Bull. Nov. Comp. Center, Comp. Science, 19 (2003), 61-71
(© 2003 NCC Publisher

Concurrent selection of the shortest
paths and distances in directed graphs
using vertical processing systems*

A.S. Nepomniaschaya

In this paper, we propose a new implementation of Dijkstra’s shortest path
algorithm on a model of associative parallel processors with the vertical data pro-
cessing (the STAR-machine) to obtain for every vertex of a directed graph the
distance along with the shortest path from the source vertex. We prove correctness
of the corresponding procedure and evaluate its time complexity.

1. Introduction

Finding the shortest paths in networks is an acute problem in the combina-
torial optimization. An important version of the shortest path problem is
the single-source problem. Given a directed n-vertex and m-edge weighted
graph G with a distinguished vertex s, the single-source shortest path (SSSP)
problem is to find for each vertex v the length of the shortest path from s
to v. When all edge weights are non-negative, the most efficient solution
gives Dijkstra’s sequential shortest path algorithm [1]. It sorts vertices ac-
cording to their distances from the source vertex. Dijkstra’s algorithm runs
in O(m+nlogn) time both on the RAM model [7], when the priority queue
is realized using the Fibonacci heap, and on the EREW PRAM model [2],
when the priority queue is given by means of relaxed heaps.

To obtain an efficient implementation of Dijkstra’s algorithm, we use
associative (content addressable) parallel processors of the SIMD type with
bit-serial (vertical) data processing and simple single-bit processing elements
(PEs) called vertical processing systems in [5]. These systems provide a
massively parallel search by contents, enable one to use two-dimensional
tables as basic data structures, and the processing of sufficiently large array
segments [5, 15].

In [4], a special case of Dijkstra’s algorithm for finding the shortest path
between two vertices in unweighted undirected graphs has been represented
on the associative array processor LUCAS. In [14], there is a specification
of Dijkstra’s shortest path algorithm on the orthogonal machine.

*Partially supported by the Russian Foundation for Basic Research under Grant
03-01-00399.

62 A.S. Nepomniaschaya

In [12], we have proposed an efficient implementation of Dijkstra’s algo-
rithm for directed graphs on the STAR-machine, which is an abstract model
of the vertical processing systems. The corresponding procedure returns the
distance matrix in whose every i-th row there is the length of the shortest
path from s to v;. We have also shown how to extend this implementation
in a natural way to restore the shortest path from the source vertex to a
given vertex. To this end, we construct the distance matrix along with a
special matrix which is used in the sequel to restore the shortest path from
s to a given vertex vy. We have obtained that the corresponding procedures
take O(hn) time each, where h is the number of bits required for coding the
maximum weight of the shortest paths from the source vertex. It is assumed
that each elementary operation of the STAR-machine takes one unit of time.

In this paper, we propose a new implementation of Dijkstra’s algorithm
on the STAR-machine to simultaneously obtain for every vertex of a directed
graph the distance and the shortest path from the source vertex. We prove
correctness of the corresponding procedure and evaluate its time complexity.
We obtain that this procedure takes O(nmax(h,n)) time on the STAR-
machine having no less than n PEs.

2. Model of associative parallel machine

Our model is based on a Staran-like associative parallel processor [6, 8]. It
is defined as an abstract STAR-machine of the SIMD type with the vertical
data processing [9]. The model consists of the following components:

e a sequential control unit (CU), where programs and scalar constants
are stored;

e an associative processing unit consisting of p single-bit PEs;

e a matrix memory for the associative processing unit.

The CU broadcasts an instruction to all the PEs in unit time. All active
PEs execute it in parallel, while inactive PEs do not perform it. Activation
of a PE depends on the data employed.

The input binary data are loaded in the matrix memory in the form of
two-dimensional tables in which each data item occupies an individual row
and it is updated by a dedicated processing element. It is assumed that
there are more PEs than data. The rows are numbered from top to bottom
and the columns — from left to right. Both a row and a column can be easily
accessed. Some tables may be loaded in the matrix memory.

An associative processing unit is represented as h vertical registers each
consisting of p bits. The vertical registers can be regarded as a one-column
array. The bit columns of the tabular data are stored in the registers which
perform the necessary elementary operations.

Concurrent selection of the shortest paths and distances 63

The STAR-machine run is described by means of the language STAR
[9] which is an extension of Pascal. Let us briefly consider the STAR con-
structions being used in this paper. To simulate the data processing in the
matrix memory, we use data types word, slice, and table. Constants for
the types slice and word are represented as a sequence of symbols of {0,1}
enclosed within single quotation marks. The types slice and word are used
for the bit column access and the bit row access, respectively, and the type
table is used for defining the tabular data. Assume that any variable of the
type slice consists of p components which belong to {0,1}. For simplicity
let us call slice any variable of the type slice.

Now, we present some elementary operations and predicates for slices.

Let X, Y be variables of the type slice and ¢ be a variable of the type
integer. We use the following operations:

SET(Y) sets all components of Y to '1’;
CLR(Y) sets all components of Y to '0’;

Y (i) selects the i-th component of Y;

FND(Y) returns the ordinal number i of the first (or the uppermost) ‘1’
of Y,7 > 0;

STEP(Y) returns the same result as FND(Y') and then resets the first '1’
found to '0'.

In the usual way, we introduce the predicates ZERO(Y) and SOME(Y)
and the bitwise Boolean operations X and Y, X orY, notY, and X zorY.

Let w be a variable of the type word and T be a variable of the type
table. We employ the following elementary operations:

TRIM(z, j,w) returns the substring of w having the form w(i)w(i + 1)...
w(j), where 1 <i < j < |w|;

ROW(i,T) returns the i-th row of the matrix T
COL(¢,T) returns the i-th column of the matrix T'.

Note that all the operations for the type slice are also performed for the
type word.

Remark 1. Note that the STAR statements [9] are defined in the same
manner as for Pascal. We will use them later when discussing our proce-
dures.

Following [14], we assume that each elementary operation of the STAR-
machine takes one unit of time. Therefore we will measure time complezity
of the algorithm by counting all elementary operations performed in the
worst case.

64 A.S. Nepomniaschaya

3. Preliminaries

Let G = (V,E,w) be a directed weighted graph with the set of vertices
V = {1,2,...,n}, the set of directed edges (arcs) E C V x V and the
function w that assigns a weight to every edge. We assume that |V | = n
and |E| = m.

A weight matriz of G is an n X n matrix which contains the arc weights
as entries. We assume that w(u,v) = oo if (u,v) ¢ E.

Note that the weights are non-negative integers represented as binary
strings.

An adjacency matriz A for G is an n x n Boolean matrix in which a;; =1
if (v;,v;) € E and a;; = 0, otherwise.

A path from u to v in G is a finite sequence of vertices u = vy, va,..., vy =
v, where (v;,v;11) € E fori=1,2,...,k — 1 and k > 0. The shortest path
between two vertices or the distance in a weighted graph is a path with the
minimum sum of weights of its arcs.

A tree is a connected acyclic graph. A tree of the shortest paths is a
subgraph T of G being a tree with the root vertex s which contains all
vertices of G and such that the path from s to any vertex v in T is the
shortest path from s to v in G.

Now, consider a group of the basic procedures to be used in the sequel.
Implementation of these procedures on the STAR-machine can be found in
[10, 11]. These procedures make use of the given global slice X to select by
ones the positions of rows being used in the corresponding procedure.

The procedure MATCH(T, X,v, Z) defines the positions of those rows
of the given matrix T' which coincide with the given pattern v written in
the binary code. It returns the slice Z, where Z(i) = 'l if and only if
ROW(:,T) = v and X (i) ='1".

The procedure MIN(T', X, Z) defines the positions of those rows of the
given matrix 7', where minimum elements are located. It returns the slice
Z, where Z(i) ='1" if and only if ROW (7, T') is the minimum element of the
matrix 7" and X (z) = '1". To return the minimum element of T', we define
the position of the first ‘1’ in Z and then select the corresponding row of T'.

Note that the procedures MATCH and MIN are based on the corre-
sponding algorithms first examined in [3].

The procedure SETMIN(T, F, X,Y) defines the positions of rows of the
matrix T being less than the corresponding rows of the matrix F'. It returns
the slice Y, where Y (7) = '1' if and only if ROW(5,T) < ROW(j, F') and
X(j) ="

The procedure ADDC(T, X, v, F') adds the binary word v to those rows
of the matrix 7" which are selected by ones in X, and writes down the result
into the corresponding rows of the matrix F. The rows of F', which are
selected by zeros in X, will be set to '0'.

Concurrent selection of the shortest paths and distances 65

The procedure ADDV(T, R, X, F') writes the result of adding the rows
of matrices T' and R selected by ones in the slice X into the corresponding
rows of the matrix F'. Note that this procedure is based on the associative
algorithm from [6].

The procedure TMERGE(T, X, F') writes into the matrix F' those rows
of the given matrix 7" which are selected by ones in X. The rows of the
matrix F', which are selected by zeros in X, are not changed.

The procedure WCOPY (v, X, F') writes the binary word v into those
rows of the matrix F' which are selected by ones in X. The rows of the
matrix F', which are selected by zeros in X, will be set to '0’.

The procedure TCOPY1(T, j, h, F) writes h columns from the given ma-
trix T, starting with the (1 + (j — 1)h)-th column, into the result matrix
F.

The procedure CLEAR(j, F) sets zeros in all j columns of the matrix F'.

In [10, 11}, we have shown that basic procedures take O(k) time each,
where k is the number of bit columns in the corresponding matrix.

4. A new implementation of Dijkstra’s algorithm
on the STAR-machine

Consider the main idea of Dijkstra’s algorithm [1]. It assigns the temporal
labels I(v) for each vertex v € V so that [(v) > dist(s,v), where dist(s,v) is
the distance from the source vertex s to the vertex v. These labels are con-
stantly decreased by means of a certain iteration procedure, and at each step
only a unique temporal label becomes invariant. The algorithm constructs a
set of the vertices ' C V in such a way that the current shortest path from
s to any vertex of F' passes only through vertices in F'. Initially, F' = {s},
I(s) =0 and Yv ¢ F l(v) = oo. Let F consist of k vertices (1 < k < n) and
u be the last vertex added to F. Then the (k + 1)-th vertex for the set F' is
defined as follows.

At first, we define all the arcs (u,v;), where v; ¢ F. Then for every
vertex v; ¢ F, we determine the label I(v;) = dist(s,u) + w(u,v;). After
that among the vertices v; ¢ F being adjacent with a vertex from F, we
select such a vertex v whose label has the minimum value and include it in
the set F. On terminating the algorithm, I(v;) is the weight of the shortest
path from s to v; for all v; € V.

To perform these steps, the label I(v) is minimized as follows. For all
arcs (u,v) € E if l(u) + w(u,v) < l(v) then I(v) := l(u) + w(u,v).

Infinity will be implemented by the value > ; w;, where w; is the max-
imum weight of the arcs incident to the vertex v;. Let h be the number of
bits necessary for coding the infinity. Then the weight matrix consists of hn
columns and any vertex v; of G is associated with the i-th field having h bit

66 A.S. Nepomniaschaya

columns. On the STAR-machine, a graph will be represented as a weight
matrix.

Now, we propose the main idea of the associative parallel algorithm to
simultaneously select both the shortest path and the distance for all the
vertices of the given graph G.

First, by means of the method being used in the procedure DIJKSTRA
[12], we define the current vertex vy which is included into the tree of the
shortest paths and the shortest distance from s to v;. Then we define such
a vertex v; from the tree of the shortest paths which is the next to last one
in the shortest path from s to vg. The shortest path from s to vy is obtained
from the shortest path from s to v; by adding the vertex v; to it.

This associative parallel algorithm will be given as procedure DistPath
using the following input parameters: a graph G given as a weight matrix;
the source vertex s; the number of vertices n; the number of bits h required
for representing infinity, and the binary representation of infinity inf.

The procedure returns both the distance matrix D, where in every i-th
row there is the distance from s to v;, and the matrix Paths, where in every
j-th column the positions of vertices included in the shortest path from s to
v; are selected by ones.

This algorithm runs as follows.

1. Define the position of the current vertex wvg, which is added to the
tree of the shortest paths, and the distance from s to v, denoted by
dist(s, vg).

2. At first, define positions of those vertices v; from the shortest paths
tree for which there is an arc entering v, and then compute in parallel
dist(s, v;) + w(vj, vg).

3. Select the position of such a vertex v; from the tree of the shortest
paths for which dist(s,v;) + w(vs, v) = min;{dist(s,v;) + w(v;,vg)}.
After that, select the i-th column of the matrix Paths, put ‘1’ in its
i-th position, and write down this in the k-th column of Paths.

The algorithm terminates when all vertices of G are included into the
shortest paths tree.

To present the procedure DistPath, we need the following auxiliary pro-
cedures.

The procedure ADJ(T', h, n, inf, A) uses the weight matrix 7', the number
of bits h for coding the infinity, the number of vertices n, and the binary
code of infinity inf. It returns the adjacency matrix A for the matrix 7.

The procedure WTRANS(w, h,n, R) uses the given binary string w and
the above explained parameters h and n. It returns the matrix R, where in
each i-th row there is the string v; = TRIM((i — 1)h + 1,ih,w). In other
words, the matrix R is a transpose of the given string w.

o e

10.
11.

12.
13.

14.
15.

16.
17.

18.

19.

Concurrent selection of the shortest paths and distances 67

In Appendix we will show that the procedure ADJ takes O(hn) time,
while the procedure WTRANS requires O(n) time.
Now, we present the procedure DistPath.

proc DistPath(T: table; s,h,n: integer; inf: word;
var D,Paths: table);
/* Here, T is the weight matrix, s is the source vertex, h is the number of bits
required for representing infinity, inf is the binary representation of infinity. */
var A,R1,R2: table; U,X,Z: slice(T);
k,j: integer; v1,v2: word;

. Begin ADJ(T,n,h,inf ,A);

CLEAR(n,Paths);
SET(U); U(s):=°0";
k:=s; WCOPY(inf,U,D);

/* Here, k saves the last vertex included in the set F. */
while SOME(U) do
begin v1:=ROW(k,T);
WTRANS (v1,h,n,R1);

/* The result of transposing the k-th row of the matrix T is saved
in the matrix R1. */
MATCH(R1,U,inf,X);
X:=X xor U;

/* We indicate by '1’ in the slice X positions of the vertices which do not belong
to F', but they are adjacent to the vertex vg. */
v2:=R0OW(k,D);
ADDC(R1,X,v2,R2);

/* The result of adding I(vx) and the weight of the arc directed from vy to v;
is written in every i-th row of R2, which corresponds to X (i) ='1". */
SETMIN(R2,D,X,Z);
TMERGE(R2,Z,D) ;

/* We decrease the label I(v;) to l(vk) + w(vg,v;) in every i-th row
of the matrix D which corresponds to Z(¢) ='1". */
MIN(D,U,X); k:=FND(X);
U(k):=’0";

/* A new vertex is included in F. */
X:=COL(k,A);
X:=X and (not U);
/* Positions of vertices from F for which there is an arc entering vy

are selected by ones in the slice X. */
TCOPY1(T,k,h,R1);

/* The k-th field of the matrix T is stored in the matrix R1. */
ADDV(R1,D,X,R2);

20.
21.

22.
23.
24.
25.

68 A.S. Nepomniaschaya

/* The weights of paths from s to vy, selected by ones in X are written
in the corresponding rows of the matrix R2. */
MIN(R2,X,Z);
i:=FND(Z);

/* The vertex v; is the next to the vertex vy in the shortest path from s to vg. */
X:=COL(i,Paths); X(i):=’17;
COL(k,Paths) : =X
end;
End.

Remark 2. It is easy to verify that the basic procedure SETMIN(R2, D,
X,Z) (line 12) is applied to the vertices of G which have not yet been
included into the tree of the shortest paths. Therefore in the result slice Z
the positions of such vertices are selected by ones. Hence, execution of the
basic procedure TMERGE(R2, Z, D) (line 13) does not change the rows of
D, where distances from the source vertex to the vertices belonging to the
tree of the shortest paths, are written.

Theorem 1. Let G = (V, E,w) be a directed weighted graph with the source
vertezr s and |V| = n. Let T be its weight matriz, where every arc weight uses
h bits and let inf be the binary representation of infinity. Then the procedure
DistPath(T, s, h,n,inf, D, Paths) returns the matriz D, where in every i-th
row there is the distance from s to v;, and the matriz Paths, where in every
i-th column positions of vertices included into the shortest path from s to v;
are selected by ones. It takes O(nmax(h,n)) time on the STAR-machine
having no less than n PEs.

Proof. We prove this by induction on the number of vertices g in the tree
of the shortest paths F'.

Basis is verified for ¢ = 1. On performing lines 1-2, we obtain the
adjacency matrix A for the given weight matrix 7" and the matrix Paths
consisting of zeros. After performing line 3, the vertex s is included into the
tree of the shortest paths F'. On performing line 4, the distance from s to s
is written in the s-th row of the distance matrix D and it is equal to zero,
and the variable k saves s.

Step of induction. Let the assertion be truefor 1 < g <Il<n-—1. We
will prove it for [= ¢ + 1. By the induction hypothesis, the first [vertices
are included in the tree F' by setting zeros in the corresponding positions of
the slice U, the variable k saves the current vertex included in F', and for
every vertex v; from F the distance from s to v; is written in the ¢-th row of
D and positions of vertices belonging to the shortest path from s to v; are
selected by ones in the i-th column of the matrix Paths.

Concurrent selection of the shortest paths and distances 69

Since U # ©, we perform the (I + 1)-th iteration. By analogy with
proving correctness of the procedure DIJKSTRA [12], on performing lines
6-15, a new vertex vy is added to F' and the shortest path from s to vy is
written in the k-th row of D. In view of Remark 2, adding the vertex v to
F' does not change the distances from s to other vertices of F' written in the
matrix D.

On fulfilling lines 16-17, positions of those vertices from F', for which
there is an arc entering vy, are selected by ones in the slice X. As a result
of performing lines 18-19, we compute in parallel the sums dist(s,v;) +
w(vj,vg) for all the vertices v; selected by ones in X and save the results
in the corresponding rows of the matrix R2. Then by means of the basic
procedure MIN(R2, X, Z) (line 20), we select a path from s to vy having
the minimum value among all the paths selected by ones in X. Now after
performing line 21, we determine such a vertex v; which is the next one to
the last vertex vy in the shortest path from s to v;. Since the vertex v; has
been included in the tree of the shortest paths before vy, we obtain i # k.
By the induction assumption, the shortest path from s to v; is written in
the i-th column of the matrix Paths.

Finally, on performing lines 22-23, the shortest path from s to vy is
written in the k-th column of the matrix Paths. Hence, after including the
vertex v in the tree of the shortest paths F', the distance from s to vy is
written in the k-th row of the matrix D and the shortest path from s to vy
is written in the k-th column of the matrix Paths. Since the slice U consists
of zeros, the procedure terminates.

Now, we evaluate the time complexity of the procedure DistPath. We
first observe that execution of lines 1-4 takes no more than O(hn) time
in view of the auxiliary procedure WTRANS. Inside the cycle the basic
procedures take O(h) time each, while the auxiliary procedure WTRANS
takes O(n) time. Since the cycle is executed n times, we obtain that the
procedure DistPath takes O(n max(h,n)). O

5. Conclusions

In this paper, we have proposed a new efficient implementation of Dijkstra’s
shortest path algorithm on the STAR-machine which allows one for every
vertex of a directed graph to simultaneously obtain the distance and the
shortest path from the source vertex. In [12], to restore the shortest path
from the source vertex to a given vertex f, we first construct the distance
matrix along with an auxiliary matrix being the protocol of this computa-
tion. Then by means of this protocol, we restore the shortest path starting
from the vertex f. Here, taking into account the main advantages of vertical
processing systems, we can determine the vertex along with the arc which

70

A.S. Nepomniaschaya

is added to the tree of the shortest paths at each iteration. We have proved
correctness of the procedure DistPath and evaluate its time complexity.

In the same manner, one can modify the implementation of the Bellman-

Ford shortest path algorithm on the STAR-machine [13] to determine for
every vertex of a directed graph the distance along with the shortest path
from the source vertex.

References

1]

[2]

Dijkstra E-W. A note on two problems in connection with graphs // Nu-
merische Mathematik. — 1959. — Vol. 1. — P. 269-271.

Driscoll J.R., Gabow H.N., Shrairman Ruth, Tarjan R.E. Relaxed heaps: an
alternative to Fibonacci heaps with applications to parallel computation //
Communications of the ACM. — 1988. — Vol. 31, Ne 11. — P. 1343-1354.

Falkoff A.D. Algorithms for parallel-search memories // J. ACM. - 1962. —
Vol. 9, Ne 10. — P. 488510,

Fernstrom C., Kruzela J., Svensson B. LUCAS associative array processor. De-
sign, programming and application studies. — Berlin: Springer-Verlag, 1986. —
(Lecture Notes in Computer Science; Vol. 216).

Fet Y.I. Vertical processing systems: a survey // IEEE, Micro. — February,
1995. — P. 65-75.

Foster C.C. Content Addressable Parallel Processors. — New York: Van Nos-
trand Reinhold Company, 1976.

Fredman M.L., Tarjan R.E. Fibonacci heaps and their uses in improved net-
work optimization algorithms // J. ACM. — 1987. — Vol. 34, Nz 3. — P. 596-615.

Mirenkov N. The siberian approach for an open-system high-performance com-
puting architecture // Computing and Control Engineering Journal. — May,
1992. — Vol. 3, Ne 3. — P. 137-142.

Nepomniaschaya A.S. Language STAR for associative and parallel compu-
tation with vertical data processing // Proc. of the Intern. Conf. “Parallel
Computing Technologies”. — Singapure: World Scientific, 1991. — P. 258-265.

Nepomniaschaya A.S. An associative version of the Prim—Dijkstra algorithm
and its application to some graph problems // Andrei Ershov Second Intern.
Memorial Conf. “Perspectives of System Informatics” / Lecture Notes in Com-
puter Science. — Berlin: Springer-Verlag, 1996. — Vol. 1181. — P. 203-213.

Nepomniaschaya A.S. Solution of path problems using associative parallel pro-
cessors // Proceedings of the International Conference on Parallel and Dis-
tributed Systems, IEEE Computer Society Press, ICPADS’97. — Korea, Seoul,
1997. — P. 610-617.

Concurrent selection of the shortest paths and distances 71

[12] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra’s
shortest path algorithm on associative parallel processors // Fundamenta In-
formaticae. — I0S Press, 2000. — Vol. 43. — P. 227-243.

[13] Nepomniaschaya A.S. An associative version of the Bellman—Ford algorithm
for finding the shortest paths in directed graphs // Proceedings of the 6-
th Intern. Conf. PaCT-2001 / Lecture Notes in Computer Science. — Berlin:
Springer-Verlag, 2001. — Vol. 2127. — P. 285-292.

[14] Otrubova B., Sykora O. Orthogonal computer and its application to some
graph problems // Parcella’86. — Berlin: Academie Verlag, 1986. — P. 259-266.

[15] Potter J.L. Associative Computing: A Programming Paradigm for Massively
Parallel Computers. — New York and London: Kent State University, Plenum
Press, 1992.

Appendix
Here, we propose the following auxiliary procedures.

proc ADJ(T: table; h,n: integer; inf: word; var A: table);

/* Here, A is the adjacency matrix for the given weight matrix 7. */
var i: integer; X,X1,Y: slice; R: table;

Begin
SET(X) ;
for i:=1 to n do
begin
TCOPY1(T,i,h,R);
MATCH(R,X,inf,Y);
X1:= not Y;
COL(i,A):=X1
end;
End.

proc WTRANS(w: word; h,n: integer; var R: table);

/* Here, the string w will be cut into n pieces each of length h. */
var v: word; i: integer;
Begin for i:=1 to n do
begin
v:=TRIM((i-1)h+1,ih,w);
ROW(i,R):=v
end;
End.

72

