

{P} prog {Q} denotes partial correctness of the program prog with re-
spect to the pre-condition P and the post-condition Q. Let R(y « exp)
(or R(expl « exp)) be a result of substitution of an expression ezp for all
occurrences of a variable y (or an expression ezrpl) into a formula R. Let
R(vec « vezp) denotes a result of the synchronous substitution of com-
ponents of an expression vector vezrp for all occurrences of corresponding
components of a vector vec into a formula R. Axiomatic semantics of iter-
ation (1) is given by the following proof rule.

rll. condl A cond2 A cond3 -
{P}prog{inv} for z in § do v:= body(v,z) end {Q}

where the post-condition @ does not depend on the loop parameter z,

cond1:{ P}prog{(—~empty(S) — inv(z choo(8))) A (empty(S) — inv)},

cond2:{inv A z € memb(S§)}v : = body(v, z) {(z # last(S) — inv(z «
nezt(S,z))) A (z = last(§) = @)},

cond3: inv A empty(S) — Q.

Let PROOF denote the standard system of proof rules for usual state-
ments including while-loop and assignment to variables which have a type of
the loop parameter. The system for Pascal is presented in [7]. The following
theorem justifies the proof rule rll.

Thd4. The proof rule rll is derived in the standard system PROOF.

4. Specifying the iteration by replacement
operation

We associate a function body(v, z) with the right part of the body of it-
eration (1) such that the body has the same form v := body(v, z). To
present the effect of iteration (1), let us define a replacement operation
rep(v, S, body) to be a vector v, such that v = v; n = 0 provided
empty(S); vi = body(v;_y,s;) forall i =1, ..., n provided —empty(S5)
and vec(S) = [s1, ..., 54). The following axioms define the replacement
operation for all cases.

Ax8. empty(S) — rep(v, S, body) = v.

Ax9. —~empty(S) — rep(v, S, body) =
rep(body(v, choo(S)), rest(S), body).

Important properties of the replacement operation are expressed by the
following theorems.

Th5. rep(v, con(S:, S2), body) = rep(rep(v, Sy, body), Sa, body).
Theé. ~empty(S) — rep(v,S,body) =
body(rep(v, head(S),body),last(S)).

6 V.A. Nepomniaschy

The replacement operation allows us to eliminate the loop invariant from
the proof rule rl1 for iteration (1). Indeed, let us consider the following proof
rule.

rl2. {P}prog{Q(v « rep(v, S, body))} -
{P}prog; for z in S do v := body(v, z) end {Q}

where the post-condition @ does not depend on the loop parameter z,
the variables from the vector v are unchanged in the body part of the
rep(v, S, body) since substitutions for the occurrences of the variables are
not performed when the rule is used. The proof rule is justified by the fol-
lowing theorem which can be proved with the help of the theorem Th4.

Th7. The proof rule rl2 is derived in the standard system PROOF.

5. Backward induction principle

Verification conditions including the replacement operation are generated by
means of the proof rule r12. To prove the verification conditions, we need a
special technique. We present the technique based on principles of induction
by |memb(S)|. In this section a backward induction principle is described.
The principle allows us to prove a property of the replacement operation
over a structure S if the property for the structure rest() is assumed.

Let prop(rep(v, S, body)) denote a property expressed by a first-order
logic formula with the only free variable S. The formula is constructed
from the replacement operation rep(v, S, body), function symbols, variables
and constants by means of Boolean operations, first-order quantifiers and
substitution of constants for variables from v.

Induction principle 1. The property prop(rep(v, S, body)) holds for each
structure § if the following two conditions hold for each structure S:

1) empty(S) — prop(rep(v, S, body)).

2) ~empty(S) A prop(rep(v, rest(S), body)) — prop(rep(v, S, body)).

The following corollary is evident from the induction principle 1 and the
axioms Ax8 and Ax9.

Corollary 1. The property prop(rep(v, S, body)) holds for each structure
S if the following two conditions hold for each structure S:

1) empty(S) — prop(rep(v, S, body) — v).
2) mempty(S) A prop(rep(v, rest(S), body)) — prop(rep(v, S, body)
rep(body(v, choo(5)), rest(S), body)).

To illustrate the use of the backward induction principle we consider a
simple example from [19].

On a symbolic method of verification for definite iteration 7

Example 1. String concatenation.
The following annotated program concatenates strings Yo and Y; where
Y, is an initial value of Y.

{P} for z in Y; do Y := con(Y, z) end {Q} (2)

where P:Y =Y, Q : Y = con(Yy, Y;). The following verification condition
is generated by means of the proof rule rl2 when the program prog is empty.

Y =Y, — rep(Y, Yy, con) = con(Yy, Y1). (3)
We will prove that the following property is equivalent to condition (3).
prop(rep(Yy, Y1, con)) : VYorep(Ys, Y1, con) = con(Yo, Y1). (4)

We apply corollary 1. If empty(Y;), then the condition VY, Yo = con(Y,. Y1)
is obviously true. Suppose that

—empty(Y:) A VYyrep(Yy, rest(Y;), con) = con(Yo, rest(Yr)). (5)
It remains to show thaf
VY,rep(con(Ys, choo(Y1)), rest(Yy), con) = con(Yo, Y1) (6)
By condition (5), condition (6) is equivalent to
YY;con(con(Yy, choo(Yy)), rest(Y;)) = con(Yo, Y1). (7)

Condition (7) follows from Theorem Th1 and the standard property of string
concatenation

con(con(Y;, Ya), Y3) = con(Y;, con(Ys, Y3)). | (8)

6. Forward induction principle

In this section we present a forward induction principle. The principle allows
us to prove a property of the replacement operation over a structure 5 if
the property for the structure head(S) is assumed.

Induction principle 2. The property prop(rep(v, S, body)) holds for each
structure S if the following two conditions hold for each structure S:

1) empty(S) — prop(rep(v, S, body)).

2) —empty(S) A prop(rep(v, head(S), body)) — prop(rep(v, S, body)).

8 "V.A. Nepomniaschy

The following corollary is evident from the induction principle 2, axiom
Ax8 and theorem Thé.

Corollary 2. The property prop(rep(v, S, body)) holds for each structure
§ if the following two conditions hold for each structure S

1) empty(S) — prop(rep(v, S, body) — v).

2) ~empty(S) A prop(rep(v, head(S), body)) —
prop(rep(v, S, body) — body(rep(v, head(S), body), last(5))).

We consider an example from [19] in order to illustrate the use of the
forward induction principle. Let M, denote the projection of a vector M of
values of variables Z, ... on the variable Z. ‘

Example 2. Copying an ordered file with insertion.

To specify a copying program we introduce the following notation. Let
F and G be the files considered as structures; denotes the empty file;
ord(F) is a predicate whose value is true if F was sorted in ascending order
< of elements and false otherwise. We assume that ord(2) and w < y for
each defined element y and the undefined element w. Here del(F, y) is a
function which returns a file resulted from the file F by eliminating the first
occurrence of the element y. If the element y is not contained in the file F,
then del(F, y) = F; hd(F, y)is a function which returns a file resulted from
the file F' by eliminating its tail which begins with the first occurence of the
element y; t/(F, y) is a function which returns a file resulted from the file F
by eliminating its head which ends with the first occurence of the element Y.
If the element y is not contained in the file ', then hd(F, y) = ti(F, y) = F.
Here, y > Fis a predicate whose value is true, if empty(F) or Yz € memb(F)
¥ > z and false otherwise. ‘

The following annotated program copies the sorted file F to the file G
inserting an element w in its proper place.

{P} ins := false; G := Q; for z in F do (G, ins) := body(G, ins, z) end;
if ~ins then G := con(G, w) {Q}

where ins is a Boolean variable,

body(G,ins,z) = if w < z A ~ins then (con(G,w,z),true)
else (con(G,z),ins),

P(F) = ord(F), Q(F, G) = (del(G, w)=FAord(G)Aw € memb(G)).

Two following verification conditions are generated by means of the proof
rule 112 and the standard system PROOF. We consider rep(F) to be a
shorthand for rep((Q, false), F, body).

On a symbolic method of verification for definite iteration 9

VC1: P(F) A =repin,(F) — Q(F, con(reps(F), w)),
VC2: P(F) A repin,(F) — Q(F, repg(F)).

At first, we will prove the property prop(rep(F)) = propl A prop2 where

propl = (-repin,(F) — repe(F) = F Aw > F),
prop2 = (repin,(F) — del(repg(F), w) = F Aw > hd(repe(F), w) A
w € memb(repg(F)) A w < choo(tl(repg(F), w))).

The property propl specifies the case when the variable ins remains false,
w exceeds all elements of the file F, and F is copied to the file G. The
property prop2 specifies another case when the variable ins becomes true
and the file F is copied to the file G with insertion of the element w in its
proper place.

We apply Corollary 2 in order to prove the property prop(rep(F)). If
empty(F), then the condition prop(rep(F) « (2, false))=(Q=FAw>
F) is obviously true. Suppose that ~empty(F) A prop(rep(head(F))). The
property prop(rep(F) — body(rep(head(F)), last(F))) is proved by case
analysis. Let us consider the most complicated case in which we prove the
property

prop2(rep(F) «— body(rep(head(F)), last(F))) 9)

provided rep;,,(head(F)). Property (9) is equivalent to

body;,,(rep(head(F)), last(F)) — del(G', w)

10
= FAw> hd(G', w) Aw € memb(G') A w < choo(tl(G', w)) (10)

where G' = bodyg(rep(head(F)), last(F')). By the definition of the body,
body;n,(rep(head(F)), last(f)) = repin,(head(F))

and
G' = con(repg(head(f)), last(F)).

It follows from prop2(rep(head(F'))) that
del(repg(head(F')), w) = head(F) A w > hd(repg(head(F)), w) A
w € memb(repg(head(F))) A w < choo(tl(repg(head(F)), w)). (1)
It follows from this and Theorem Th3 that
del(G', w) = del(con(repg(head(F)), last(F)), w)

con(del(repg(head(F)), w), last(F))
con{head(F), last(F)) = F.

It follows from (11) that

Il

fl

10 V.A. Nepomniaschy

hd(G', w) = hd(con(repg(head(F)),last(F)), w) = hd(reps(head(F)), w),

hence w > hd(G', w).
It follows from (11) that

w < choo(tl(repg(head(F)), w)),
therefore ~empty(ti(reps(head(F)), w)) and
choo(tl(G', w)) = choo(tl(repg(head(F)), w')),

So, condition (10) is true.
To prove the verification conditions VC1 and VC2, we apply the property
prop(rep(F)). The conclusion of the condition VC1 is equivalent to

del(con(F, w), w) = F A ord(con(F, w)) A w € memb(con(F, w)). (12)

Condition (12) is evident from P(F) and propl(rep(F)). The conclusion of
the condition VC2 is equivalent to

del(repg(F), w) = F A ord(repg(F)) A w € memb(repg(F)). (13)

It remains to show that ord(repg(F')) since the rest terms of condition
(13) are evident from prop2(rep(F)). It follows from w € memb(repg(F))
that _

repg(F) = con(hd(repe(F), w), w, ti(repe(F), w)).

It follows from ord(F) and del(reps(F), w) = F that ord(hd(repe(F), w))
and ord(tl(reps(F), w)). So, by the property prop2(rep(F), if follows from
w < choo(tl(repe(F), w)) and w > hd(reps(F), w) that ord(repg(F)).

Note that in [19] a mistake has been found in a version of the program
with the help of the functional method. Formal verification of the correct
program is not described in [19)].

7. Case of study: arrays in loop bodies

At first, we recall the known notion upd(A, ind, exp) which denotes an array
resulted from the array A by replacing its element indexed by ind with
the value of the expression exp. A notion upd(A, IND, EXP) where
IND = [ind,, ..., ind,), EXP = [ezp,, ..., exrpn,] is its generalization.
The notion denotes an array obtained from the array A by the sequential
replacement of its ind;-th element with the value of the expression exp; for
all j =1, ..., m. The following axioms define this notion.

Ax10. upd(A, IND, EX P)[ind] = Alind) provided ind g IND.

On a symbolic method of verification for definite tleration 11

Ax11. Forall j =1, ..., m upd(A, IND, EXP)[ind;] = exp; provided
Vk (7 < k < m — ind; # ind;).

In the rest of this paper we assume that the iteration body contains a
vector of variables consisted of a variable z, an array A and a vector v of
other variables. So, iteration (1) have the form

for z in § do (A, v) := body(A, v, z) end.

We also assume that bodya(A, v, z) can be represented by upd(A, IN D,
EX P) for appropriate vectors IN D(z) and EX P(A, v, z) where if Alind]
is in ezp;(A, v, z)(1 < j < m), then ind has the form ry(z)(1 < ¢ < 1)
So, we impose a restriction on IND and EX P such that ind; and r; do
not depend on variables from v. Notice that the representation of body, by
upd is natural, since such a loop body usually contains the statements of
the form A[ind] := ezp which can be jointly represented by the statement
A :=upd(A, IND, EXP).

To express the effect of iteration (14) in a special case, we will define a
parallel replacement operation rep(;l, v, §, body) with respect to the array
A as a special case of the replacement operation for which the reasoning tech-
nique can be simplifyed. The operation rep(A, v, S, body) is defined to be
a pair (A,, v,) such that Ag = A, vo = v; n = 0 provided empty(S); A; =
upd(A;_1, IND(s;), EXP(A, vj_1, s;)), v; = body,(A4;-1, vj-1, s;) for
all j =1, ..., n provided ~empty(S) and vec(S) = [s1, ..., s,]. Thus, the
definition differs from the replacement operation definition (see Section 4)
in that EXP included in upd depends on the initial value of the array A.
The following axioms define the parallel replacement operation.

Ax12. empty(S) — rep(A, v, S,body) = (4, v).
Ax13. -~empty(S) — repa(A, v, S, body) = upd(repa(A, v, head(S),
body), IN D(last(S)), EX P(A, rep,(A, v, head(S), body), last(S5))).
Ax14. -~ empty(S) — rep,(A, v, S, body) =
body,(rep(A, v, head(S), body), last(S)).

The parallel replacement operation is correct, if it coincides with the
replacement operation. A useful sufficient condition of correctness of the

parallel replacement operation gives the following theorem where IN D(T) =
{ind(s) | s € T, ind € IND}.

Th8. rep(4, v, S, body) = rep(A, v, S, body), if for every j =2, ..., n
andi=1, ..., t, rys;) ¢ IND(pred(s;)).

Notice that the condition of the theorem holds for j = 1 because
1IN D(pred(s,)) is the empty set.

12 V.A. Nepomniaschy

8. Computation of parallel replacement operation

If Th8 holds, the replacement operation can be replaced by the parallel
replacement operation with respect to an array. To compute reps(A, v, S,
body), a recursive procedure can be used. The procedure given by axiom
Ax13 reduces the operation for the structure § to the same operation for the
structure head(S). In this section we present another procedure to compute
the parallel replacement operation which is simpler than the recursive one
and shows advantages of the operation.

We introduce the following notation. A set IND(S) = {ind;(s) | s €
memb(S), 1 < j < m} is called a replacement domain. The set IND(S) is
empty if empty(S). Let us define a maximal occurrence function moc(5, k).
The function for an element k of the replacement domain I N D(S) returns
an element s of S generating k and a number j of a suitable component ind;.
So, ind;(s) = k. The function moc(S, k) will be undefined for k ¢ IN D(S).
So, the function moc(S, k) will be undefined for every k, if empty(S). If
the element k is generated by different elements of the structure S, then
the maximal element from these elements is choosen. Next, the maximal
number of the component of IN D which generates k is selected.

The following theorem gives a procedure for computing the parallel re-
placement operation with respect to an array A.

ThO. reps(4, v, S, body)[k] = A[k] if k ¢ IND(S).
repa(4, v, S, body)[k] = exp;(A, rep,(A, v,head"~"+'(8), body), s;)
if kK € IND(S), vec(S) = [s1, ..., S.] and moc(S, k) = (s, 7).
Notice that
vec(head"*(S)) = [s1, ..., si,

therefore
~empty(head"*(S))

and
head™~*+1(5)

will be defined.
We consider the_following example to illustrate the use of theorem Th9.

Example 3. The array inversion.

The following annotated program inverts an array A[l..n).
{P} for k in S do (A[k], A[n+1-k]): = (A[n+ 1 - k], A[k]) end {Q}
where § =[1, 2, ..., trunc(n\ 2)], trunc(s) is an integer nearest to s, A4,
is an initial value of the array A, P(A) = n > 1A A[l..n] = Ag[l..n],
QA)=VYi(l1<i<n— A{i] = Ao[n +1-1]).

The loop body can be represented in the form

A:=upd(A, IND, EXP)

