Bull. Nov. Comp, Center, Comp.Science, 2(1993), 45-62
© 1993 NCC Publisher

Investigation of some hardware
accelerators for relational algebra
operations

A.Sh. Nepomniaschaya and Ya.l.Fet

This paper is devoted to the application of specialized processors for speeding-up the
realization of relational algebra operations on fine-grain SIMD computers. A short de-
scription of two processors is presented. By means of a special high level language STAR,
the algorithms of implementation of relational algebra operations in a STARAN-like com-
puter model are described. Then the representation of the same algorithms is considered
for the same model with attached processors. The comparison is made, corroborating
the efficiency of the proposed co-processors.

1. Introduction

Fine-grain SIMD systems with bit-serial (vertical) processing and simple
single-bit PEs have been the subject of intensive research in recent years
[1]. To this class of architectures belong the well-known systems STARAN,
DAP, MPP, CM. We call such multiprocessors Vertical Processing Systems,
VPS [2].

These systems provide very high performance due to the concurrent
operation of a large number of PEs. Nevertheless, an additional speed-up
can be attained in VPS for some applications using c;processors, designed
with allowance for a specific nature of problems under consideration.

One of the most important fields of VPS application is the non-numeric
processing, i.e., large data bases, knowledge bases, expert systems, and
other problems of artificial intelligence. In solving these problems, a set of
relational algebra operations is usually used as an operational basis. Imple-
mentations of the relational algebra in conventional associative Processors
and specialized parallel processors were discussed in [3-5] and other publi-
cations. Note that the relational algebra also found important applications
in other advanced data and knowledge models (see, for example, (6]).

In this paper, two specialized processors are considered (called “M-
compressor” and “w-matrix”) intended for speeding-up the realization of

- .

46 A.Sh. Nepomniaschaya, Ya.I. Fel

relational algebra operations in VPS’s. The use of these processors is
demonstrated in the environment of a STARAN-like associative computer.
In order to evaluate the speed-up, two models are considered: the usual
model of an associative array processor and a modified model of the same
processor joined with the A-compressor and the w-matrix.

In [7] J.L.Potter has proposed the associative computing language
(ASC) for implementing associative and semantic networks on massively
parallel SIMD computers. It is a convenient high-level language for the
specification of Al algorithms for such computers. However, to write differ-
ent algorithms for VPS saying “how to do”, special tools were considered
in [8-10]. Nevertheless, for description and evaluation of new hardware
devices it would be useful to have at hand a high-level language allowing
complete modeling of parallel associative processing. To this end the lan-
guage STAR was proposed in [11]. It resembles Pascal, but has special
data types and corresponding operations for them allowing one to simulate
easily the run of associative architecture.

The paper is constructed in the following way.

In Section 2 a model of a STARAN-like associative machine is described.
Section 3 contains a short review of the language STAR and Section 4 gives
a formal description of relational algebra implementation in the STARAN-
like model. In Section 5 the necessary information is given concerning the
processors A and w. In Section 6 some additional language constructions
are introduced into STAR allowing the description of specialized hardware.
Then, the algorithms of Section 4 are rewritten taking into account the
specialized devices. Eventually in the Conclusion the comparison of the
results from Sections 4 and 6, corroborating the efficiency of the proposed
co-processors, is adduced.

2. Model of associative parallel machine

We consider the associative machine STARAN as a basic architecture. To
describe our model, we use an abstract STAR-machine of SIMD-type with
vertical data processing. It consists of the following components:

1) a sequential common control unit (CU), where programs and scalar
constants are stored;

2) k associative processors (k < 32), each consisting of m single-digit
processor elements (m = 256);

3) k matrix memory modules, where the i-th module is connected with
the i-th processor (1 < i < k).

Investigation of accelerators for relational algebra operalions 47

Each memory module consists of » blocks (r < 16) and each block consists
of m words by m bits. In any block the rows are numbered from top to
bottom and the columns are numbered from left to right. A row (word)
or a column (slice) may be accessed equally easily. The data are viewed
as a two-dimensional array written in the binary code. Each array element
occupies an individual row and all elements have the same length. The
data array is divided into parts each of m rows. They are loaded into the
module blocks sc ti:at each part is stored in a block and different parts are
stored in different modules. In the CU a rendition table should be located
allowing one to associate with each array identifier the number of columns
and parts in the partitioning.

Each associative processor can be represented as h vertical registers each
of m bits. The bit columns of the data array are stored in the registers
which perform the necessary Boclean operations, record search results aud
ensure the word selection capability. The STAR-machine processor has a
sufficient number of vertical registers (h > 3) to store intermediate results
of data processing without using the module memory.

In this paper we consider a STAR-machine with one associative pro-
cessor (k = 1). In this case all parts of the data array are loaded into one
module. The CU decodes program instructions and causes the processor
to execute them. The processor performs vertical data processing for each
block in turn.

3. Review of the language STAR

We consider only those STAR constructions [11] which are necessary for the
description of relational algebra operations. To simulate data processing in
a memory block, the following data types are used: integer, boolean, word,
slice, table and array. Data types are introduced in the same manner as in
Pascal. Constants for the types slice and word are represented as an ordered
sequence of symbols ‘zero’ and ‘one’ enclosed within single quotation marks
(apostrophes). Note that the types slice and word are introduced for the
bit column access and the bit row access, respectively.

Let M be a variable of the type array. Then M is a structure of a
fixed number of components, all being of the same type integer. Let T' be
a variable of the type table. Then T is associated with the matrix T of k
columns where k < 256. ’

By analogy with [4] we assume that any matrix T has a unique bit-slice
(called workfield) TW F indicating by ‘1’ those rows which belong to T

48 A.Sh. Nepomniaschaya, Ya.l. Fet

3.1. Operations, predicates and standard functions for
slices

Any variable of the type slice consists of 256 components which belong to
{0,1}.

Let X and Y be variables of the type slice, i be a variable of the type
integer. We consider that ONE-component and ZERO-component of a slice
denote its component with the value ‘1’ and 0, respectively.

Define the following operations:

CLR(Y') sets all components of ¥ to ZERO:;

SET(Y') sets all components of ¥ to ONE;

Y (i) selects the i-th component of Y;

NUMB(Y) yields the number i of all ONE-components of Y, i > 0;

FND(Y') yields the ordinal number i of the first ONE-component of ¥V,
i>0 '

STEP(Y') yields the same result as the operation FND(Y') and then re-
sets the first ONE-component of Y. If the slice ¥ has no ONE-
components, it does not change;

- PRESS(X,Y) deletes from the slice X those components which correspond
to positions ‘0’ in the slice Y and then compresses the contents of
X. If there are k ZERO-components in the slice Y, then the last k
components of the slice X will be ’0’.

The following logical operations are executed simultaneously by all cor-
responding components of X and Y and introduced in the obvious way:

X AY is conjunction, X VY is disjunction, =X is negation.

Other logical operations are constructed from these operations by means
of superposition. Let us agree that X @ Y denotes the operation exclusive
'OR’.
There are the following three predicates for slices:
ONE(Y') yields true if and only if the slice ¥ consists completely of ONE-
components;

ZERO(Y') yields true if and only if the slice ¥ consists completely of
ZERO-components;

SOME(Y) yields true if and only if the slice ¥ has at least one component
with value '1’.

Investigation of accelervators for velational algehra operations 49

We use the following function Shift(VY, &) in which &k is a variable of the
type inleger. This function moves the contents of ¥ placing the component
from position N to position N + &k (N > 1) and setting ZERO-components
from the first through the k-th positions, inclusive.. If £ = 0, then the
contents of ¥ does not change.

3.2. Operations and standard functions for words and
matrices '

Let w be a variable of the type word, i be a variable of the type integer.
We use the following three operations:

#w yields the length of w (#w < 256);

w(7) yields the i-th component of w;

dis(w) yields the disjunction of all components of w.

Let T be a variable of the type table, and ¢,j,k be variables of the type

integer. We use the following matrix operations :

T(2) yields the i-th row in the matrix T}

Col(j, T') yields the j-th column in the matrix T;

T[k] yields the k-th part of the matrix T (1 < k < 16). This operation is
used when the matrix T' has more than 256 rows.

The function Size(T') yields the number of columns in T

The function Row(T) yields cardinality (the number of rows) of 7.

Remark. It should be noted that statements of STAR resemble those
of Pascal [12].

4. Algorithms for relational algebra operations

A relational database model is defined as in [13]. Let D; be a domain,
it =1,2,...,k. The relation R is considered as a subset of the Cartesian
product Dy x Dy X ...X Dyr. An element of R is called tuple and has the
form v = (v, vs,...,vt), where v; € D;. Let A; be a name of the domain
D; which is called the attribute. Let R(Ay, Ag,.. ., Ay) denote a scheme of
the relation R.

Any relation is represented as a matrix (table) in the memory module
and each its tuple is allocated to one memory word. Therefore the values of
attributes occupy the vertical fields in the matrix. Note that any relation

-

50 A.Sh. Nepomniaschaya, Ya.l. Fel

consists of different tuples. If the relation R consists of several parts, then
each part of R uses the same workfield bit-slice RWF in the module.

For simplicity we assume that different relations have different at-
tributes. Therefore we can refer to any domain of the considered relation
by using only the corresponding attribute. In general, if different relations
use a common attribute, then the reference to the corresponding domain
has the following form:

<relation name> . <attribute>

We introduce the following notation being used for algorithm analysis.
Let ALG be an algorithm applied to the matrix T. Denote by N(ALG)
the access number to the parallel memory during the execution of ALG.
Following [8], we assume that definition of existence of responder in the
parallel memory needs no additional time.

4.1. Auxiliary procedures

In this section we consider a group of auxiliary procedures which will be
used later. Some procedures will be considered in detail, but the other ones
— only informally explained. Note that we borrow some auxiliary procedure
names from [5].

First we consider the procedure MATCH which tests a word v for the
membership in the relation D.

proc MATCH(D:table; DWF:slice; v:word; var M :slice);

label 1; var i,k: integer; X: slice;

begin k:= size(D); M:=DWF;

fori:=1to k do
begin X:= col(i, D); if v(i) =" 1’ then M := M A X
else M := M A -X; if ZERO(M) then goto 1

end,

l:end

A detailed explanation may be appropriate here. Note that the relation
D and its bit-slice DWF are loaded in the parallel memory. Since the
vertical processing is executed in the associative processor, it is necessary
to have at least two variables of the type slice. The variable X is used to
store the current column of D which is operated on and the variable M
is used as the resulting bit-slice. At the start M has the same contents
as DWF since the seach will be executed among those rows of D which
correspond to the positions with /1’ in the slice DWF. Let us call such rows
of D by selected rows. At any j-th step of the algorithm (1 < j < #v)

Investigation of acceleratlors for relational alychra operations 51

we will mark by ‘1’ in the slice M the positions of those selected rows
(tuples) of D which have the first j symbols of » as their initial part. This
algorithm terminates earlier if there exists such a step h < k in which the
slice M has only ZERO-components.

Consider the procedure COMPACT.

proc COMPACT(D:table; Y :slice; var H:table);
var 1, junteger; Z:slice; w:word,
begin j :=0; Z :=Y;
while SOME(7) do
begin i:=STEP(Z); j := j + 1; w:=D(i); H(j):=w
end;
end

The procedure COMPACT constructs the matrix H consisting of those
rows D(i) of D, for which the i-th component of the slice Y is '1/, ie.,
Y(i)="1.

Let us informally describe the following four procedures for which there
exist simple algorithms of vertical processing.

proc CLEAR(var D:table);

proc PUSH(D:table; r:integer; var: H:table);

proc WCOPY (w:word; k, j:integer; var D:table);

proc TCOPY/(D:table; DWF :slice; k:integer; var H:table);

The procedure CLEAR sets ZERO-components in each column of D. The
procedure PUSH shifts the contents of the matrix D by r positions down.
The procedure WCOPY writes k copies of the word w beginning with the
j-th row of the matrix D. We assume that #w = size(D). The procedure
TCOPY constructs k copies of each column of the matrix D by means of
the internal cycle and using an additional slice.

4.2. Relational algebra operations

In this section we consider a group of relational algebra operations for
which a special hardware support will be described.

First we consider the operation Intersection for which the resulting
relation is a subset of one of its argument relations. Therefore we will use
a bit-slice to indicate the resulting relation tuples. This operation has two
argument relations. Its resulting relation consists of those tuples which
belong to both argument relations.

In [14] a simple algorithm for Intersection was considered. For each row
w from the second relation (R) it successively determines all occurrences

52 A.Sh. Nepomniaschaya, Ya.l. Fet

of w in the first relation (T') by using the algorithm from the procedure
MATCH. Here we examine a vertical algorithm for the operation Intersec-
tion by generalizing the algorithm used in the procedure MATCH. Explain
the main idea of this generalization. We determine synchronous occur-
rences of all rows from the relation R in the relation 7. To this end a
variable Yy of the type slice is used for each row wy of the relation R. At
each i-th step of the computation (i £ #w) the variable Y}, stores positions
of those rows from the relation 7" which have the first ; symbols of wy as
their initial part. If w; belongs to the relation T, then there is a unique j
such that Yx(j) = '1’. Note that the variables Y} form an auxiliary matrix
which is used to obtain the operation Intersection result.

To consider the mentioned above vertical algorithm we use the following
three auxiliary procedures. '

proc INIT(Y :slice; var S:table);
var i, k:integer;

begin k:=size(S);

fori:=11tok docol(i,$):=Y

end

The procedure INIT puts the cortents of the slice ¥ into all columns of
the matrix S,

proc DIS(S:table; var Z:slice);
var j, riinteger; w:word;
begin r:=row(S);
forj:=1tor do
begin w := §(j); if ZERO(w) then Z(j) :=' 0
else Z(j):='1
end,
end

For each row w of the matrix S the procedure DIS fulfils the disjunction
of its components.

Consider the third auxiliary procedure LINE in which variables A and B
are used for selecting the i-th column in the matrices T and R, respectively,
and the variable C is used for the control column RWE of the matrix R
in the parallel memory of the STAR-machine. Notice that later on this
procedure will be used after the procedure INIT(Y, S).

proc LINE(A, B, C:slice; var S:table)
var i, r:integer; F:slice;

bl

Investigation of accelerators for relational algebra operations 53

- begin 1:=NUMB(C);
* Note that NUMB(C')=row(R) *
fori:=1tor do
begin F:=col(i, S); if B(i) ='1' then
col(z,5) := F A A else col(z,5) := FA-A
end,
end

It can be verified that
N (INIT)=size(S), N(DIS)=2-row(S) and N(LINE)=3-row(S5) + 1.

Now consider the vertical algorithm for the operation Intersection which
uses the procedures INIT, DIS and LINE.

proc INTERSV(T, R:table; TWF ,RWF:slice; var Z:slice);
var S:table; X,Y, M:slice; j, k:integer;
begin M:=RWF'; k:=size(R); size(.S):=row(R);
* Note that size(R)=size(T') *
row(S):=row(T); INIT(TWF,S);
for j:=1tok do
begin X :=col(j,T); Y:=col(7, R); LINE(X,Y, M, 5)
end,
DIS($, Z)

end
It can be easily calculated that
N(INTERSV)=14row(R) + 2:row(T") + 3-size(R) - (1+row(T)).

For the procedure INTERS from [14] it is not difficult to obtain the
following estimation:

N(INTERS)=3 + (3 + 2-size(R))-row(R).

Without loss of generality we can assume that row(R) <row(T). Therefore
N(INTERS)< N(INTERSV). However, the procedure INTERSV is useful
in this paper, since it simulates (in the sequential way) the run of an
accelerator (called w-matrix) described in Section 5.

It should be noted that procedures for operations Difference and Semi-
join can be constructed similarly to the procedure INTERSV.

Now we consider the operations Product and Join. They assemble a
new relation which should be located in a new area of the memory module.
For simplicity, we assume that the resulting relation has no more than 256
rows.

54 A.Sh. Nepomniaschaya, Ya.il. Fel

Consider the operation Product. Its result relation is obtained as the
concatenation of all combinations of the argument relations 7' and R.

proc PRODUCT(T, R:table; TWF ,RWF:slice; var P(P1, P2):table);
var i, p,r,s:integer; X, Y :slice; G:table;
begin X:=TWF; Y:=RWF; p := 0; »=NUMB(X); s:=NUMB(Y);
while SOME(X) do
begin i:=STEP(X); p := p 4+ 1; WCOPY(T(i),s,1 + (p—1) - s, P1)
end,
*3 copies of any tuple of T' are created in Plx
COMPACT(R,Y,G); TCOPY(G,r, P2);
*r copies of the matrix G are created in P2«
end

Explain the procedure PRODUCT. Let r be a cardinality of T, s be a
cardinality of R and G be a matrix obtained by compaction of R. The
procedure PRODUCT constructs s copies of any tuple of T in P1 and r
copies of the matrix G in P2. Note that each attribute of P consists of
r - s tuples.

Let us recall the definition of the operation Join. Assume that the first
argument relation A has the attributes A1, A2 and the second one B has
the attributes B1, B2. Let A2 and B2 be drawn from the same domain.
The operation Join concatenates those tuples from its argument relations
for which the corresponding values of A2 and B2 are equal. Now consider
the operation Join.

proc JOIN (A(Al, A2), B(B1, B2): table; AWF ,BWF: slice ;
var C(C1,C2): table);
var p,m,n,t: integer; w: word; M, N,Q: slice; E1, E2: table;
begin M:=AWF; t := 0; CLEAR(C1); CLEAR(C2);
while SOME(M) do
begin p:=FND(M); w := A2(p); MATCH(A2,AWF,w,N); M := M & N;
* All occurrences of w are deleted from M
MATCH(B2,BWF,w,Q); if SOME(Q) then
begin PRODUCT(A1,B1,N,Q, E1, E2); PUSH(E1,t,C1);
PUSH(E2,t,C2); m:=NUMB(N);
n:=NUMB(Q); t:=t+m-n
end, '
end,
end

Let w be a tuple value belonging both to the domain of A2 and to
the domain of B2. The occurrence positions of w are stored both in the

Investigation of accelerators for relational algebra operaiions 59

- slice N for the atiribute A2 and in the slice @ for the attribute B2. Then
- the selected tuples from the relations A and B are concatenated by the
Product operation. The obtained matrices E1 and E?2 are stored into the
result matrix (relation) C' using the auxiliary procedure PUSH.

There are different variants of the Join operation. Here we have con-
sidered the variant when the condition for joining attributes A2 and B2
is their equality. In the examined procedure Join the condition for join-
ing is written by means of MATCH(B'Z,BWF,UJ,Q). Thus, replacing the
procedure MATCH(B2, BW F,w,Q) by another condition for joining we
can write another variant of the Join procedure. Certain procedures for
different conditions for joining were considered in [15].

5. Two specialized processors based on cellular
structures

It is known that the relational data model is distinguished by inherent
parallelism which allows one to gain in efficiency by means of implement-
ing dedicated homogeneous parallel processors. Two such processors are
discussed in this section.

5.1. A- compressor

The A-structure [16] is a two-dimensional homogeneous array (Figure 1.a)
each cell of which contains two logical gates, AND and OR (Figure 1.b)
and realizes logical functions 2’ = 2t (the horizontal channel) and ¢/ = 2 V¢
(the vertical channel). ‘

Let an arbitrary binary vector be applied to the inputs z of the left
boundary of A-matrix. '

Consider the first (the left) column of the matrix. The variable ¢ retains
its initial value 0 in the vertical channel of this column only till 2 =0. In
some i;-st cell, where 2z = 1 is encountered for the first time, the value of
t changes to 1 which cannot change then till the lower bound. However,
the 4;-st cell receives yet the signal ¢ = 0. Hence, it is the single cell in the
whole column where the combination 2f = 1 is present. This combination
may serve as an indication for extracting the “one”.

The gorizontal channel of thus indicated i1-st cell is closed by the signal
¢t = 0. Hence, the first “one” of the given vector does not propagate further
along the current row. In all cells lower than the indicated one, t = 1, so
that 2’ = 2. Thus, to the inputs of the second column a duplicate of the
given vector is applied, except for its first “one”.

56 A.Sh. Nepomniaschaya, Ya.l. Fet

ltu lhz ltm

211_. ——] > - —> ___-_.3{,,,
: : | t
221—- — > ¢ — _._Z;;n
. z
') '
) i)
Zm1 |, ol _,.,_,.,z:-nn
Vo g .
a)

Figure 1. Compression of binary vectors: a) general structure of A-matrix;
b) logical circuit of A-cell

Similar transformations are performed in the second, the third column,
and others: in some i3-nd cell of the 2-nd column the second “one” of the
given vector is indicated, in some i3-rd cell of the 3-rd column the third
“one” is indicated, etc. (i; < iz < ...).

Evidently, signals “1” appear at the outputs ¢’ of the lower bound in the
1-st, 2-nd, ... columns of the A-matrix, and the number of such columns
corresponds to the number of ones in the given binary vector.

Hence, the A-structure performs compression of a binary vector.

Now, introduce into the A-structure (Figure 1) the second horizontal
channel (a bus) f, in each of its rows, and the second vertical channel g
realizing the function ¢’ = g v 2ff, in each column. So, we obtain the
following system of logical functions for each cell:

2 =z, (1)
t'=2vt, (2)
g =gV zif, (3)
f'=f, (4)

Let us call the resulting scheme A-compressor. The A-compressor per-
forms various special functions of interconnection network.

Let boundary inputs of the left boundary be the inputs of the inter-
connection network and boundary outputs g’ of the lower boundary be its
outputs. A binary control vector Z is fed bit-wise to the left boundary
inputs z, in which the necessary input channels are indicated by ones. The

Investigation of accelerators for relational algebra operations 57

commutation is performed as follows. In each cell, where the combination
2t = 1 is fulfilled, according to (3) we have g’ = f, i.e., the interconnection
function “fork down” is realized. If in the control vector Z the ones oc-
cupy the iy-st, ip-nd, ..., ix-th positions, then, as follows from (1)-(2), the
combination zf = 1 appears in the ¢;-st row of the 1-st column,the i3-nd
row of the 2-nd column, ..., the ix-th row of the k-th column. Thus, the
outputs g,’m- of the 1-st, 2-nd, ..., k-th columns will be connected with the
inputs f;; of the #-st, iz-nd, ..., ix-th rows, correspondingly.

The A-compressor can be used as a specialized device to support various
known data compression algorithms (see, for instance, [17]). Indeed, if at
some step of encoding the source data a binary control vector is produced
denoting the substrings which should be deleted, this procedure can be
easily implemented in the A-compressor. Moreover, as shown in [16], the
A-structure realizes also the extension (insertion of blanks at the given
points of a source string) and the interlacing (construction of a new string
by interspersing the given substrings of two different source strings). It is
obvious that the latter two procedures are also useful in implementing data
compression.

In the present paper, however, we consider another specific applica-
tion of the A-compressor, namely, the deletion of non-relevant tuples while
forming the intermediate or final results of relational algebra operation.

5.2. Set intersection processor (w-matrix)

Another example of a specialized processor for non-numeric processing is
the Set Intersection Processor (SIP). It is a two-dimensional homogeneous
structure of size my x my (Figure 2), each cell of which contains an equiva-
lence circuit, a response flip-flop, and some additional logic, which is needed
for implementing in this cell the sequential bit-wise comparison of the cor-
responding elements of argument arrays M; and M;. After completing
the comparison cycle of n steps, where n is the element length, in the two-
dimensional response field of SIP the resulting Binary Label Matrix (BLM)
is formed.

The presence of “1” in the (i, j)-th node of BLM means that the i-th
element of the array M, coincides with the j-th element of the array M>.

The SIP is a quasi-associative processor with a higher level of paral-
lelism compared to conventional associative processors. Whereas in the
conventional quasi-associative processors all elements of an argument array
coinciding with one comparand are singled out during one cycle of memory
interrogation, in SIP a complete intersection of two arrays is realized at the
same time.

58 A.Sh. Nepomniaschaya, Ya.l. Fet

MU2
—_ [_]
M,
— = =|—=|- - 1
A i
N S U 11 _ _L|m
i i kb o o
' M| : Lol
—J 1l o o]
== =|Far |~ — el
MU1 T BLM

Figure 2. Set intersection processor

6. Representation of relational algebra
operations by means of A-compressor and
set intersection processor

In this section we consider the implementation of relational algebra op-
erations from Section 4 using the hardware support from Section 5. To
describe the run of the mentioned above w-processor we extend the lan-
guage STAR by introducing the following new data type syntab.

Let G be a variable of the type syntab. Then G is associated with a
matrix G. Its column number and row number are defined by means of the
functions Size(G) and Row(G), respectively. The access to the contents of
the matrix G will be synchronous both for the rows and the columns.

Note that the type table is used for the data array which is stored in
the memory blocks, whereas the type syntab is used for the w.-matrix.

Introduce a statement of synchronous processing.

Let i be a variable of the type integer, A be a variable of the type array,
G be a variable of the type syntab and S(G,i) be a statement. depending
on the variable i, but not changing ¢ and A. The synchronous processing
statement has the following form:

Jor all ¢ from A do S(G,1) od;

- Let us explain the semantics of this statement. The statement S5(G,1)
is simultaneously performed for all components of A. To describe the
run of the set intersection processor we use the following three anxiliary
procedures which are realized by hardware.

Investigation of acceleralors Jor relalional algebra operations 59

Consider the procedure INIT*.

proc INIT*(Y :slice; var S:syntab);

var i, k:integer;

begin k:=size(S); for all i from [1..k] do
col(#,5):=Y od

end

Explain the procedure INIT*. The contents of the slice Y is synchronously
stored into all columns of the matrix §.
Consider the procedure DIS*.

proc DIS*(S:syntab; var Z:slice);

var i, r:integer;

begin r:=row(S); for all i from [1..r] do
Z(1):=dis(5(2)) od

end

Explain the procedure DIS*. For all rows w € § the values dis(w) are
synchronously defined.

Consider the procedure LINE*.

proc LINE*(A, B, C:slice; var S:syntab);
var i, r:integer;
* Assume that NUMB(C)=size(§) *
begin r:=NUMB(C); for all i from [1..r] do
if B(¢) =" 1’ then col(¢, §):=col(i, S) A A else
col(7, §) := col(i,S) A = A od

end

Explain the procedure LINE*. All columns of § change their contents
synchronously. In addition, the new contents of the i-th column of the
matrix ' depends on the i-th component value of the slice B. Note that
the implementation of this procedure is executed by hardware as a unique
process of comparison of the i-th columns of two matrices.

Now we consider the procedure INTERS* using the set intersection
processor. :

proc INTERS*(T, R:table; TWF ;RWF:slice; var Z:slice);
var S:syntab; X,Y, M:slice; 1, k:integer;
begin k:=size(T); size(S):=row(R); -

M:=RWF; INIT*(TWF,S);

fori:=1 to k do

60 A.Sh. Nepomniaschaya, Ya.l. Fet

begin X:=col(¢,T); Y:=col(i, R);
LINE*(X,Y, M, S)

end,

DIS*(S, 2)

end

Explain the procedure INTERS*. At first the matrix S is initialized by
means of the contents TWF. Then the procedure LINE* is executed for
the 7-th column of T and i-th column of R, where i = 1,2,...,size(T).
After the cycle termination each component Z(i) of the resulting slice Z is
obtained as a disjunction of all row components §(3).

It is obvious that using the set intersection processor we can write
procedures for the relational algebra operations Difference and Semi-join
by analogy with INTERS*.

By means of the A-compressor the following procedure COMPACT*
can be written.

proc COMPACT™(T:table; Y :slice; var H:table);
var t, k:integer; X, Z:slice;
begin k:=size(T); size(H) = k;
fori:=1tok do
begin X :=col(i,T); Z:=PRESS(X,Y); col(i, H) := Z
end;
end

It should be noted that the A-compressor allows one to execute the
matrix compaction by means of the vertical processing.

The procedure PRODUCT* is obtained from the procedure PRODUCT
replacing the occurrence of the procedure COMPACT by COMPACT*.
Similarly the procedure JOIN* is obtained from the procedure JOIN re-
placing the occurrence of PRODUCT by PRODUCT™.

Note that the resulting relation of the operation Projection is a sub-
set of its argument relation T(71,72). But using the A-compressor we
can construct a procedure PROJECT1 (or PROJECT?) having a resulting
matrix which is obtained after sewing the identical tuples in the domain of
the attribute T'1 (or T2).

7. Conclusion

We compare complexity of algorithms from Sections 5 and 6 which realize
the same operations of the relational algebra.

Investigation of accelerators for relational algebra operations 61

Let us fix two relations T and R. At first we compare complexity
of algorithms realizing the procedures PRODUCT and PRODUCT* (or
JOIN and JOIN*). It can be easily seen that it is sufficient to compare the
complexity of algorithms COMPACT and COMPACT™.

It is not difficult to calculate that N(COMPACT)=3-row(T)+1 and
N(COMPACT*) = 3-size(T). Note that for real tasks row(T') >size(T).
Therefore

N(COMPACT) > N(COMPACT*).

This result justifies the use of the additional hardware A-compressor.

Now we compare complexity of algorithms realizing the procedures IN-
TERSV and INTERS* to evaluate the acceleration which is obtained by
using the set intersection processor. From the definition of the operation
Intersection we have that size(T)=size(R). In Section 4 we have obtajned
that :

N(INTERSV)=1+row(R) + 2-row(T) + 3-size(R) - (1+row(T)).
By the assumption row(R) <row(T). Therefore
N(INTERSV) < 3-row(T) + 3-size(R) - (1+row(T)).

It can be calculated that N (INTERS*) = 3 + 3-size(T). To economize the
additional hardware, we execute the procedure COMPACT* for the relation
R before the INTERS™ run. Therefore we obtain that N '(INTERS*) =
2 + 6-size(T). Hence, N'(INTERS*) <« N(INTERSV) which justifies the

use of the set intersection processor.

~

-~

References

(1] J.L.Potter, W.C. Meilander, Array processor supercomputers, Proceedings of the
IEEE, Vol. 77, No. 12, 1989,

[2] W.Haendler, Ya.l. Fet, Vertical processing in parallel computing systems, Proc. of
the Intern. Conf. “Parallel Computing Technologies”, Novosibirsk, USSR, 1991.

[3] E.Ozkarahan, Database Machines and Database Management, Prentice-Hall, Inc.,
1986.

_[4] C. Fernstrom, J.Kruzela, B. Svensson, LUCAS associative array processor. Design,
programming and application studies, Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Vol. 216, 1986.

[5] M.R.Muraszkiewicz, Cellular array architecture for relational database implemen-
tation, Future Generations Computer Systems, Vol. 4, No. 1, 1988.

L
~

[6] B.Czejdo, R.Elmasri, M. Rusinkiewicz, D.W. Embley, A graphical data manipula-
tion language for an extended entity-relationship model, IEEE Computer, March,
1990.

62

(7]
(8]
(9]

(10]

(11]

(12]

13]
(14]

(15]

(16]

(17]

A.Sh. Nepomniaschaya, Ya.l. Fel

J.L. Potter, Associative Computing: A Programming Paradigm for Massively Par-
allel Computers, Plenum Press, New York, 1992.

C.C. Foster, Content Addressable Parallel Processors, Van Nostrand Reinhold Com-
pany, New York, 1976.

J. Miklosko, R.Klette, M. Vajtersic, J. Vrto, Fast algorithms and their implemen-
tation on specialized parallel computers, Special Topics in Supercomputing, Vol. 5,
North-Holand, 1989.

A.D. Falkoff, Algorithms for parallel-search memories, J. of the ACM, Vol. 9, No. 10,
1962.

A.Sh. Nepomniaschaya, Language STAR for associative and parallel computation
with vertical data processing, Proc. of the Intern. Conf. “Parallel Computing Tech-
nologies”, Novosibirsk, USSR, 1991.

K. Jensen, N. Wirth, PASCAL User Manual and Report, Springer-Verlag, Berlin,
1978.

J.D. Ullman, Principles of Database Systems, Computer Science Press, 1980.

A.Sh. Nepomniaschaya, A language STAR for associative and bit-serial parallel pro-
cessors and its application to relational algebra, Bulletin of Novosibirsk Computing
Center, Series: Computer Science, 1, 1993.

A.Sh. Nepomniaschaya, Investigation of associative search algorithms in vertical pro-
cessing systems, Proc. of the Intern. Conf. “Parallel Computing Technologies”, Ob-
ninsk, Russia, 1993.

Ya.l. Fet, Parallel Processors in Control Systems, Energoizdat, Moscow, 1981 (in
Russian).

J.A.Storer, Data Compression: Methods and Theory, Computer Science Press,
Rockville, 1988.

