Symbolic verification method for definite iterations over tuples of data structures

V. A. Nepomniaschy

The symbolic method for verifying definite iterations over hierarchical data structures [12] is extended to allow tuples of data structures and exit from the iteration body under a condition. Transformations of these generalized iterations to the standard ones are proposed and justified. Useful properties of the transformations are given. A technique for generating verification conditions and their proving, including induction principles, is described. For iterations over files, a problem-oriented proving technique is presented too. Examples which illustrate application of the symbolic method to file program verification are considered.

1. Introduction

The axiomatic and functional styles of program verification include the following stages: program annotation through the construction of pre-, post-conditions and loop invariants or functions expressing the loop effect; deriving verification conditions with the help of proof rules and proving them [5, 7]. In both approaches, the loop annotation remains a difficult problem especially for programs over complex data structures [8, 13].

A natural method to attack the problem is to use simple loops [1], i.e., definite iterations similar to for-loops. Although the reduction of for-loops to while-loops is often used for verification, attempts to use the specific character of for-loops in the framework of the axiomatic approach should be noted [2–4, 6]. In the framework of the functional approach, a general form of a definite iteration as an iteration over all elements of a structure, such as a list, set, file, array, tree, has been proposed in [14].

A symbolic method of verifying for-loops, that had the statement of assignment to array elements as the loop body, has been proposed in [9, 10]. This method is based on inserting a replacement operation into the annotation language. The replacement operation represents the loop effect in a symbolic form and allows us to formulate a proof rule for these loops without invariants. Using the proof rule, verification conditions including the replacement operation are generated. To prove the verification conditions, a special technique which uses theorems about properties of the replacement operation is developed. In [11], we have extended the symbolic method to the

*Supported by the Russian Foundation for Basic Research under Grant 00-01-00909.
definite iteration over data structures without restrictions on the loop bodies. The symbolic method has been developed for the definite iteration over hierarchical data structures in [12]. The symbolic method is more appropriate for so-called flat loops [1] which have no embedded loops. Moreover, definite iterations from [14] do not accept exit from the iteration body. This raises the problem how to extend the area of application of the symbolic method. One approach to tackling this problem is extending the notion of flat loops and accepting exit from the loop body under a condition.

The purpose of this paper is to introduce a new statement, namely, a definite iteration over tuples of data structures, which accepts exit from the iteration body, and to extend the symbolic method to the statement. The definite iteration over hierarchical data structures [12] is described in Section 2. In Section 3, the iteration over tuples of data structures is defined, and theorems about its reduction to the iteration over hierarchical data structures and about properties of these structures are proved. A reduction of an iteration over tuples of data structures with the exit statement to the iteration described in Section 2 is justified in Section 4. A replacement operation and its properties are given in Section 5, where a technique for deriving and proving verification conditions is considered. Definite iterations over files are described as a case of study in Section 6 along with recursive procedures for computing the replacement operation. Verification of two file programs which perform merging (with cleaning) and intersection of ordered files, is exemplified in Section 7. Results and prospects of the symbolic verification method are discussed in Section 8.

2. Iteration over hierarchical data structures

We introduce the following notation. Let \(\{s_1, \ldots, s_n\} \) be a multiset consisting of elements \(s_1, \ldots, s_n \), \(U_1 - U_2 \) be the difference between multisets \(U_1 \) and \(U_2 \), \(U_1 \cup U_2 \) be the union of multisets, and \(|U| \) be the power of a finite multiset \(U \). Let \([v_1, \ldots, v_m]\) denote a vector consisting of elements \(v_i \) (\(1 \leq i \leq m \)). A concatenation operation \(\text{con}(V_1, V_2) \) is defined in the usual fashion for vectors \(V_1 \) and \(V_2 \).

Let us remind the notion of a data structure [14]. Let \(\text{memb}(S) \) be a finite multiset of elements of a structure \(S \), \(\text{empty}(S) \) be a predicate “\(\text{memb}(S) \) is empty”, \(\text{choo}(S) \) be a function which returns an element of \(\text{memb}(S) \), \(\text{rest}(S) \) be a function which returns a structure \(S' \) such that \(\text{memb}(S') = \text{memb}(S) - \{\text{choo}(S)\} \). The functions \(\text{choo}(S) \) and \(\text{rest}(S) \) will be undefined if and only if \(\text{empty}(S) \). This definition, abstracting from the way of determination of the functions \(\text{choo}(S) \) and \(\text{rest}(S) \), is quite flexible.
For example, if a tree is defined as a data structure, a tree traversal method is fixed. So, such different methods result in different data structures.

Let us remind the definition of useful functions related to the structure S [11]. Let $vec(S)$ denote a vector $[s_1, \ldots, s_n]$ such that $s_i = \text{choo}(\text{rest}^{i-1}(S))$ ($i = 1, \ldots, n$) in the case of $\neg \text{empty}(S)$ and $\text{memb}(S) = \{s_1, \ldots, s_n\}$. The vector $vec(S)$ is empty if $\text{empty}(S)$. Structures S_1 and S_2 are called equivalent when $vec(S_1) = vec(S_2)$. The functions $\text{head}(S)$ and $\text{last}(S)$ will be undefined in the case of $\text{empty}(S)$. A function $\text{head}(S)$ returns a structure such that $vec(\text{head}(S)) = [s_1, \ldots, s_{n-1}]$, if $vec(S) = [s_1, \ldots, s_n]$ and $n \geq 2$. If $n = 1$, then $\text{empty}(\text{head}(S))$. Let $\text{last}(S)$ be a partial function such that $\text{last}(S) = s_n$, if $vec(S) = [s_1, \ldots, s_n]$. Let $\text{str}(s)$ denote a structure S that contains the only element s. A concatenation operation $\text{con}(S_1, S_2)$ is defined in [11] so that $\text{con}(vec(S_1), vec(S_2)) = vec(\text{con}(S_1, S_2))$. Let $\text{con}(s, S) = \text{con}(\text{str}(s), S)$ and $\text{con}(S, s) = \text{con}(S, \text{str}(s))$. In the case of $\neg \text{empty}(S)$, $\text{con}(\text{choo}(S), \text{rest}(S)) = \text{con}(\text{head}(S), \text{last}(S)) = S$ [11]. Moreover, the property $\text{head}(\text{rest}(S)) = \text{rest}(\text{head}(S))$ provided $\neg \text{empty}(\text{rest}(S))$ results from [11].

Our aim is to introduce parameters in the definition of the structure S. To this end, we determine rules for construction of a hierarchical structure S from the given structures S_1, \ldots, S_m. We will use $T(S_1, \ldots, S_m)$ to denote a term constructed from data structures S_i ($i = 1, \ldots, m$) with the help of the functions choo, last, rest, head, str, con. For a term T which represents a data structure, we denote the function $|\text{memb}(T)|$ by $\text{lng}(T)$. The function can be calculated by the following rules:

\[
\begin{align*}
\text{lng}(S_i) & = |\text{memb}(S_i)|, \\
\text{lng}(\text{con}(T_1, T_2)) & = \text{lng}(T_1) + \text{lng}(T_2), \\
\text{lng}(\text{rest}(T)) & = \text{lng}(\text{head}(T)) = \text{lng}(T) - 1, \\
\text{lng}(\text{str}(s)) & = 1.
\end{align*}
\]

Let a hierarchical data structure $S = \text{STR}(S_1, \ldots, S_m)$ be defined by the functions $\text{choo}(S)$ and $\text{rest}(S)$ constructed with the help of conditional $\text{if} - \text{then} - \text{else}$, superposition and Boolean operations from the following components:

- terms not containing S_1, \ldots, S_m;
- the predicate $\text{empty}(S_i)$ and the functions $\text{choo}(S_i)$, $\text{rest}(S_i)$, $\text{head}(S_i)$ ($i = 1, \ldots, m$);
- terms of the form $\text{STR}(T_1, \ldots, T_m)$ such that

\[
\sum_{i=1}^{m} \text{lng}(T_i) < \sum_{i=1}^{m} \text{lng}(S_i);
\]
an undefined element ω.

Note that the undefined value ω of the functions $\text{choo}(S)$ and $\text{rest}(S)$ means $\text{empty}(S)$. This definition of hierarchical structures allows us to apply more conveniently the following induction principle 1 to proving the properties of the structures.

Let $\text{prop}(\text{STR}(T_1, \ldots , T_m))$ denote a property expressed by a first-order logic formula only with free variables S_1, \ldots , S_m, where terms $T_i(S_1, \ldots , S_m)$ are defined in Section 2. The formula is constructed from the term $\text{STR}(T_1, \ldots , T_m)$, functional symbols, variables and constants by means of Boolean operations and first-order quantifiers. The functional symbols include memb, empty, vec, choo, rest, last, head, str, con.

Induction principle 1. The property $\text{prop}(\text{STR}(S_1, \ldots , S_m))$ holds for all structures S_1, \ldots , S_m, if there exists an integer $c \geq 0$ such that the following conditions hold:

1. for all structures S_1, \ldots , S_m such that $\sum_{i=1}^{m} \text{lng}(S_i) \leq c$, the property $\text{prop}(\text{STR}(S_1, \ldots , S_m))$ holds;

2. for all structures S_1, \ldots , S_m such that $\sum_{i=1}^{m} \text{lng}(S_i) > c$, there exist terms T_1, \ldots , T_m for which

$$\sum_{i=1}^{m} \text{lng}(T_i) < \sum_{i=1}^{m} \text{lng}(S_i)$$

and

$$\text{prop}(\text{STR}(T_1, \ldots , T_m)) \rightarrow \text{prop}(\text{STR}(S_1, \ldots , S_m)).$$

Let us consider a definite iteration of the form

$$\text{for } x \text { in } S \text { do } v := \text{body}(v, x) \text { end,}$$

(1)

where S is a data structure that may be hierarchical, x is a variable called a loop parameter, v is a data vector of the loop body ($x \not\in v$) and the iteration body $v := \text{body}(v, x)$ does not change the structure S. The result of this iteration is an initial value v_0 of the vector v if $\text{empty}(S)$. Let $\neg \text{empty}(S)$ and $\text{vec}(S) = [s_1, \ldots , s_n]$. Then the iteration body iterates sequentially for x defined as s_1, \ldots , s_n.

3. **Iterations over tuples of data structures**

To define a definite iteration over a tuple of data structures S_1, \ldots , S_m (possibly hierarchical), we will use a function $\text{sel}(x_1, \ldots , x_m)$ for selection of one structure from the structures S_1, \ldots , S_m, where $x_i \in \text{memb}(S_i) \cup \{\omega\}$.
The function \(\text{sel}(x_1, \ldots, x_m) \) returns an integer \(j \) (\(1 \leq j \leq m \)) such that \(x_j \neq \omega \), and also \(\text{sel}(\omega, \ldots, \omega) \) is undefined. In the case of \(x_j \neq \omega \) and \(x_i = \omega \) for all \(i \neq j \) \((i = 1, \ldots, m)\), \(\text{sel}(x_1, \ldots, x_m) = j \) and the definition of the function \(\text{sel} \) can be omitted.

Let us consider the iteration over the tuple of structures \(S_1, \ldots, S_m \) with the selection function \(\text{sel}(x_1, \ldots, x_m) = t \) of the form

\[
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } v := \text{body}(v, x_t, t) \text{ end, (2)}
\]

where \(v \) is a data vector \((x_i \notin v \text{ for all } i = 1, \ldots, m)\) and the iteration body does not change the structures \(S_1, \ldots, S_m \). If \(\text{empty}(S_i) \) for each \(i = (1, \ldots, m) \), then the iteration result is an initial value \(v_0 \) of the vector \(v \). Otherwise, we assume \(t = \text{sel}(x_1, \ldots, x_m) \), where \(x_i = \text{choo}(S_i) \) for each \(i = 1, \ldots, m \), and also \(\text{choo}(S_i) = \omega \) provided \(\text{empty}(S_i) \). A new value \(v_1 \) of the vector \(v \) is defined so that \(v_1 = \text{body}(v_0, x_t, t) \). The structure \(S_t \) is replaced by the structure \(\text{rest}(S_t) \), and the other structures \(S_i (i \neq t) \) are not changed. The process is applied to \(v_1 \) and the resulted structures until all structures become empty. The resulted value \(v_k \ (k = \sum_{i=1}^{m} | \text{memb}(S_i) |) \) of the vector \(v \) is assumed to be the result of iteration (2).

Here the purpose is to reduce iteration (2) to iteration (1) with the help of hierarchical structures. We introduce the following notation in order to define a hierarchical structure

\[S = \text{STR}(S_1, \ldots, S_m) \]

from the structures \(S_1, \ldots, S_m \) and the function \(\text{sel}(x_1, \ldots, x_m) \). Let

\[
\text{EMPTY} = (\text{empty}(S_1) \land \ldots \land \text{empty}(S_m)), \\
t_1 = \text{sel}(\text{choo}(S_1), \ldots, \text{choo}(S_m)), \\
\text{REST} = \text{STR}(S_1, \ldots, \text{rest}(S_1), \ldots, S_m),
\]

provided \(\neg \text{EMPTY} \). Then

\[(\text{choo}(S), \text{rest}(S)) = \text{if } \text{EMPTY} \text{ then } (\omega, \omega) \text{ else } ((\text{choo}(S_1), t_1), \text{REST}). \]

Notice that this definition is consistent with the definition of hierarchical structures from Section 2, since the quantifiers bounded by the set \(\{1, \ldots, m\} \) can be expressed by applying conjunction or disjunction \(m \) times, and \(\text{empty}(S) \equiv (\text{choo}(S) = \omega) \).

Theorem 1. Iteration (2), where \(t = \text{sel}(x_1, \ldots, x_m) \), is equivalent to the iteration

\[
\text{for } (x, \tau) \text{ in } S \text{ do } v := \text{body}(v, x, \tau) \text{ end}, \quad (3)
\]

where the hierarchical structure \(S = \text{STR}(S_1, \ldots, S_m) \) is defined by means of the function \(\text{sel}(x_1, \ldots, x_m) \).
Proof. We will use induction on $\sum_{i=1}^{m} | \text{memb}(S_i) | = k$. If $k = 0$, then $\text{empty}(S_i)$ for each $i = 1, \ldots, m$, and, therefore, $\text{empty}(S)$. Let us suppose $k > 0$ and iterations (2) and (3) are equivalent if $\sum_{i=1}^{m} | \text{memb}(S_i) | = k - 1$. It is evident that iteration (2) is equivalent to the program

$$v := \text{body}(v, \text{choo}(S_{t1}), t1); \text{ for } x_1 \text{ in } S_1, \ldots, x_{t1} \text{ in } \text{rest}(S_{t1}), \ldots, x_m \text{ in } S_m \text{ do } v := \text{body}(v, x, t) \text{ end.}$$

By the inductive hypothesis, program (4) is equivalent to the program

$$v := \text{body}(v, \text{choo}(S_{t1}), t1); \text{ for } (x, \tau) \text{ in } \text{REST do } v := \text{body}(v, x, \tau) \text{ end.}$$

It remains to notice that program (5) is equivalent to iteration (3) according to

$$\text{rest}(S) = \text{REST},$$
$$\text{choo}(S) = (\text{choo}(S_{t1}), t1),$$
$$S = \text{con}(\text{choo}(S), \text{rest}(S))$$
provided $k > 0$.

We introduce the following notions in order to formulate useful properties of the hierarchical structure $S = \text{STR}(S_1, \ldots, S_m)$. We will use $\text{memb}_1(S)$ to denote the multiset of the first components of elements of $\text{memb}(S)$. Let $\text{vec}_i(S)$ be the subsequence of $\text{vec}(S)$ which consists of all elements (r, i) for a suitable r, and $\text{vec}_{11}(S)$ be the sequence of the first components of elements of $\text{vec}_i(S)$ ($i = 1, \ldots, m$).

Theorem 2.

2.1. $\text{memb}_1(S) = \bigcup_{i=1}^{m} \text{memb}(S_i)$.

2.2. $\text{vec}_{11}(S) = \text{vec}(S_i)$ for each $i = 1, \ldots, m$.

Proof. We will use induction on $\sum_{i=1}^{m} | \text{memb}(S_i) | = k$. If $k = 0$, then $\text{empty}(S)$, and $\text{empty}(S_i)$ for each $i = 1, \ldots, m$, and Theorem 2 holds. Let us suppose $k > 0$ and Theorem 2 holds for $\sum_{i=1}^{m} | \text{memb}(S_i) | = k - 1$.

2.1. By the induction hypothesis,

$$\text{memb}_1(S) = \text{memb}_1(\text{con}(\text{choo}(S), \text{rest}(S)))$$
$$= \{\text{choo}(S_{t1})\} \cup \text{memb}_1(\text{rest}(S))$$
$$= \{\text{choo}(S_{t1})\} \cup \bigcup_{i=1}^{m-1} \text{memb}(S_i) \cup \text{memb}(\text{rest}(S_{t1})) \cup \bigcup_{i=t1+1}^{m} \text{memb}(S_i)$$
$$= \bigcup_{i=1}^{m} \text{memb}(S_i)$$
according to $\text{memb}(S_{t1}) = \{\text{choo}(S_{t1})\} \cup \text{memb}(\text{rest}(S_{t1}))$.

2.2. By the induction hypothesis,
\[vec_{t1}(S) = vec_{t1}(con(choo(S), rest(S))) \\
= con(vec_{t1}(str(choo(S))), vec_{t1}(rest(S))) \\
= \text{if } i = t1 \text{ then } con(choo(S_1), vec(rest(S_i))) \\
\text{else } vec(S_i) = vec(S_i) \]

according to \(vec_{t1}(str(choo(S))) \) is the empty sequence and \(vec_{t1}(rest(S)) = vec(S_i) \) when \(i \neq t1 \).

In the case of \(S = STR(S_1, S_2) \), \(head(S) \) and \(last(S) \) can be expressed simply in terms of \(head(S_i) \) and \(last(S_i) \) \((i = 1, 2) \).

Theorem 3. If \(S = STR(S_1, S_2) \) and \(\neg empty(S) \), then
\(\neg empty(S_1), \) \(head(S) = STR(head(S_1), S_2) \) and \(last(S) = (last(S_1), 1) \) or
\(\neg empty(S_2), \) \(head(S) = STR(S_1, head(S_2)) \) and \(last(S) = (last(S_2), 2). \)

Proof. For definiteness, we suppose \(t1 = 1 \). We will use induction on \(| memb(S) | = k \). The induction basis is the case \(k = 1 \) when \(\neg empty(S_1), empty(head(S_1)), empty(S_2), empty(head(S)), last(S) = (last(S_1), 1) \), and Theorem 3 holds. In the case of \(k > 1 \),
\[head(S) = head(con(choo(S), rest(S))) \]
\[= con(choo(S), head(rest(S))) \]
\[= con(choo(S), head(STR(rest(S_1), S_2))) \]

and \(last(S) = last(rest(S)) \). By the induction hypothesis for the structure \(rest(S) = STR(rest(S_1), S_2) \), two cases are possible.

1. \(\neg empty(rest(S_1)) \) and
\[head(STR(rest(S_1), S_2)) = STR(head(rest(S_1)), S_2). \]

Let us denote the structure \(STR(head(S_1), S_2) \) by \(HS \). Then,
\[head(S) = con(choo(S), STR(head(rest(S_1)), S_2)), \]
\[HS = con(choo(HS), rest(HS)) \]
\[= con(choo(HS), STR(rest(head(S_1))), S_2)). \]

From \(\neg empty(head(S)), choo(HS) = choo(S) \) and
\[rest(head(S_1)) = head(rest(S_1)), \]
it follows that \(head(S) = HS \). Moreover,
\(last(rest(S)) = (last(rest(S_1)), 1) = (last(S_1), 1). \)
2. \(-\text{empty}(S_2) \) and
\[\text{head}(\text{STR}(\text{rest}(S_1), S_2)) = \text{STR}(\text{rest}(S_1), \text{head}(S_2)). \]

Let us denote the structure \(\text{STR}(S_1, \text{head}(S_2)) \) by \(SH \). Then,
\[\text{choo}(S_2) = \text{choo}(\text{head}(S_2)) \]
provided

\[-\text{empty}(\text{head}(S_2)), \]
\[\text{head}(S) = \text{con}(\text{choo}(S), \text{STR}(\text{rest}(S_1), \text{head}(S_2))), \]
\[\text{SH} = \text{con}(\text{choo}(\text{SH}), \text{rest}(\text{SH})), \]
\[\text{rest}(\text{SH}) = \text{STR}(\text{rest}(S_1), \text{head}(S_2)). \]

From \(\text{choo}(S) = \text{choo}(\text{SH}) = (\text{choo}(S_1), 1) \) it follows that \(\text{head}(S) = \text{SH} \).
Moreover, \(\text{last}(\text{rest}(S)) = \text{last}(S_2) \).

The following example shows that Theorem 3 does not hold for the structure \(S = \text{STR}(S_1, S_2, S_3) \).
Let \(\text{memb}(S_i) = \{a_i\} (i = 1, 2, 3) \), where \(a_1 < a_2 < a_3 \).
We define the function \(\text{sel}(x_1, \ldots, x_m) \) as
\[
\text{if } x_1 \neq \omega \land x_2 \neq \omega \land x_3 \neq \omega \text{ then } 1 \\
\text{else if } x_i = \omega \land x_j \neq \omega \land x_l \neq \omega \text{ then } \max(j, l),
\]
where \(i, j, l \) are different. Then
\[
\text{vec}(S) = [(a_1, 1)(a_3, 3)(a_2, 2)], \\
\text{vec(\text{head}(S))} = [(a_1, 1)(a_3, 3)], \\
\text{last}(S) = (a_2, 2) = (\text{last}(S_2), 2). \\
\]
Therefore, \(\text{vec}(\text{STR}(S_1, \text{head}(S_2), S_3)) = [(a_3, 3)(a_1, 1)] \neq \text{vec(\text{head}(S))} \).

Let us consider a special case when the iteration body does not depend on \(t \), i.e., the iteration has the form
\[
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } v := \text{body}(v, x_t) \text{ end.} \quad (2')
\]
In this case, the definition of \(\text{STR}(S_1, \ldots, S_m) \) and Theorems 1–3 can be simplified.
Let \((\text{choo}(S'), \text{rest}(S')) = \text{if } \text{EMPTY} \text{ then } (\omega, \omega) \text{ else } (\text{choo}(S_{i1}), \text{REST}). \)

Theorem 1'. Iteration \((2') \), where \(t = \text{sel}(x_1, \ldots, x_m) \), is equivalent to the iteration
\[
\text{for } x \text{ in } S' \text{ do } v := \text{body}(v, x) \text{ end,} \quad (3')
\]
where the hierarchical structure \(S' = \text{STR}(S_1, \ldots, S_m) \) is defined by means of the function \(\text{sel}(x_1, \ldots, x_m) \).
To formulate a theorem similar to Theorem 2.2, we introduce the following notion. A relation \(a < b \) is satisfiable for a vector \([v_1, \ldots, v_n]\), if there exist integers \(i, j \) such that \(1 \leq i < j \leq n, a = v_i \) and \(b = v_j \).

Theorem 2’.

2.1. \(\text{memb}(S') = \bigcup_{i=1}^{m} \text{memb}(S_i) \).

2.2. If there exists \(i \) (1 ≤ \(i \) ≤ \(m \)) such that a relation \(a < b \) is satisfiable for the vector \(\text{vec}(S_i) \), then the relation \(a < b \) is satisfiable for the vector \(\text{vec}(S') \).

Theorem 3’. If \(S' = \text{STR}(S_1, S_2) \) and \(\neg\text{empty}(S') \), then \(\neg\text{empty}(S_1) \), \(\text{head}(S') = \text{STR}(\text{head}(S_1), S_2) \) and \(\text{last}(S') = \text{last}(S_1) \), or \(\neg\text{empty}(S_2) \), \(\text{head}(S') = \text{STR}(S_1, \text{head}(S_2)) \) and \(\text{last}(S') = \text{last}(S_2) \).

It should be noted that the proofs of Theorems 1’, 2.1, 3’ are similar to the proofs of Theorems 1, 2.1, 3, respectively. It remains to prove Theorem 2’.2. If the relation \(a < b \) is satisfiable for the vector \(\text{vec}(S_i) \), then there exists an integer \(l \) (\(l \geq 0 \)) such that \(a = \text{choo}(\text{rest}^l(S_i)), b \in \text{memb}(\text{rest}^{l+1}(S_i)) \). By Theorem 2’.1, \(\text{memb}(S_i) \subseteq \text{memb}(S') \). From this it follows that there exist structures \(\bar{S}_j \) (\(j = 1, \ldots, m \)) and an integer \(r \) (\(r \geq 0 \)) such that

\[
\text{rest}^r(S') = \text{STR}(\bar{S}_1, \ldots, \bar{S}_m), \\
a = \text{choo}(\text{rest}^r(S')), \\
i = \text{sel}(\text{choo}(\bar{S}_1), \ldots, \text{choo}(\bar{S}_m)), \\
\bar{S}_i = \text{rest}^l(S_i).
\]

By Theorem 2’.1, \(b \in \text{memb}(\text{rest}^{l+1}(S_i)) \subseteq \text{memb}(\text{rest}^{r+1}(S')) \). From this it follows that the relation \(a < b \) is satisfiable for the vector \(\text{vec}(S') \). \(\square \)

4. **Iterations over tuples of data structures with exit statement**

Let us consider the following definite iteration over a tuple of data structures with a body including the statement of termination of the iteration EXIT:

\[
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } v := \text{body}_1(v, x_t, t); \text{ if } \text{cond}(x_1, \ldots, x_m) \text{ then } \text{EXIT}; v := \text{body}_2(v, x_1, t) \text{ end}, \tag{6}
\]

where \(t = \text{sel}(x_1, \ldots, x_m), x_t \notin v \) (\(i = 1, \ldots, m \)), the condition \(\text{cond}(x_1, \ldots, x_m) \) \((x_i \in \text{memb}(S_i) \cup \{\omega\}) \) does not depend on variables from \(v \), and the iteration body does not change the structures \(S_j \) (\(j = 1, \ldots, m \)).
We will use b_1 to denote $\text{cond}(\text{choo}(S_1), \ldots, \text{choo}(S_m))$, along with the notions EMPTY, t_1, REST from Section 3. Let us describe operational semantics of iteration (6). If EMPTY, then the result of iteration (6) is an initial value v_0 of the vector v. Otherwise, the result of iteration (6) is $v_1 = \text{body}_1(v_0, \text{choo}(S_{t_1}), t_1)$, when b_1 is true. If b_1 is false, then this process is continued with $v = v_2 = \text{body}_2(v_1, \text{choo}(S_{t_1}), t_1)$ and the structure $\text{rest}(S_{t_1})$ instead of S_{t_1}, when the other structures S_i ($i \neq t_1$) are not changed. A value v_1 resulting from this process is the result of iteration (6).

Here the purpose is to reduce iteration (6) to iteration (1) with the help of hierarchical structures. Let us define a hierarchical structure $T = \text{STR}(S_1, \ldots, S_m)$ using the selection function $\text{sel}(x_1, \ldots, x_m)$ and the condition $\text{cond}(x_1, \ldots, x_m)$. The structure elements are triples (s, i, c), where $s \in \text{memb}(S_j)$ ($1 \leq j \leq m$), $1 \leq i \leq m$, $c \in \{\text{true, false}\}$. Let

$$(\text{choo}(T), \text{rest}(T)) = \begin{cases} (\omega, \omega) & \text{if EMPLY then } (\omega, \omega) \text{ else } \\ (\text{choo}(S_{t_1}), t_1, \text{true}), \omega & \text{if } b_1 \text{ then } (\text{choo}(S_{t_1}), t_1, \text{false}), \omega \\ (\text{choo}(S_{t_1}), t_1, \text{false}), \text{REST} & \text{else} \end{cases}.$$

The element $\text{last}(T)$ can be represented in the form $(\text{last}_1(T), \text{last}_2(T), \text{last}_3(T))$.

Theorem 4. Iteration (6), where $t = \text{sel}(x_1, \ldots, x_m)$, is equivalent to the program

$$\begin{array}{l}
\text{if } \neg \text{empty}(T) \text{ then begin for } (x, \tau, \text{false}) \text{ in } \text{head}(T) \text{ do } v := \text{body}_1(v, x, \tau); v := \text{body}_2(v, x, \tau) \text{ end;} v := \text{body}_1(v, \text{last}_1(T), \text{last}_2(T)); \\
\text{if } \neg \text{last}_3(T) \text{ then } v := \text{body}_2(v, \text{last}_1(T), \text{last}_2(T)) \text{ end,}
\end{array}$$

where the hierarchical structure $T = \text{STR}(S_1, \ldots, S_m)$ is defined by means of the function $\text{sel}(x_1, \ldots, x_m)$ and the condition $\text{cond}(x_1, \ldots, x_m)$.

Proof. We will use induction on $k = \sum_{i=1}^{m} | \text{memb}(S_i) |$. If $k = 0$ then $\text{empty}(S_i)$ for each $i = 1, \ldots, m$, and, therefore, $\text{empty}(T)$ and Theorem 4 holds. Let us suppose $k > 0$ and Theorem 4 holds for $k-1$. Hence $\neg \text{empty}(T)$.

Two cases are possible.

1. $b_1 = \text{true}$. Then iteration (6) is equivalent to the statement $v := \text{body}_1(v, \text{choo}(S_{t_1}), t_1)$. The structure T consists of one element $\text{last}(T) = (\text{choo}(S_{t_1}), t_1, \text{true})$, and $\text{empty}(\text{head}(T))$. Therefore, program (7) is equivalent to the statement $v := \text{body}_1(v, \text{choo}(S_{t_1}), t_1)$.

2. $b_1 = \text{false}$. Then iteration (6) is equivalent to the program

$$\begin{array}{l}
v := \text{body}_1(v, \text{choo}(S_{t_1}), t_1); v := \text{body}_2(v, \text{choo}(S_{t_1}), t_1); \\
\text{for } x_1 \text{ in } S_1, \ldots, x_{t_1} \text{ in } \text{rest}(S_{t_1}), \ldots, x_m \text{ in } S_m \text{ do } v := \text{body}_1(v, x_i, t) \\
\text{if } \text{cond}(x_1, \ldots, x_m) \text{ then } \text{EXIT}; v := \text{body}_2(v, x_i, t) \text{ end.}
\end{array}$$
Two cases are possible.

2.1. $k = 1$. Then $\text{empty}(\text{rest}(S_{1}))$ and $\text{empty}(S_{i})$ for each $i \neq t1$ ($i = 1, \ldots, m$). Therefore, program (8) is equivalent to the program

$$v := \text{body}_1(v, \text{choo}(S_{1}), t1); \ v := \text{body}_2(v, \text{choo}(S_{1}), t1).$$

(9)

In this case the structure T consists of one element $\text{last}(T) = (\text{choo}(S_{1}), t1, false)$, and $\text{empty}(\text{head}(T))$. Hence, program (7) is equivalent to program (9).

2.2. $k > 1$. Then $\neg \text{empty}(\text{rest}(T))$. By the induction hypothesis, program (8) is equivalent to the program

$$v := \text{body}_1(v, \text{choo}(S_{1}), t1); \ v := \text{body}_2(v, \text{choo}(S_{1}), t1);$$

(10)

$$\text{for } (x, \tau, false) \text{ in } \text{head}(\text{rest}(T)) \text{ do } v := \text{body}_1(v, x, \tau);$$

$$v := \text{body}_2(v, x, \tau) \text{ end}; \ v := \text{body}_1(v, \text{last}_1(\text{rest}(T)), \text{last}_2(\text{rest}(T)));$$

$$\text{if } \neg \text{last}_3(\text{rest}(T)) \text{ then } v := \text{body}_2(v, \text{last}_1(\text{rest}(T)), \text{last}_2(\text{rest}(T))).$$

From

$$\text{last}(T) = \text{last}(\text{rest}(T)),$$

$$\text{head}(T) = \text{con}(\text{choo}(T), \text{head}(\text{rest}(T))),$$

$$\text{choo}(T) = \text{choo}(\text{head}(T)) = (\text{choo}(S_{1}), t1, false)$$

it follows that program (10) is equivalent to program (7).

Theorem 4 can be simplified when the body of iteration (6) begins or ends with the exit statement, i.e., $\text{body}_i(v, x_{i}, t) = v$ for $i = 1$ or $i = 2$. At first, we consider the case $i = 2$. In the case, elements of a new structure R come from corresponding elements of the structure T by elimination of the third component. Let

$$(\text{choo}(R), \text{rest}(R)) = \text{if } \text{EMPTY} \text{ then } (\omega, \omega) \text{ else } ((\text{choo}(S_{1}), t1),$$

$$\text{if } b1 \text{ then } \omega \text{ else } \text{REST}).$$

Corollary 1. The iteration

$$\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } v := \text{body}(v, x_t, t); \text{ if } \text{cond}(x_1, \ldots, x_m)$$

then $EXIT$ end,

(11)

where $t = \text{sel}(x_1, \ldots, x_m)$, is equivalent to the iteration

$$\text{for } (x, \tau) \text{ in } R \text{ do } v := \text{body}(v, x, \tau) \text{ end},$$

(12)

where the hierarchical structure $R = \text{STR}(S_1, \ldots, S_m)$ is defined by means of the function $\text{sel}(x_1, \ldots, x_m)$ and the condition $\text{cond}(x_1, \ldots, x_m)$.

Proof. By Theorem 4, iteration (11) is equivalent to the program
\[
\text{if } \neg \text{empty}(R) \text{ then begin for } (x, \tau) \text{ in head}(R) \text{ do } v := \text{body}(v, x, \tau) \text{ end; } v := \text{body}(v, \text{last}_1(R), \text{last}_2(R)) \text{ end,}
\]
which is equivalent to iteration (12).

Let us consider the case when the iteration body begins with the exit statement. We will use \(\text{pr}(T)\) to denote a structure consisting of elements which are the projections of corresponding elements of the structure \(T\) on the first and second components. Then \(R = \text{pr}(T)\). Let us define the following hierarchical structure \(K = \text{STR}(S_1, \ldots, S_m)\) as
\[
(\text{choo}(K), \text{rest}(K)) = \begin{cases} \text{EMPTY} \lor b_1 \text{ then } (\omega, \omega) & \text{else } ((\text{choo}(S_{i1}), t1), \text{REST}) \end{cases}
\]

Claim 1. \(K = \text{if } \text{empty}(T) \lor \neg \text{last}_3(T) \text{ then } \text{pr}(T) \text{ else } \text{pr(head}(T))\).

Proof. We will use induction on \(|\text{memb}(T)| = l\). If \(l = 0\), then \(\text{empty}(T), \text{empty}(\text{pr}(T))\) and Claim 1 holds. Let us suppose \(l > 0\) and Claim 1 holds for \(l - 1\). Two cases are possible.

1. \(b_1 = true\). Then \(\text{empty}(K)\) and the structure \(T\) consists of the one element \((\text{choo}(S_{i1}), t1, \text{true})\). Therefore, \(\text{empty(head}(T)), \text{last}_3(T) = \text{true}\) and Claim 1 holds.

2. \(b_1 = false\). We will denote the structure \(\text{REST}\) from the definitions of \(T\) and \(K\) as \(\text{REST}_T\) and \(\text{REST}_K\), respectively. Then
\[
\text{choo}(T) = (\text{choo}(S_{i1}), t1, \text{false}), \quad \text{rest}(T) = \text{REST}_T, \\
\text{choo}(K) = \text{pr}(\text{choo}(T)), \quad \text{rest}(K) = \text{REST}_K.
\]

Two cases are possible.

2.1. \(\text{last}_3(T) = false\). Then \(\text{empty}(\text{rest}(T))\) or \(\text{last}_3(\text{rest}(T)) = false\). By the induction hypothesis, \(\text{rest}(K) = \text{REST}_K = \text{pr(REST}_T) = \text{pr(\text{rest}(T))}\). From this it follows that
\[
K = \text{con(choo}(K), \\
\text{rest}(K)) = \text{con(pr(choo}(T)), \\
\text{pr(\text{rest}(T))) = pr(T)}.
\]

2.2. \(\text{last}_3(T) = true\). Then \(-\text{empty}(\text{rest}(T))\) and \(\text{last}_3(\text{rest}(T)) = true\). By the induction hypothesis, \(\text{rest}(K) = \text{REST}_K = \text{pr(head(REST}_T)) = \text{pr(head(\text{rest}(T)))\). From this it follows that
Symbolic verification method for definite iterations

\[K = con(pr(choo(T)), \]
\[pr(head(rest(T)))) = pr(con(choo(T)), \]
\[head(rest(T))) = pr(head(T)). \]

Corollary 2. The iteration

\[
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do if } cond(x_1, \ldots, x_m) \text{ then } EXIT;
\]
\[v := body(v, x_1, t) \text{ end}, \]
(13)

where \(t = sel(x_1, \ldots, x_m) \), is equivalent to the iteration

\[
\text{for } (x, \tau) \text{ in } K \text{ do } v := body(v, x, \tau) \text{ end} \]
(14)

where the hierarchical structure \(K = STR(S_1, \ldots, S_m) \) is defined by means of the function \(sel(x_1, \ldots, x_m) \) and the condition \(cond(x_1, \ldots, x_m) \).

Proof. If \(\text{empty}(T) \), then \(\text{empty}(K) \) by Claim 1. It remains to apply Theorem 4. When \(\text{empty}(T) \), we consider two cases.

1. last3(\(T \)) = true. Then by Claim 1, \(K = pr(head(T)) \). From Theorem 4 it follows that iteration (13) is equivalent to iteration (14).

2. last3(\(T \)) = false. Then by Claim 1, \(K = pr(T) \). By Theorem 4, iteration (13) is equivalent to the program

\[
\text{for } (x, \tau) \text{ in } head(K) \text{ do } v := body(v, x, \tau) \text{ end;}
\]
\[v := body(v, last_1(K), last_2(K)) \]

which is equivalent to iteration (14). \(\square \)

In the case when the body of iteration (6) does not depend on \(t \), Theorem 4 and Corollaries 1, 2 can be simplified. Let us define hierarchical structures \(T', R', K' \) similar to the structures \(T, R, K \), respectively.

\[
(choo(T'), rest(T')) = \text{if } \text{EMPTY then } (\omega, \omega) \text{ else if } bl \text{ then }
\]
\[(choo(S_1), true), \omega) \text{ else } ((choo(S_1), false), REST), \]
\[
(choo(R'), rest(R')) = \text{if } \text{EMPTY then } (\omega, \omega) \text{ else } (choo(S_1), \]
\[\text{if } bl \text{ then } \omega \text{ else REST}, \]
\[(choo(K'), rest(K')) = \text{if } \text{EMPTY or } bl \text{ then } (\omega, \omega) \]
\[\text{else } (choo(S_1), REST). \]

Theorem 4'. The iteration

\[
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } v := body_1(v, x_1); \text{ if } cond(x_1, \ldots, x_m) \]
\[\text{then } EXIT; v := body_2(v, x_1) \text{ end}, \]

where \(t = sel(x_1, \ldots, x_m) \), is equivalent to the program

if \(\text{empty}(T') \) then begin for \((x, false) \text{ in } head(T') \) do
\[v := body_1(v, x); v := body_2(v, x) \text{ end; } v := body_1(v, last_1(T')); \]
if $\neg \text{last}_2(T')$ then $v := \text{body}_2(v, \text{last}_1(T'))$ end,

where the hierarchical structure $T' = \text{STR}(S_1, \ldots, S_m)$ is defined by means of the function $\text{sel}(x_1, \ldots, x_m)$ and the condition $\text{cond}(x_1, \ldots, x_m)$.

Corollary 1'. The iteration

\begin{align*}
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } & v := \text{body}(v, x_t); \\
\text{if } \text{cond}(x_1, \ldots, x_m) \text{ then } & \text{EXIT end},
\end{align*}

where $t = \text{sel}(x_1, \ldots, x_m)$, is equivalent to the iteration

\begin{align*}
\text{for } x \text{ in } R' \text{ do } & v := \text{body}(v, x) \text{ end},
\end{align*}

where the hierarchical structure $R' = \text{STR}(S_1, \ldots, S_m)$ is defined by means of the function $\text{sel}(x_1, \ldots, x_m)$ and the condition $\text{cond}(x_1, \ldots, x_m)$.

Corollary 2'. The iteration

\begin{align*}
\text{for } x_1 \text{ in } S_1, \ldots, x_m \text{ in } S_m \text{ do } & \text{if } \text{cond}(x_1, \ldots, x_m) \text{ then } \text{EXIT;} \\
& v := \text{body}(v, x_t) \text{ end},
\end{align*}

where $t = \text{sel}(x_1, \ldots, x_m)$, is equivalent to the iteration

\begin{align*}
\text{for } x \text{ in } K' \text{ do } & v := \text{body}(v, x) \text{ end},
\end{align*}

where the hierarchical structure $K' = \text{STR}(S_1, \ldots, S_m)$ is defined by means of the function $\text{sel}(x_1, \ldots, x_m)$ and the condition $\text{cond}(x_1, \ldots, x_m)$.

It should be noted that proofs of Theorem 4' and Corollaries 1', 2' are similar to the proofs of Theorem 4 and Corollaries 1, 2, respectively.

5. Replacement operation and its application

To present the effect of iteration (1), let us define a replacement operation $\text{rep}(v, S, \text{body})$ to be a vector v_n such that $v_0 = v$ provided $\text{empty}(S)$, $v_i = \text{body}(v_{i-1}, s_i)$ for all $i = 1, \ldots, n$ provided $\neg \text{empty}(S)$ and $\text{vec}(S) = [s_1, \ldots, s_n]$. Therefore, $\text{rep}(v, \text{str}(s), \text{body}) = \text{body}(v, s)$. The following theorem similar to Theorems 4 and 6 [11] presents useful properties of the replacement operation.

Theorem 5.

5.1. $\text{rep}(v, \text{con}(S_1, S_2), \text{body}) = \text{rep}(\text{rep}(v, S_1, \text{body}), S_2, \text{body})$.

5.2. Iteration (1) is equivalent to the multiple assignment

\begin{align*}
v := \text{rep}(v, S, \text{body}).
\end{align*}

Corollary 3.

3.1. $\neg \text{empty}(S) \rightarrow \text{rep}(v, S, \text{body}) = \text{body}(\text{rep}(v, \text{head}(S), \text{body}), \text{last}(S))$.
3.2. \(\neg \text{empty}(S) \rightarrow \text{rep}(v, S, \text{body}) = \text{rep}(\text{body}(v, \text{choo}(S)), \text{rest}(S), \text{body}). \)

The replacement operation allows us to formulate the following proof rule without invariants for iteration (1). Let \(R(y \leftarrow \text{exp}) \) be a result of substitution of an expression \(\text{exp} \) for all occurrences of a variable \(y \) into a formula \(R \). Let \(R(\text{vec} \leftarrow \text{vexp}) \) denote the result of a synchronous substitution of the components of an expression vector \(\text{vexp} \) for all occurrences of the corresponding components of a vector \(\text{vec} \) into a formula \(R \).

\[
\text{rl1.} \quad \{P\} \text{prog}\{Q(v \leftarrow \text{rep}(v, S, \text{body}))\} \vdash \\
\{P\} \text{prog; for } x \in S \text{ do } v := \text{body}(v, x) \text{ end } \{Q\},
\]

where the post-condition \(Q \) does not depend on the loop parameter \(x \).

The following corollary is evident from Theorem 5.2.

Corollary 4. The proof rule rl1 is derived in the standard system of proof rules for usual statements including the multiple assignment.

To prove the verification conditions including the replacement operation \(\text{rep}(v, S, \text{body}) \), the following induction principle is used.

Let \(\text{prop}(\text{rep}(v, S, \text{body})) \) denote a property expressed by a first-order logic formula with the only free variable \(S \). The formula is constructed from the replacement operation \(\text{rep}(v, S, \text{body}) \), functional symbols, variables and constants by means of Boolean operations, first-order quantifiers and substitution of constants for variables from \(v \).

Induction principle 2. The property \(\text{prop}(\text{rep}(v, S, \text{body})) \) holds for each structure \(S \), if there exists an integer \(c \geq 0 \) such that two conditions hold:

1. for each structure \(S \) such that \(\text{lng}(S) \leq c \), the property \(\text{prop}(\text{rep}(v, S, \text{body})) \) holds;
2. for each structure \(S \) such that \(\text{lng}(S) > c \), there exists a term \(T(S) \) for which \(\text{lng}(T(S)) < \text{lng}(S) \) and \(\text{prop}(\text{rep}(v, T(S), \text{body})) \rightarrow \text{prop}(\text{rep}(v, S, \text{body})). \)

6. **Case of study: iterations over files**

In the case of definite iterations over files, we will apply a problem-oriented technique for proving verification conditions containing the replacement operation. The technique requires to impose some restrictions on the body of iteration (1). We assume that this body has the form \((f, v) := \text{body}(f, v, x) \), where \(x \) is an iteration parameter, \(f \) is a file and \(v \) is a vector of other variables. We also suppose that the projections of \(\text{body} \) on \(f \) and \(v \) can be represented in the form \(\text{body}_f(f, v, x) = \text{con}(f, e(v, x)), \text{body}_v(f, v, x) = \)
where the expression \(e(v, x) \) presents a file and, moreover, \(e(v, x) \) and \(bdv(v, x) \) do not depend on \(f \). Notice that the representation of the iteration body is natural when the iteration realizes writing in the file \(f \). We consider \(rep(S) \) to be a short form for \(rep((f, v), S, body) \). Let \(rep_f(S) \) and \(rep_v(S) \) be the projections of \(rep(S) \) on \(f \) and \(v \), respectively.

Theorem 6. In the case of \(\neg \)empty\((S) \)

6.1. \(rep_f(S) = con(rep_f(head(S)), e(rep_v(head(S)), last(S))) \),

6.2. \(rep_f(S) = con(f, e(v, choo(S)), rep_f((\emptyset, bdv(v, choo(S))), rest(S), body)), \)

where \(\emptyset \) is the empty file.

Proof. Theorem 6.1 immediately follows from Corollary 3.1. To prove Theorem 6.2, we will use induction on \(n = | memb(S)| \). If \(n = 1 \), then Theorem 6.2 follows from

\[
rep_f((f, v), S, body) = body_f(f, v, choo(S)) = con(f, e(v, choo(S)))
\]

and

\[
rep_f((\emptyset, bdv(v, choo(S))), rest(S), body) = \emptyset.
\]

Let us suppose \(n > 1 \) and Theorem 6.2 holds for \(n - 1 \). We will use \(bf \) and \(bv \) to denote \(body_f(f, v, choo(S)) \) and \(body_v(f, v, choo(S)) \), respectively. From Corollary 3.2 and the induction hypothesis, it follows that

\[
rep_f(S) = \begin{align*}
&\text{rep}_f((bf, bv), rest(S), body) \\
&\text{rep}_f((\emptyset, bdv(v, choo(rest(S)))), rest^2(S), body)).
\end{align*}
\]

It remains to notice that \(bf = con(f, e(v, choo(S))) \), \(bv = bdv(v, choo(S)) \), and, by the induction hypothesis, \(rep_f((\emptyset, bv), rest(S), body) = con(\emptyset, e(bv, choo(rest(S))), rep_f((\emptyset, bdv(bv, choo(rest(S))))), rest^2(S), body)) \).

\(\square \)

7. Illustrative examples

Example 1. Merging of ordered files with cleaning.

To specify a merging program, we introduce the following notation. Let \(set(f) \) be a set of all elements of the file \(f \). Let \(ord(f) \) (respectively, \(sord(f) \)) denote a predicate whose value is true, if the file \(f \) has been sorted in ascending order \(\leq \) (respectively, \(< \)) of elements, and false otherwise. We assume that \(ord(\emptyset) = sord(\emptyset) = true \). Let \(file(z) \) be a function which returns a file consisting of one element \(z \).

We consider the following program for merging (with cleaning) of ordered files \(f_1 \) and \(f_2 \) to an ordered file \(g \):
Symbolic verification method for definite iterations

\{P\} \begin{align*} g &:= \emptyset; y := \omega; \text{ for } x_1 \text{ in } f_1, x_2 \text{ in } f_2 \text{ do} \quad (15) \\
\text{if } y \neq x_t &\text{ then begin } g := \text{con}(g, x_t); y := x_t \text{ end end } \{Q\}, \end{align*}

where \(t = \text{sel}(x_1, x_2) = \text{if } x_1 \leq x_2 \text{ then } 1 \text{ else } 2 \) for \(x_1 \neq \omega \) and \(x_2 \neq \omega \),
\(P = \text{ord}(f_1) \land \text{ord}(f_2), \) \(Q = (\text{sord}(g) \land \text{set}(g) = \text{set}(f_1) \cup \text{set}(f_2))). \)

By Theorem 1′, program (15) is equivalent to the following program

\begin{align*} \{P\} \begin{align*} g &:= \emptyset; y := \omega; \text{ for } x \text{ in } F \text{ do} \quad (16) \\
&\quad (g, y) := (\text{body}_g(g, y, x), \text{body}_y(y, x)) \end{align*} \end{align*} \text{end } \{Q\},

where
\begin{align*} \text{body}_y(g, y, x) &= \text{con}(g, e(y, x)), e(y, x) = \text{if } y \neq x \text{ then } x \text{ else } \emptyset, \\
\text{body}_y(y, x) &= \text{if } y \neq x \text{ then } x \text{ else } y, \end{align*}

and the hierarchical structure \(F = \text{STR}(f_1, f_2) \) is defined as

\((\text{choo}(F), \text{rest}(F)) = \text{if } \text{EMPTY} \text{ then } (\omega, \omega) \text{ else } (\text{choo}(f_1), \text{REST})). \)

By the proof rule rl1 from Section 5, one verification condition
\(P \rightarrow Q(g \leftarrow \text{rep}_g((\emptyset, \omega), F, \text{body})) \)
is generated from program (16).

From \(\text{body}_y(y, x) = x, \) Corollary 3.1, Theorem 6.1 and induction principle 2 for \(c = 1, \) Claim 2 follows.

Claim 2. In the case of \(\neg \text{empty}(F), \) the following properties hold:

2.1. \(\text{rep}_y(F) = \text{last}(F), \)

2.2. \(\text{rep}_y(F) = \text{if } \text{empty}(\text{head}(F)) \text{ then } \text{file}(\text{last}(F)) \text{ else } \text{con}(\text{rep}_y(\text{head}(F)), e(\text{last}(\text{head}(F)), \text{last}(F))), \)

2.3. \(\text{last}(\text{rep}_y(F)) = \text{last}(F). \)

From Theorem 2′.2, 3′ and induction principle 1 for \(c = 1, \) Claim 3 follows.

Claim 3. \(\text{ord}(f_1) \land \text{ord}(f_2) \rightarrow \text{ord}(\text{vec}(F)). \)

To prove the verification condition, we will use induction principle 2 for \(c = 1. \) In the case of \(\text{empty}(F), \) \(\text{empty}(f_i) \) \((i = 1, 2), \) \(\text{rep}_y(F) = \emptyset \) and Claim 3 is evident. In the case of \(\neg \text{empty}(F) \) and \(\text{empty}(\text{head}(F)), \) Claim 3 follows from Claim 2.2, Theorem 2′.1 and \(\text{rep}_y(F) = \text{file}(\text{last}(F)). \) Let us suppose \(\neg \text{empty}(\text{head}(F)) \) and \(\neg \text{empty}(f_1). \) By Claim 2.2,
rep_\theta(F) = con(rep_\theta(head(F)), e(last(head(F)), last(F))).

By Theorem 3', head(F) = STR(head(f_1), f_2) and last(F) = last(f_1). From the induction hypothesis for head(F), ord(head(f_1)) and ord(f_2), it follows that sord(rep_\theta(head(F))) and set(rep_\theta(head(F))) = set(head(f_1)) \cup set(f_2).

Two cases are possible.

1. last(head(F)) = last(F). Then rep_\theta(F) = rep_\theta(head(F)). It remains to notice that, by Claim 2.3, last(rep_\theta(F)) = last(f_1) \in set(rep_\theta(head(F))) and set(f_1) = set(head(f_1)) \cup \{last(f_1)\}.

2. last(head(F)) \neq last(F). Then rep_\theta(F) = con(rep_\theta(head(F)), last(F)).

It remains to apply Claims 2.3 and 3.

Example 2. Intersection of ordered files.

To specify an intersection program, we use the notation from example 1. We consider the following program which forms the intersection of ordered files f_1 and f_2 as a strictly ordered file g:

\begin{align*}
\{ P \} & \ g := \emptyset; \ y_1 := \omega; \ y_2 := \omega; \ for \ x_1 \ in \ f_1, x_2 \ in \ f_2 \ do \ (17) \\
& \ \ \ \ \ \ if \ y_1 \neq x_1 \ then \ begin \ 1 : \ y_1 := x_1; \ y_2 := t \ end \ else \\
& \ \ \ \ \ \ if \ y_2 \neq t \ then \ begin \ g := con(g, y_1); \ y_2 := t \ end; \\
& \ \ \ \ \ \ if \ x_1 = \omega \lor x_2 = \omega \ then \ EXIT \ end \ \{ Q \},
\end{align*}

where \(t = set(x_1, x_2) = \{ 1 \mid x_1 \leq x_2 \} \) else 2 for \(x_1 \neq \omega \) and \(x_2 \neq \omega \), \(P = ord(f_1) \land ord(f_2) \), \(Q = (sord(g) \land set(g) = set(f_1) \cup set(f_2)) \).

By Corollary 1, program (17) is equivalent to the following program

\begin{align*}
\{ P \} & \ g := \emptyset; \ y_1 := \omega; \ y_2 := \omega; \ for \ (x, \tau) \ in \ R \ do \ (18) \\
& \ (g, y_1, y_2) := body(g, y_1, y_2, x, \tau) \ end,
\end{align*}

where

\[
\begin{array}{l}
body_g(g, y_1, y_2, x, \tau) = con(g, e(y_1, y_2, x, \tau)), \\
e(y_1, y_2, x, \tau) = \if \ y_1 \neq x \lor y_2 = \tau \ \then \emptyset \ \else x, \\
body_r(g, y_1, y_2, x, \tau) = \if \ y_1 \neq x \ \then \ (x, \tau) \ \else \\
\ \ \ if \ y_2 \neq \tau \ \then \ (x, \tau) \ \else \ (y_1, y_2) = (x, \tau),
\end{array}
\]

and the hierarchical structure \(R = STR(f_1, f_2) \) is defined as

\[
(choo(R), rest(R)) = \if EMPTY \ then \ (\omega, \omega) \ \else \ ((choo(f_1), t_1), \\
\ \ \ if \ b_1 \ then \ \omega \ \else REST).
\]

By the proof rule rl1, one verification condition
VC: $P \rightarrow Q(g \leftarrow \text{rep}_g((\emptyset, \omega, \omega), R, \text{body}))$

is generated from program (18).

We will use $h(R)$ to denote the file $\text{rep}_g((\emptyset, \text{choo}(f_1)), t1, \text{rest}(R), \text{body})$ in the case of $\neg\text{empty}(R)$. The following claim follows from Theorem 6.2.

Claim 4. If $\neg\text{empty}(R)$, then

$$\text{rep}_g((\emptyset, y_1, y_2), R, \text{body}) = \text{if } y_1 \neq \text{choo}(f_1) \text{ or } y_2 = t1 \text{ then } h(R)$$

$$\text{else con(choo}(f_{11}), h(R)),$$

where $R = \text{STR}(f_1, f_2)$ and $t1 = \text{sel}(\text{choo}(f_1), \text{choo}(f_2))$.

The verification condition VC is proved by the case analysis. If $\text{empty}(R)$, then $\text{empty}(f_i)(i = 1, 2)$ and VC holds. Let us suppose $\neg\text{empty}(R)$ and $t1 = 1$. By Claim 4, $\text{rep}_g((\emptyset, \omega, \omega), R, \text{body}) = h(R)$. We will use induction on $|\text{memb}(R)| = k$. If $k = 1$, then $\text{empty}(\text{rest}(R)), \text{empty}(h(R)), \text{empty}(f_1)$, and, therefore, VC holds. We suppose $k > 1$ and VC holds for the structure $\text{rest}(R)$. Then $\neg\text{empty}(f_i)(i = 1, 2)$, $\neg\text{empty}(\text{rest}(R))$ and $\text{rest}(R) = \text{STR}(\text{rest}(f_1), f_2)$. Two cases are possible.

1. $\text{choo}(\text{rest}(R)) = (\text{choo}(\text{rest}(f_1)), 1)$. Then

$$\text{choo}(f_1) \leq \text{choo}(\text{rest}(f_1)) \leq \text{choo}(f_2).$$

From Claim 4 it follows that $h(R) = h(\text{rest}(R))$. By the induction hypothesis, $\text{sord}(h(R))$ and $\text{set}(h(R)) = \text{set}(\text{rest}(f_1)) \cap \text{set}(f_2) = \text{set}(f_1) \cap \text{set}(f_2)$, since $\text{choo}(f_1) \notin \text{set}(f_2)$ in the case of $\text{choo}(f_1) < \text{choo}(\text{rest}(f_1))$.

2. $\text{choo}(\text{rest}(R)) = (\text{choo}(f_2), 2)$. Then $\text{choo}(f_1) \leq \text{choo}(f_2)$. From Claim 4 it follows that

$$h(R) = \text{if } \text{choo}(f_1) \neq \text{choo}(f_2) \text{ then } h(\text{rest}(R))$$

$$\text{else con(choo}(f_2), h(\text{rest}(R))),$$

because $y_1 = \text{choo}(f_1), y_2 = 1, t1 = \text{sel}(\text{rest}(f_1), f_2)$ and R is changed by $\text{rest}(R)$. By the induction hypothesis, $\text{sord}(h(\text{rest}(R)))$ and

$$\text{set}(h(\text{rest}(R))) = \text{set}(\text{rest}(f_1)) \cap \text{set}(f_2).$$

In the case of $\text{choo}(f_1) < \text{choo}(f_2), VC$ holds since $h(R) = h(\text{rest}(R))$ and $\text{choo}(f_1) \notin \text{set}(f_2)$. When $\text{choo}(f_1) = \text{choo}(f_2),

$$\text{set}(h(R)) = \{\text{choo}(f_2)\} \cup (\text{set}(\text{rest}(f_1)) \cap \text{set}(f_2))$$

$$= (\{\text{choo}(f_1)\} \cup \text{set}(\text{rest}(f_1))) \cap \text{set}(f_2)$$

$$= \text{set}(f_1) \cap \text{set}(f_2).$$

It remains to prove $\text{sord}(h(R))$ in the case of $\text{choo}(f_1) = \text{choo}(f_2)$. If $\text{empty}(\text{rest}(f_1))$, then $\text{empty}(h(\text{rest}(R))), h(R) = \text{file}(\text{choo}(f_2))$ and, therefore, $\text{sord}(h(R))$. Otherwise, $\text{choo}(f_2) < \text{choo}(\text{rest}(f_1))$ and $\text{choo}(f_2) \notin \text{set}(h(\text{rest}(R)))$. From this and $\text{sord}(h(\text{rest}(R))), \text{sord}(h(R))$ follows.
8. Conclusion

A symbolic method for verification of definite iterations over tuples of data structures is described in this paper. The new kind of definite iterations allows loops with several input data structures to be represented compactly and naturally, and to be used as flat loops [1]. Moreover, exit from iteration body under a condition is accepted that allows the use of an important kind of while-loops.

The application of the symbolic verification method to definite iterations over tuples of data structures consists of 3 stages. In the first stage of verification, these iterations are transformed to standard definite iterations over hierarchical data structures. Such transformations are justified by Theorems 1, 1', 4, 4'. Useful properties of the transformations are presented by Theorems 2, 2', 3, 3'. In the second stage, verification conditions containing the replacement operation are generated with the help of the rule rl1. In the third stage, the verification conditions are proved with the help of both a universal technique based on induction principles 1 and 2, and a problem-oriented technique presented by Theorem 6 for iterations over files.

Instead of loop invariants, the symbolic method uses properties of both hierarchical structures and the replacement operation. These properties, as a rule, are simpler than loop invariants, and new notions are not necessary for representation of the properties. Induction principles 1 and 2 are rather flexible and allow us to use, for proving the properties, different induction strategies including forward and backward strategies based on Corollary 3. The use of properties of hierarchical data structures simplifies presentation of properties of the replacement operation, and, hence, proving them.

Examples 1 and 2 illustrate advantages of the symbolic verification method. The use of the exit statement in Example 2 allows us to present an optimal version of a suitable program. It is suggested to apply the symbolic method to verification of definite iterations over tuples of linear lists.

References

Symbolic verification method for definite iterations

