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Comparison of two models for associative
parallel computations*

A.S. Nepomniaschaya, M.A. Vladyko

For fine-grained associative parallel systems of the SIMD type with vertical data
processing we analyze two models of associative processing: the STAR-machine and
the orthogonal machine. We have obtained that the STAR-machine simulates the
orthogonal mAchine run in constant time while the orthogonal machine simulates
the STAR-machine run in time which is proportional to the number of processing
elements.

1. Introduction

The revived interest in the associative (content-addressable) architecture’
results from remarkable advances in the VLSI technology [1]. Of special
interest is a class of associative parallel processors belonging to the fine-
grained SIMD systems with bit-serial (vertical) processing and simple single-
bit processing elements (PEs) [2]. In such systems input data are physically
loaded in a matrix memory such that each data item occupies an individual
row and is processed with its own processing element. These systems provide
a massively parallel search by contents and processing of unordered data.
They perform basic operations of searching such as exact match, greater
than, greater or equal to, less than, less or equal to, maximum, minimum,
greatest lower bound, least upper bound, between limits and outside limits
which take time proportional to the number of bit columns in a field, but
not to the number of data items being searched [3-6].

For employing the remarkable properties of an associative architecture it
is essential to design associative parallel algorithms and simultaneously to
define such a representation of input data which would make possible the
solution of problems in a natural and robust way.

The main goal of this paper is to analyze two models performing the
bit-serial data processing. Such an investigation is interesting owing to the
following reasons. Firstly, by means of a formal model one can study new
associative algorithms for different problem oriented shells. Secondly, as a
result of analyzing associative algorithms there arise useful ideas for im-
proving the associative architecture. Finally, the associative techniques can
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be used on conventional sequential and parallel computers for improving
the programming productivity [7]. Note that non-homogeneous high-perfor-
mance computing systems generally include an associative parallel processor
as a component for solving non-numerical problems [8].

Here, we compare the run of the STAR-machine [9] with the run of the
orthogonal machine [10-11]. The STAR-machine is based on a STARAN-
like associative parallel processor [5, 8}. The high-level language STAR is an
extension of Pascal by adding new data types and the correponding opera-
tions for them for simulating the vertical data processing. The orthogonal
machine includes main features of an associative computer of the SIMD type
[12]. Both models are employed for analyzing associative algorithms [10-11,
13-17]. We have obtained that the STAR-machine simulates the orthogonal
machine run in constant time while the orthogonal machine simulates the
STAR-machine run in time which is proportional to the number of process-
ing elements. We have also obtained a condition of belonging the STAR-
machine to the class of vector machines introduced by Pratt and Stock-
meyer [18].

2. The STAR-machine

The STAR-machine is defined as an abstract model of the SIMD type with
vertical data processing. It consists of the following components:

e a sequential control unit where programs and scalar constants are
stored;

e an associative processing unit consisting of m single-bit PEs;

e a matrix memory for the associative processing unit.

Its matrix memory consists of cells each storing one bit. Input binary data
are loaded in the matrix memory in the form of two-dimensional tables in
which each datum occupies an individual row. A row (word) or a column
(slice) may be accessed equally easy.

The associative processing unit is represented as h vertical registers each
consisting of m bits. Vertical registers can be regarded as a one column array.
The STAR-machine runs as follows. The bit columns of the tabular data
are stored in the registers which perform the necessary Boolean operations
and record the search results.

To simulate data processing in the matrix memory three new data types
word, slice and table are used. The types slice and word are employed
for bit column access and bit row access, respectively, and the type table
is used for defining the tabular data. Assume that any variable of the type
slice consists of m components which belong to {0,1}".

*For simplicity let us call slice any variable of the type slice.
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Consider operations, predicates and functions for slices.
Let X, Y be variables of the type slice and ¢, j be variables of the type
integer. We define the following operations:

SET(Y) sets all components of Y to 1;

CLR(Y) sets all components of Y to 0;

Y () selects the i-th component of Y;

FND(Y) returns the ordinal number i of the first component 1 of Y, 7 > 0;

STEP(Y) returns the same result as FND(Y') and then resets the first com-
ponent 1;

NUMB(Y) returns the number i of components 1 of Y, ¢ > 0;

MASK(Y,i..j) sets components 1 from the i-th through the j-th positions,
inclusively, and components 0 in other positions of the slice Y
(1<i<j<m)

MASK1(Y, k) sets the alternation in Y consisting of k zeros and k ones,
where k = 2, ¢ > 0 (for example, MASK1(Y, 1) denotes the
alternation of the form 01);

MIR(Y) returns the reverse of the contents of Y’ _

SHUFFLE(Y, k) performs the transpose of contents in each group from k
(k = 2') components dividing them into two equal parts and
placing components of the lower part upon the components of
the upper one.

In the usual way we introduce the predicates ZERO(Y) and SOME(Y')
and the following bitwise Boolean operations: X andY is conjunction, XorY
is disjunction, nonY is negation, X xor Y is exclusive or.

We use the following standard functions:

Shift (Y, down, k) moves the contents of Y by k positions down, placing
each component from the position N to the position N + k (N > 1) and
setting components 0 from the first through the k-th positions, inclusively.
The function Shift(Y,up, k) is defined similarly.

Rotate(Y,down, k) performs a circular shift of the contents of ¥ by &
positions down. This function is similar to Shift(Y, down, k) except that the
components which are shifted out at one edge of the slice ¥ are shifted in
at its opposite edge. The function Rotate(Y, up, k) is defined similarly.

Let w be a variable of the type word and T' be a variable of the type
table. We employ the following operations:

w(z) returns the i-th component (bit) of w;

#uw yields the length of w;

ROW(i, T) returns the i-th row of the matrix T (1 < i < m);

COL(7,T) returns the i-th column of the matrix T}

WITH(Y,T) attaches the contents of the slice Y to the left of the matrix T'.
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It should be noted that the current version of the language STAR. does
not include the operation PRESS(X,Y) because in [19] we have considered
a specialized processor for realizing it. '

3. The orthogonal machine

The orthogonal machine consists of the matrix memory and the processing
unit. In the matrix memory there is a constant number of square matrices
(or blocks) having m cells each storing one bit. It is assumed that the
Processing unit consists of three vertical registers X, Y and M of length m.

Let us examine the elementary operations of the orthogonal machine.

The operations COL(3, j) and ROW(3, j) select the i-th column and the
i-th row in the j-th block of the matrix memory, respectively.

The operations (0) and (1,i) are used for setting components 0 in a
register and for setting the i-th component of a register to 1 and all other
components to 0, respectively.

The operations CL(2°)X and CR(2)X perform the left cyclic shift and
the right cyclic shift of the contents of X by 2° positions, respectively.

The operations L(X) and R(X) set all the components of the register
X to 0 except the position where in the register X there is the leftmost
component 1 or the rightmost component 1.

It should be noted that the left and the right operations arise in the case
when each data item occupies an individual column and the input data are
processed by rows. ‘

Consider the following operations which are obtained by means of the
elementary ones. As shown in [11], any of them takes constant time propor-
tional to logl.

The operation DM(!) defines a mask whose first ! components are set to
1 and others are set to 0.

The operations FL(X) and FR(X) fill in a register with components 1
up to the leftmost or the rightmost component 1 in the register X .

The operations SL(/)Y and SR(!)Y shift the contents of ¥ by [ bit po-
sitions left and right, respectively, where I bit positions, which become free,
are set to 0.

The operations CSL(1)X and CSR(/)X perform left and right cyclic shifts
of the contents of X by an arbitrary number ! positions, respectively.

Statements and the bitwise Boolean operations for registers are intro-
duced in the obvious way. Note that the iteration statement for employs the
brackets do and repeat, whereas the statement while uses do and od.

Following [11], we assume that any. elementary operation takes one unit
of time. Therefore time complexity of an algorithm is measured by counting
the number of all the elementary operations performed in the worst case.
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4. Comparison of two models run

In this section we compare the STAR-machine run with the orthogonal ma-
chine run. ‘

Any of these models consists of the matrix memory and the associative
processing unit however, they differ in a set of instructions. Nevertheless,
they employ the following common operations: the selection of the i-th row
or the ¢-th column in the matrix memory, writing the components 0 in a
register, the creation of a mask, the Boolean operations, the shift and the
cyclic shift operations.

At first, we consider how the STAR-machine simulates the orthogonal
machine operations. To this end it is essential to construct algorithms for
simulating the operations L(X) and R(X) for setting all the components of a
register to 0 except the leftmost or the rightmost component 1 in the given
register X, and the operations FL(X') and FR(X) for filling in a register with
components 1 up to the leftmost or the rightmost 1 in X.

It should be noted that algorithms for performing the right operations
can be obtained from the corresponding algorithms for performing the left
operations on the STAR-machine by means of the operation MIR(X) for
reversing the contents of the given register X. Therefore we have only to
show how the STAR-machine simulates the operations L(X) and LF(X).

The statement Y := L(X) is simulated as follows:

i := FND(X); CLR(Y); Y (i) := 1.

For simulating the assignment Y := FL(X) the following statements are
employed:

i :== FND(X); MASK(M, 1..i); Y :=Y or M.

As a result of performing these statements the first : components of the
slice Y are set to 1 and others do not change.
So, we have obtained the following claim.

Claim 1. Let an orthogonal machine run T'(m) steps, where the input is of
the length m. Then the STAR-machine simulates the run of the orthogonal
machine in 5T (m) steps.

Now, we will study how the orthogonal machine simulates the STAR-
machine operations.

Firstly, consider a group of the STAR-machine operations SET(Y), Y (i)
and MASK(M,i..5) which is simulated in constant time on the orthogonal
machine.

It is obvious that the operation SET(Y') is obtained as the bitwise nega-
tion of a register consisting of components 0.
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Before simulating the operation MASK(M, i..j) on the orthogonal ma-
chine recall that in this model a mask is filled in with components 1 begin-
ning with the first component, while in the STAR-machine one can create
a mask beginning with any position. So, we employ the following simple
algorithm:

M :=DM(j); X :=DM(i - 1); X :=non X; M := M and X.

For simulating the statement k := Y (i) on the orthogonal machine we
create the register X whose i-th component coincides with the i-th compo-
nent of the given register Y and others are equal to 0:

X:=(1,4); X :=Y and X;
if ZERO(X) then k := 0 else k :=1.

Consider another group of the STAR-machine operations MASK1(Y, k),
FND(Y), STEP(Y) and SHUFFLE(X, k) which is simulated on the orthogo-
nal machine in time O(logm). Assume that m = 2" and k = 2.

The operation MASK1(Y, k) writes into the slice Y the alternation con-
sisting of k zeros and k ones. It is simulated as follows:

M = DM(?");

for j ;==n — 1 downto i + 1 do
Y :=SR(2)M; M :=Y or M

repeat;

Y := SR(2') M.

Let us explain this algorithm. Initially the first K components of the mask
M are set to 1. At any j-th iteration the result of shifting the contents of the
mask M by 2’ positions rlght is stored in the register Y. After performing
the statement M := Y or M the number of groups consisting of k ones
increases. One can check that after ending the loop in the register Y there
is an alternation of k ones and k zeros. Therefore for obtaining the required
alternation it is essential to perform the last statement.

For simulating the statement k := FND(Y) we employ the following
algorithm: ,

if ZERO(Y') then k := 0 else k := 1;

M :=L(Y);
for j := n — 1 downto 0 do
X :=SL(2)M

if SOME(X) then
begin k:=k +2/; M := X
end;
repeat.
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Explain the main idea of this algorithm. At first the position of the
leftmost component 1 of the register Y is saved in the register M. At any
J-th iteration the contents of the register M is shifted by 27 positions to the
left and the shift result is written in the register X. If the register X consists
of components 0, then at the next iteration the contents of the register M
will be shifted half its current shift length.

Remark 1. For simulating the statement k := FND(Y) one can employ
the following simple algorithm. First we perform the statement M := L(Y).
Then we calculate the number of the left shifts when the register M does
not completely consist of components 0. However, such an algorithm takes
O(m) time.

Since the operations FND(Y) and STEP(Y) yield the same result, for
simulating the operation STEP(Y) it is sufficient to show how to replace the
leftmost component 1 of the register Y with the component 0. To this end
we employ the following simple algorithm:

X=Y; X:=L(X); X:=nonX;Y :=Xand?.

For simulating the operation SHUFFLE(X,, k) we will utilize the operation
MASK1(Y, k), where k = 2°.

M := DM(2-Y);
for j := n — 1 downto ¢ do
Y :=SR(2N)M; M:=Yor M
repeat;
Y := SR(2"-1) M,
/* We have performed the operation MASK1(Y, 2:-1). */
M :=SR(2"-1)X; M :=Y and M;
/* For all the groups we save their left parts in the register M. * /
X:=XandY;Y :=SL(2"-1)X;
/* For all the groups we save their right parts in the register Y. */
X:=YorM.

It is not difficult to understand that the orthogonal machine simulates
the operations MASK1(Y, k) and SHUFFLE(X, k) in the same O(log m) time.

Now, let us explain the algorithm for simulating the operation MIR(X)
of reversing the contents of the register X. First we perform the left cyclic
shift by using the statement X := CL(2"~!)X. Then, we execute the opera-
tion SHUFFLE(X,2’) n — 1 times for j = n—1,..., 1. Since-the orthogonal
machine simulates this operation in O(log m) time, it will simulate the op-
eration MIR(X) in O(log? m) time.

Remark 2. One can simulate the statement Y := MIR(X) by means of the
following simple algorithm which requires O(m) time. At first we set all the
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components of the register ¥ to 0. Then we perform m times a loop with
respect to the parameter ¢ which includes the following steps:

e to create a register (mask) consisting of components 0 except its first
component;

e to perform the cyclic shift to the right by one bit position of the
contents of the register X and to write down the shift result into the
register X;

e to mask the first component of the register X being the current com-
ponent for reversing the initial register;

e to add to the register Y the position of the selected component after
its shift to the right by-i — 1 bit positions.

Finally, consider the following simple algorithm for simulating the state-
ment k := NUMB(Y') on the orthogonal machine.

k=0, M:=Y;
/* In the register M there is a copy of the register Y. */
while SOME(M) do
k:=k+1; X :=L(M);
X:=nonX; M :=Mand X;
od.

Here, the value of k is increased when the left component 1 is deleted
from M. This algorithm requires O(m) time since it is essential to analyze
all the components of the register Y.

Remark 3. Correctness of the algorithm for simulating NUMB(Y) is veri-
fied by induction on the number of components 1 in the slice Y. Correctness
of other algorithms is checked by induction on n.

Claim 2. Let a STAR-machine run T'(m) steps, where the input is of the
length m. Then the orthogonal machine simulates the STAR-machine run
in O(mT(m)) time.

Claim 3. Let a STAR-machine run T (m) steps and do not use the operation
NUMB (Y ). Then the orthogonal machine simulates the STAR-machine run
in O(T(m) log? m) time. |

In [18], Pratt and Stockmeyer have defined a class of vector machines
for which P = NP, that is, the sets accepted in polynomial time by a
non-deterministic vector machine can be accepted in polynomial time by a
deterministic vector machine. In [10], Sykora and Otrubova have proved
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that vector machines and orthogonal machines are from the same machine
class.

From Claims 1 and 3 we obtain the following

Corollary. Let T(m) > logm. Then the STAR-machine belongs to the
class of vector machines, if in the STAR-machine the operation NUMB(Y')
is forbidden. )

5. Conclusions

In this paper we have compared the run of two models. We have shown
that the STAR-machine simulates the orthogonal machine run in constant
time, while the orthogonal machine simulates the STAR-machine run in time
which is proportional to the number of processing elements. However, if the
use of the operation NUMB(Y) is forbidden, the STAR-machine simulates
the orthogonal machine run in O(T(m) log? m) time. Since for T'(m) > logm
the orthogonal machine belongs to the class of vector machines, we have
obtained a condition of pertaining the STAR-machine to this class. '

From analyzing different associative algorithms written in the language
STAR we come to the following conclusions:

o the operations FND(Y'), STEP(Y) and Y (¢) are very convenient and a
lot of STAR procedures employ them,;

o if the operation NUMB(Y) is forbidden, one can easily write down a
procedure which returns the result of this operation;

e along with the operations FND(Y') and STEP(Y') it is useful to have
at hand the operations for defining the position number of the last
component 1 in the slice Y and for replacing this component with 0.

Note that in the latter conclusion we have an analogy with the left and
the right operations in the orthogonal machine. Such basic gperations can
be applied, for example, for representing Falkoff’s algorithm for finding the
nearest lower bound or the least upper bound on associative parallel pro-
Cessors.
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