Joint NCC & IIS Bull., Comp. Science, 7 (1997), 21-33
© 1997 NCC Publisher

Associative algorithms for graphs
represented as an adjacency matrix*

A.S.Nepomniaschaya, O.V. Taborskaya

In this paper by means of an abstract model (the STAR-machine) we study
a group of associative algorithms for unweighted graphs given as an adjacency
matrix. These algorithms are written as the corresponding STAR procedures whose
correctness is proved and time complexity is evaluated.

1. Introduction

The revived interest in the associative (or content-addressable) architecture
results from remarkable advances in the VLSI technology [1]. A class of asso-
ciative parallel processors belonging to the fine-grained SIMD systems with
bit-serial (or vertical) processing and simple single-bit processing elements
(PEs) is of special interest. This class of parallel computers includes the
well-known systems STARAN, DAP, MPP and Connection Machine (CM).
In these systems input data are physically loaded in a matrix memory in such
a way that each data item occupies an individual row and is processed by its
own processing element. These systems provide a massively parallel search
by contents and processing of unordered data [2, 3]. Such an architecture is
primarily oriented to solving the non-numerical problems.

Our prime interest is in application of associative systems with vertical
processing to solving graph theoretical problems. In [3-8], the problem of
finding a minimal spanning tree is studied for different graph representation
forms using different algorithms and different formal models. In [4] problems
of finding connected components, transitive closure of a graph, verifying an
articulation point and verifying a bridge are considered on the orthogonal
machine for unweighted graphs represented as an adjacency matrix. In [8]
the same problems are studied for undirected weighted graphs represented
on the STAR-machine as a list of triples (edge vertices and the weight). In
;5] algorithms for the solution of two shortest path problems are considered
on the associative array processor LUCAS.

In this paper, we focus our primary attention on a group of problems us-
ing the graph representation as an adjacency matrix. It includes finding the
transitive closure both for undirected and directed graphs, and the following

*Partially supported by the Russian Foundation for Basic Research under Grant
96-01-01704.

22 A. S. Nepomniaschaya, O. V. Taborskaya

problems for undirected graphs: finding the shortest path between two given
vertices, finding a connected component, verifying a bridge and an articula-
tion point. We solve these problems on the STAR-machine by performing
comparatively simple manipulations of the adjacency matrix. Simplicity is
the main property of any algorithm intended for a simple realization on a
vertical processing system. The algorithms are represented as corresponding
procedures written in the language STAR being an extension of Pascal. It
is shown that on the STAR-machine the Warshall algorithm for finding the
transitive closure of a directed graph takes 0(n?) time, while on conventional
sequential computers it takes 0(n®) time, where n is the number of graph
vertices. We also reveal that on the STAR-machine the Dijkstra algorithm
of finding the shortest path between two vertices takes 0(n) time, while on
sequential computers it takes 0(n?) time and on the associative array proces-
sor LUCAS it requires 0(In), where [is the shortest path length. We show
that on the STAR-machine any of the other problems considered requires
0(n) time, while on sequential computers it takes 0(n + m) time, where m
is the number of graph edges [9].

Hence, the use of vertical processing systems for solving the above-men-
tioned problems gives an evident time improvement over the sequential com-
puters.

2. Model of associative parallel processing

In the paper the model is defined as an abstract STAR-machine of the SIMD
type with vertical data processing. It consists of the following components:

¢ a sequential control unit where programs and scalar constants are
stored;

e an associative processing unit consisting of m single-bit PEs;

¢ a matrix memory for the associative processing unit.

The matrix memory consists of cells each storing one bit. Input binary data
are loaded in the matrix memory in the form of two-dimensional tables in
‘which each data item occupies an individual row, and it is processed by
a dedicated processing element. Both a row and a column can be easily
accessed.

The associative processing unit is represented as h vertical registers each
consisting of m bits. Vertical registers can be regarded as a one-column
array. The STAR-machine runs as follows. The bit columns of the tab-
ular data are stored in the registers which perform the necessary Boolean
operations and record the search results.

Let us briefly consider the STAR constructions described in [10] and
needed in the sequel. To simulate data processing in the matrix memory

Associative algorithms for graphs represented as an adjacency matriz 23

new data types word, slice and table are introduced in the same manner as
in Pascal. The types slice and word are used for bit column access and bit
row access, respectively, and the type table is used for defining the tabular
data. Assume that any variable of the type slice consists of 'm components
which belong to {0,1}}.

Consider operations, predicates and functions for slices.

Let X, Y be variables of the type slice and i, j be variables of the type
integer. We define the following operations: '

SET(Y) sets all components of ¥ to 1;

CLR(Y) sets all components of ¥ to 0;

Y (i) selects the i-th component of Y;

FND(Y) returns the ordinal number i of the first component 1 of Y, ¢ > 0;

STEP(Y) returns the same result as FND(Y') and then resets the first com-
ponent 1;

NUMB(Y') returns the number i of components 1 of Y, i > 0;

In the usual way we introduce the predicates ZERO(Y') and SOME(Y") and
the following bitwise Boolean operations: X andY is conjunction, X or Y
is disjunction, not Y is negation, X zorY is exclusive 'or’.

Recall that all the operations for the type slice are also performed for
the type word.

For a variable T of the type table we employ the following two opera-
twons:

ROW(i,T) returns the i-th row of the matrix T’ (1 < i < m);
COL(#,T) returns the i-th column of the matrix T.

Remark 1. Note that STAR statements resemble those of Pascal.

Remark 2. When we define a variable of the type slice we put in brackets
the name of the matrix which uses it. Therefore if the matrix consists of n
rows, where n < m, then only the first n components of the corresponding
shee will be used in the vertical processing.

3. Preliminary notions

Let us recall some notions used in the paper.

Let G = (V, E) be a graph with the vertex set V = {1,2,...,n} and the
edgeset ECV x V.

At first, consider some definitions for undirected graphs.

A path in G from a vertex 7 to a vertex j is a sequence of the edges
{iluiz)f (i21i3)1 RN (in—laiﬂ)i where 7; = i, ip = J and n > 2.

YPor simplicity let us call slice any variable of the type slice.

24 A. S. Nepomniaschaya, O. V. Taborskaya

The shortest path is a minimum-length path from a vertex i to a
vertex j.

A connected component is a maximal connected subgraph.

An articulation point (respectively, a bridge) is a vertex (respectively,
an edge) whose deletion from the graph increases the number of its connected
components.

Following [9], the transitive closure of an undirected graph G is defined
as a graph G* whose any vertex is a connected component of G.

Now, recall some definitions for directed graphs.

An adjacency matrix A = [a;;] of a directed graph is the n x n Boolean
matrix in which a;; = 1, if in the set E there is an arc from the vertex i to
the vertex j, otherwise a;; = 0.

A path matrix P = [p;;] of a directed graph is the n x n Boolean
matrix in which p;; = 1 if there exists a path from the vertex i to the vertex
J, otherwise p;; = 0, where 7,5 € V.

The transitive closure of a directed graph G is a graph G* consisting
of all the arcs of G together with all the arcs of the form (%, k) such that
there is a path of positive length from the vertex i to the vertex k.

Following [4], assume that any elementary operation of the STAR-ma-
chine needs one unit of time. Therefore, we will measure time complexity
of an algorithm by counting all the elementary operations performed in the

-worst case.

4. Transitive closure of a directed graph

Here, by means of the STAR-machine we analyze the Warshall algorithm
[11] for determining the existence of a path between all the pairs of vertices
of a graph. For a given adjacency matrix A of a directed graph G = (V, E)
it computes the path matrix P for the transitive closure G*.

Note that in the STAR-machine matrix memory any graph is directly
mapped onto the two-dimensional table.

Denote by a; . the i-th row in the matrix A. Following [12], we will write
the Warshall algorithm:

¥ = k1), if ol =0,
agi) = agﬁ-l) \ ag:l), if ag‘kk_l) =1.

This algorithm runs as follows. It scans down a k-th column, and when
it finds a bit 1 in a position i it performs the disjunction between the i-th
and the k-th rows of the matrix A%*~1) and writes the result in the i-th row.
It is assumed that A(® = 4.

Associative algorithms for graphs represented as an adjacency matriz 25

For representing the Warshall algorithm on the STAR-machine we will
employ a slice X for storing the k-th processing column of the current matrix
A®=1) " an integer i for saving the position of the first bit 1 in X and two
variables v, w for storing the i-th and the k-th rows of A(¥-1),

Now, let us consider the following procedure.

proc WARSHALL(n: integer; var P: table);
/*Here n is the number of graph vertices. */
var X: slice(P); v,w: word; i,k: integer;
begin for k := 1 to n do
begin X :=COL(k, P); w :=ROW(k, P);
while SOME(X) do
begin i :=STEP(X); v :=ROW(i, P);
v:=vorw; ROW(i,P) :=v
end;
end,;
end;

Claim 1. Let G be a given directed graph with n vertices and A be its
edjacency matriz. Then the procedure WARSHALL(n, A) returns the matriz
A" being the path matriz for the transitive closure of G.

For proving the claim it is sufficient to verify that at any k-th iteration,
(1 < k < n), the procedure WARSHALL(n, A) sequentially processes only
the rows of the current matrix A*~1) having bit 1 in the k-th column of
A*-1)_ This can be easily verified by induction on k.

It is obvious that the procedure WARSHALL takes 0(n?) time for a
graph with n vertices. More precisely, it takes time which is proportional to
the sum of the number of bits 1 in the slice X at any external loop.

In {12] Warren presents a modification of the Warshall algorithm to scan
by rows. This algorithm executes faster for sparse matrices on most se-
quential computers!, particularly, in a paging environment. However, on
associative parallel processors the Warshall algorithm can be also efficiently
appbed to sparse matrices since it processes only non-empty columns.

S. Finding the shortest path between two
vertices

Let G be a connected, undirected, unweighted graph. Without loss of gen-
erality one assumes that the weight of any edge is equal to one. In [5], for
fmdimg the shortest path from the source vertex s to the final vertex f the
following special case of the Dijkstra algorithm [13] is applied. Beginning
with the vertex s one constructs a subgraph by viewing the initial graph

*Emsries of a sparse matrix are mostly zeros.

26 A. S. Nepomniaschaya, O. V. Taborskaya

in width. At any i-th step one stores a set S; of those vertices which are
reachable from the vertex s in i steps, each time verifying whether the vertex
f belongs to S;. The process is finished as soon as the vertex f belongs to
some set S;. It is obvious that such a step j always exists and the length
of the shortest path P, ; from the vertex s to the vertex f is equal to j. To
restore this path it is necessary to construct a path from f to s employing
the sets Sj._l, Sj_z, ceey 90,

On the associative array processor LUCAS the corresponding procedure
is represented by means of a high-level microprogramming language because
it is impossible to write this in Pascal/L. This procedure updates the ad-
jacency matrix G in turn by columns (in odd steps) and by rows (in even
steps) taking 0(In) time, where [is the shortest path length.

By means of the STAR-machine we present the procedure ShortPath
which takes O(n) time. To this end we improve the implementation of the
Dijkstra algorithm as follows. At any i-th step we store a set S;’ consisting
of those new vertices which are reachable for the first time from the source
vertex s in ¢ steps. Such a simplification allows us to decrease the number
of iterations.

Before considering the procedure ShortPath let us explain the use of the
variables A, X,Y, Z of the type slice and the variable R of the type table.

At the first stage in the slice A we accumulate positions of all the vertices
‘which are reachable from s in j steps. The slice Z is used for storing positions
of new vertices which are reachable from the vertex s in the j-th step. For
any vertex whose position is indicated by 1 in the slice Z we accumulate
positions of vertices being reachable in one step by means of the slice Y. We
use the slice X for selecting any current column of the matrix G. In any
i-th column of the matrix R we store positions of vertices belonging to the
set S;'.

At the second stage the slice Z is used for selecting the current j-th
column of the matrix R, and the slice X is employed for selecting that
column of the matrix G which corresponds to the current vertex included in
the result slice.

Consider the procedure ShortPath.

proc ShortPath(G: table; s, f: integer;
var [: integer; B: slice(G));
/* Here G is the adjacency matrix, s is the source vertex
and f is the final vertex. */
var A, X,Y, Z: slice(G); i,J: integer; R: table;
/* The first stage. Finding the shortest path length. */
begin j := 0; CLR(4); CLR(B); CLR(Z);
A(s):=1; Z(s):=1; B(s) :==1; B(f) :=1;
while Z(f) =' 0/ do

Associative algorithms for graphs represented as an adjacency matriz 27

begin CLR(Y);
while SOME(Z) do
begin i :=STEP(Z); X :=COL(#,G); Y :=Y or X
end;
Z:=Yand(notA); j:=j+1;
/* In the slice Z we store positions of those new vertices from
the slice Y which do not belong to the slice 4. */
COL(j,R) :==2Z; A:= AorY
/* In the slice A we accumulate positions of the vertices which
are reachable from the vertex s in j steps. */

end;
l:=3;
* The second stage. Finding the shortest path. */
X :=COL(f,G);

while 7 > 1 do .
begin j :=j — 1; Z :=COL(j,R); Z := Zand X;
i :=FND(Z); B(i) := 1; X :=COL(i, G)
end;
end;

Claim 2. Let an undirected graph G be given as an adjacency matriz. Let
s and f be two graph vertices. Then the procedure ShortPath (G,s, f,l,B)
returns the length | of the shortest path between s and f, and the slice B in
which we indicate by 1 positions of vertices included in the shortest path.
Sketch of the proof. The claim is proved by induction on the length
k of the shortest path. Basis is immediately verified for k = 1. For proving
the step of induction it is necessary to show that at the second stage the
mtersection of the f-th column of the matrix G (the slice X') and the k-th
column of the matrix R (the slice Z) is non-empty. It means that one can
define the position of the next to the last vertex belonging to the shortest
path between s and f. In fact, since the position of the vertex f is indicated
by 1 in the (k + 1)-th column of R, there exists such a vertex ¢ which forms
an edge with the vertex f and whose position is indicated by 1 in Z. Clearly,
the vertex g appears at the k-th step for the first time. On the other hand,
mn the slice X positions of all the vertices which form an edge with f are
mdicated by 1. Hence, there is a position of the vertex ¢ among them.
Therefore, intersection of the slices X and Z is non-empty. The positions
of other vertices belonging to the shortest path are obtained by inductive
assumption. O

Let us evaluate time complexity. The first stage requires at most 0(n)
time, since in the loop while SOME(Z) do we analyze only different vertices
which are reachable from the vertex s. The second stage takes 0(l) time.
Hence. the procedure ShortPath takes 0(n) time.

28 A. S. Nepomniaschaya, O. V. Taborskaya

Remark 3. It should be emphasized that the STAR procedure ShortPath
returns both the shortest path between two vertices and its length. More-
over, owing to the vertical processing the shortest path is represented in a
natural way by indicating positions of vertices which belong to it.

6. Algorithms based on selection of connected
components

Here, at first we present an algorithm for finding a connected component.
Then, we consider associative algorithms for finding the transitive closure
of an undirected graph and for verifying a bridge and an articulation point.

6.1. Finding connected components

To find a connected component including a given vertex v we employ the
algorithm from [14]. The idea underlying this algorithm is as follows. At
first, we generate a set S of all the vertices which form an edge with the
vertex v. Among the vertices not included in S; we make up a set S,
consisting of those vertices any of which forms an edge with a vertex from
S3. We continue the process until an empty set S, is obtained.

Consider the following procedure.

proc COMP (G: table; v: integer; var R: slice(G));
/* In the slice R we indicate by 1 positions of vertices which
belong to a connected component generated from the vertex v. * /
var X,Y, Z: slice(G); i: integer;
begin CLR(Z); CLR(R); R(v) :=1; Z(v) := 1;
while SOME(Z) do
begin CLR(Y);
while SOME(Z) do
begin i :=STEP(Z); X :=COL(:,G); Y :=Y or X
.end;
/* In the slice Y we accumulate positions of vertices which
are reachable at one step in the current iteration. */
Z:=Yand(notR); R:= RorZ
/* In the slice Z we save positions of those new vertices
from Y which do not belong to the slice R. */
end;
end;
Claim 3. Let an undirected graph G be given as an adjacency matric
and let v be a selected vertez. Then the procedure COMP(G,v, R) returns

the slice R in which we indicate by 1 positions of vertices belonging to the
connected component generated from v.

Associative algorithms for graphs represented as an adjacency matriz 29

Proof. We will prove the claim by induction on the number of steps re-
quired for generating a connected component from v.

Basis is immediately verified.

Step of induction. Assume the assumption is true when a connected
component has at least one vertex which is reachable from v in k steps, where
k > 1. We will prove the claim for the case when in G there is at least one
vertex reachable from v in k+1 steps. In view of inductive assumption after
performing the first k iterations positions of vertices, which are reachable
from v in k steps, are indicated by 1 in the slice R. It is immediately
verified that after executing the (k + 1)-th iteration the positions of vertices
reachable from v in k + 1 steps are indicated by 1 in the slice Z, and these
positions are added to the slice R by using the statement R := Ror Z. Since
there is at least one component 1 in Z, we perform the external loop while
SOME(Z) do. After executing the internal loop while SOME(Z) do none
of new vertices will be added to the slice R, because in G there is no any
vertex reachable from v in (k + 2) steps. Hence, as a result of performing
the statement Z := Y and (not R) the slice Z will consist of components 0
and we jump to the procedure end.

This completes the proof. O

Remark 4. In [4], another procedure is presented for solving the same
problem. Unlike it, the considered STAR procedure COMP is based on
Tutte's serial algorithm from [14]. This permits one to perform the vertical
processing in a natural and robust way.

6.2. Transitive closure of an undirected graph

For finding the transitive closure of an undirected graph G it is necessary to
determine all its connected components. To this end, using the procedure
COMP, we sequentially select each connected component in G and store it
m the current column of the result matrix F'.

Consider the following procedure.

proc TRANS(G: table; var F: table);
var X, S: slice(G); 1,j: integer;
begin j := 0; SET(X);
while SOME(X) do
begin i := FND(X); COMP(G, i, S);
i:=j+1; COL(j, F):= S,
* The current connected component is written into the j-th column
of the matrix F. */
X :=Xand(notS)
.* We delete from the slice X positions of vertices included into
the current connected component. /*

30 - A. 5. Nepomniaschaya, O. V. Taborskaya

end;
end;

Claim 4. Let an undirected graph G be given as an adjacency matriz.
Then the procedure TRANS(G,F) returns the matriz F in any column of
which we indicate by 1 positions of vertices belonging to the same connected
component.

This claim is verified by induction on the number of connected compo-
nents.

6.3. Verifying a bridge and an articulation point

To verify whether a given edge (7,) is a bridge in a given undirected graph
G, we employ the following simple algorithm. We delete the occurrence
of this edge from the graph G. Then we generate a connected component
beginning with the vertex i. We conclude that the edge (¢, j) is a bridge if
the vertex j does not belong to this connected component.

Consider the following procedure.

proc BRIDGE(G: table; i, j: integer; var B: boolean);

/* The Boolean variable B takes the value true if the edge (4, j)
is a bridge in the graph G. */

var X, S: slice(G);

begin X :=COL(¢, G); X(j) := 0; COL(i,G) := X;
X :=COL(j,G); X(7) := 0; COL(4,G) = X;

/* The occurrence of the edge (i, j) is deleted from the graph G. */
COMP(G,1, S);

/* The connected component is generated beginning
with the i-th vertex . */
if S(j) = 1 then B :=false else B :=true

end;

The following claim is easily verified.

Claim 5. Let an undirected graph G be given as an adjacency matriz
and let (i, 7) be its edge. Then the procedure BRIDGE(G,i,j, B) returns the
value true if and only if the edge (i,j) is a bridge in G.

To verify whether a given vertex ¢ is an articulation point in the given
undirected connected graph G, we check whether the deletion of the vertex
i from G causes the appearance of a new connected component.

Consider the following procedure.

proc ARTIC(G: table; i,n: integer; var R: boolean);
/* Here n is the number of graph vertices and i is a selected vertex. */
var S, X : slice; w : word; k: integer;
begin CLR(X); CLR(w); COL(i, G) := X; ROW(7, G) := w;

Associative algorithms for graphs represented as an adjacency matriz 31

/* The occurrence of the vertex v is deleted from G. */
ifi<nthenk:=i+1lelsek:=i—1;
/* We define the number of the source vertex for generating
a connected component. */
COMP(G,k, S); X := not S}
if NUMB(X) > 1 then R :=true else R :=false
end;

Claim 6. Let an undirected connected graph G, having n vertices, be given
as an adjacency matriz and let i be its selected vertex. Then the procedure
ARTIC(G,i,n, B) returns the value true if and only if the vertez i is an
articulation point in G.

This claim is directly verified.

Remark 5. In the general case it is necessary to determine whether the
number of connected components of G will be increased after deleting the
occurrence of the vertex 7 from G. It can be also easily done.

Now, let us evaluate time complexity of the procedure COMP. One can
immediately verify that it requires 0(n) time, where n is the number of
graph vertices. It is obvious that any of the procedures TRANS, BRIDGE
and ARTIC takes the same time. Note that on sequential computers each
of them takes 0(n + m) time, where m is the number of graph edges [9].

7. Conclusions

In this paper for the unweighted graphs represented as an adjacency ma-
trix by means of the STAR-machine we have studied a group of associative
algorithms employing the vertical processing. It includes finding the transi-
tive closure both for undirected and for directed graphs, and the following
problems for undirected graphs: finding the shortest path between two given
vertices, finding a connected component, verifying a bridge and an articula-
tion point. On the one hand, these problems have been considered because
their solutions can be obtained by rather simple manipulations of the ad-
jacency matrix. On the other hand, the corresponding procedures can be
represented on the STAR-machine in a natural and robust way. We have
shown that both Warshall’s serial algorithm for finding the transitive clo-
sure of a directed graph and Tutte’s serial algorithm for finding a connected
component are efficiently implemented on the STAR-machine without any
modification. It has been obtained that the Warshall algorithm takes 0(n?)
time on the STAR-machine having n processing elements, while on sequen-
tial computers it requires 0(n®) time. It has been also shown that on the
STAR-machine the Dijkstra algorithm for finding the shortest path between

32 A. S. Nepomniaschaya, 0. V. Taborskaya

two vertices takes 0(n) time, while on sequential computers it takes 0(n?)
time and on the associative array processor LUCAS it requires 0(In), where
is is the shortest path length. We have obtained that on the STAR-machine
any of other considered problems requires 0(n) time, while on sequential
computers it takes O(n + m) time, where m is the number of graph edges
9]

Hence, for a group of problems using the graph representation as an
adjacency matrix we have studied the efficient implementation on vertical
processing systems in a natural way.

Acknowledgments

We would like to thank Prof. V. A. Evstigneev for useful comments.

References

[1] K. E. Grosspietsch, Associative processors and memories: A survey, IEEE,
Micro, June, 1992, 12-19.

[2] J. Potter,J. Baker, A. Bansal, S.Scott, C. Leangsuksun, C. Asthagiri, ASC
an associative computing paradigm, Computer: Special Issue on Associative
Processing, 27, No. 11, 1994, 19-24.

[3] J. L. Potter, Associative Computing: A Programming Paradigm for Massively

Parallel Computers, Kent State University, Plenum Press, New York and Lon-

don, 1992.

[4] B. Otrubova, O. Sykora, Orthogonal computer and its application to some
graph problems, Parcella’86, Berlin, Academie Verlag, 1986, 259-266.

[5] C. Fernstrom, J. Kruzela, B. Svensson, LUCAS Associative Array Processor.
Design, Programming and Application Studies, Lecture Notes in Computer
Science, Berlin: Springer—Verlag, 216, 1986.

[6] A.S.Nepomniaschaya, Comparison of two MST algorithms for associative par-
allel processors, Proc. of the 3-d Intern. Conf. “Parallel Computing Technolo-
gies”, PaCT-95, St. Petersburg, Russia, Lecture Notes in Computer Science,
964, 1995, 85-93.

[7] A.S. Nepomniaschaya, Representations of the Prim-Dijkstra algorithm on as-
sociative parallel processors, Proc. of VII Intern. Workshop on Parallel Process-
ing by Cellular Automata and Arrays, Parcella’d6, Academie Verlag, Berlin,
1996, 184-194. '

[8] A.S. Nepomniaschaya, An associative version of the Prim-Dijkstra algorithm
and its application to some graph problems, Proc. of Andrei Ershov Second
Intern. Memorial Conf, “Perspectives of System Informatics”, Lecture Notes
in Computer Science, Berlin: Springer—Verlag, 1181, 1996, 203-213.

Associative algorithms for graphs represented as an adjacency maitriz 33

[9] E.M. Reingold, J. Nievergelt, M. Deo, Combinatorial Algorithms: Theory and
Practice, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977.

'10] A.S. Nepomniaschaya, Language STAR for associative and parallel computa-
tion with vertical data processing, Proc. of the Intern. Conf. “Parallel Com-
puting Technologies”, World Scientific, Singapure, 1991, 258—-265.

‘11] S. Warshall, A theorem on Boolean martices, J. ACM, 9, No. 1, 1962, 11-12.

12! H.S. Warren, A modification of Warshall’s algorithm for the transitive closure
of binary relations, Comm. ACM, 18, No. 4, 1975, 218-220.

‘13 E.W. Dijkstra, A note on two problems in connection with graphs, Numerische
Math., 1, 1959, 269-271.

14, W.T. Tutte, Graph Theory, Addison-Wesley, 1984.

