
Bull. Nov. Comp. Center, Comp. Science, 19 (2003), 61{71c
 2003 NCC PublisherConcurrent selection of the shortestpaths and distances in directed graphsusing vertical processing systems�A.S. NepomniaschayaIn this paper, we propose a new implementation of Dijkstra's shortest pathalgorithm on a model of associative parallel processors with the vertical data pro-cessing (the STAR-machine) to obtain for every vertex of a directed graph thedistance along with the shortest path from the source vertex. We prove correctnessof the corresponding procedure and evaluate its time complexity.1. IntroductionFinding the shortest paths in networks is an acute problem in the combina-torial optimization. An important version of the shortest path problem isthe single-source problem. Given a directed n-vertex and m-edge weightedgraphG with a distinguished vertex s, the single-source shortest path (SSSP)problem is to �nd for each vertex v the length of the shortest path from sto v. When all edge weights are non-negative, the most e�cient solutiongives Dijkstra's sequential shortest path algorithm [1]. It sorts vertices ac-cording to their distances from the source vertex. Dijkstra's algorithm runsin O(m+n log n) time both on the RAM model [7], when the priority queueis realized using the Fibonacci heap, and on the EREW PRAM model [2],when the priority queue is given by means of relaxed heaps.To obtain an e�cient implementation of Dijkstra's algorithm, we useassociative (content addressable) parallel processors of the SIMD type withbit-serial (vertical) data processing and simple single-bit processing elements(PEs) called vertical processing systems in [5]. These systems provide amassively parallel search by contents, enable one to use two-dimensionaltables as basic data structures, and the processing of su�ciently large arraysegments [5, 15].In [4], a special case of Dijkstra's algorithm for �nding the shortest pathbetween two vertices in unweighted undirected graphs has been representedon the associative array processor LUCAS. In [14], there is a speci�cationof Dijkstra's shortest path algorithm on the orthogonal machine.�Partially supported by the Russian Foundation for Basic Research under Grant03-01-00399.



62 A.S. NepomniaschayaIn [12], we have proposed an e�cient implementation of Dijkstra's algo-rithm for directed graphs on the STAR-machine, which is an abstract modelof the vertical processing systems. The corresponding procedure returns thedistance matrix in whose every i-th row there is the length of the shortestpath from s to vi. We have also shown how to extend this implementationin a natural way to restore the shortest path from the source vertex to agiven vertex. To this end, we construct the distance matrix along with aspecial matrix which is used in the sequel to restore the shortest path froms to a given vertex vk. We have obtained that the corresponding procedurestake O(hn) time each, where h is the number of bits required for coding themaximum weight of the shortest paths from the source vertex. It is assumedthat each elementary operation of the STAR-machine takes one unit of time.In this paper, we propose a new implementation of Dijkstra's algorithmon the STAR-machine to simultaneously obtain for every vertex of a directedgraph the distance and the shortest path from the source vertex. We provecorrectness of the corresponding procedure and evaluate its time complexity.We obtain that this procedure takes O(nmax(h; n)) time on the STAR-machine having no less than n PEs.2. Model of associative parallel machineOur model is based on a Staran-like associative parallel processor [6, 8]. Itis de�ned as an abstract STAR-machine of the SIMD type with the verticaldata processing [9]. The model consists of the following components:� a sequential control unit (CU), where programs and scalar constantsare stored;� an associative processing unit consisting of p single-bit PEs;� a matrix memory for the associative processing unit.The CU broadcasts an instruction to all the PEs in unit time. All activePEs execute it in parallel, while inactive PEs do not perform it. Activationof a PE depends on the data employed.The input binary data are loaded in the matrix memory in the form oftwo-dimensional tables in which each data item occupies an individual rowand it is updated by a dedicated processing element. It is assumed thatthere are more PEs than data. The rows are numbered from top to bottomand the columns { from left to right. Both a row and a column can be easilyaccessed. Some tables may be loaded in the matrix memory.An associative processing unit is represented as h vertical registers eachconsisting of p bits. The vertical registers can be regarded as a one-columnarray. The bit columns of the tabular data are stored in the registers whichperform the necessary elementary operations.



Concurrent selection of the shortest paths and distances 63The STAR-machine run is described by means of the language STAR[9] which is an extension of Pascal. Let us brie
y consider the STAR con-structions being used in this paper. To simulate the data processing in thematrix memory, we use data types word, slice, and table. Constants forthe types slice and word are represented as a sequence of symbols of f0; 1genclosed within single quotation marks. The types slice and word are usedfor the bit column access and the bit row access, respectively, and the typetable is used for de�ning the tabular data. Assume that any variable of thetype slice consists of p components which belong to f0; 1g. For simplicitylet us call slice any variable of the type slice.Now, we present some elementary operations and predicates for slices.Let X, Y be variables of the type slice and i be a variable of the typeinteger. We use the following operations:SET(Y ) sets all components of Y to 010;CLR(Y ) sets all components of Y to 000;Y (i) selects the i-th component of Y ;FND(Y ) returns the ordinal number i of the �rst (or the uppermost) 010of Y , i � 0;STEP(Y ) returns the same result as FND(Y ) and then resets the �rst 010found to 000.In the usual way, we introduce the predicates ZERO(Y ) and SOME(Y )and the bitwise Boolean operations X and Y , X or Y , not Y , and X xor Y .Let w be a variable of the type word and T be a variable of the typetable. We employ the following elementary operations:TRIM(i; j; w) returns the substring of w having the form w(i)w(i + 1) : : :w(j), where 1 � i < j � jwj;ROW(i; T ) returns the i-th row of the matrix T ;COL(i; T ) returns the i-th column of the matrix T .Note that all the operations for the type slice are also performed for thetype word.Remark 1. Note that the STAR statements [9] are de�ned in the samemanner as for Pascal. We will use them later when discussing our proce-dures.Following [14], we assume that each elementary operation of the STAR-machine takes one unit of time. Therefore we will measure time complexityof the algorithm by counting all elementary operations performed in theworst case.



64 A.S. Nepomniaschaya3. PreliminariesLet G = (V;E;w) be a directed weighted graph with the set of verticesV = f1; 2; : : : ; ng, the set of directed edges (arcs) E � V � V and thefunction w that assigns a weight to every edge. We assume that jV j = nand jEj = m.A weight matrix of G is an n� n matrix which contains the arc weightsas entries. We assume that w(u; v) =1 if (u; v) =2 E.Note that the weights are non-negative integers represented as binarystrings.An adjacency matrix A for G is an n�n Boolean matrix in which aij = 1if (vi; vj) 2 E and aij = 0, otherwise.A path from u to v in G is a �nite sequence of vertices u = v1; v2; : : : ; vk =v, where (vi; vi+1) 2 E for i = 1; 2; : : : ; k � 1 and k > 0. The shortest pathbetween two vertices or the distance in a weighted graph is a path with theminimum sum of weights of its arcs.A tree is a connected acyclic graph. A tree of the shortest paths is asubgraph T of G being a tree with the root vertex s which contains allvertices of G and such that the path from s to any vertex v in T is theshortest path from s to v in G.Now, consider a group of the basic procedures to be used in the sequel.Implementation of these procedures on the STAR-machine can be found in[10, 11]. These procedures make use of the given global slice X to select byones the positions of rows being used in the corresponding procedure.The procedure MATCH(T;X; v; Z) de�nes the positions of those rowsof the given matrix T which coincide with the given pattern v written inthe binary code. It returns the slice Z, where Z(i) = 010 if and only ifROW(i; T ) = v and X(i) = 010.The procedure MIN(T;X;Z) de�nes the positions of those rows of thegiven matrix T , where minimum elements are located. It returns the sliceZ, where Z(i) = 010 if and only if ROW(i; T ) is the minimum element of thematrix T and X(i) = 010. To return the minimum element of T , we de�nethe position of the �rst 010 in Z and then select the corresponding row of T .Note that the procedures MATCH and MIN are based on the corre-sponding algorithms �rst examined in [3].The procedure SETMIN(T; F;X; Y ) de�nes the positions of rows of thematrix T being less than the corresponding rows of the matrix F . It returnsthe slice Y , where Y (j) = 010 if and only if ROW(j; T ) < ROW(j; F ) andX(j) = 010.The procedure ADDC(T;X; v; F ) adds the binary word v to those rowsof the matrix T which are selected by ones in X, and writes down the resultinto the corresponding rows of the matrix F . The rows of F , which areselected by zeros in X, will be set to 000.



Concurrent selection of the shortest paths and distances 65The procedure ADDV(T;R;X; F ) writes the result of adding the rowsof matrices T and R selected by ones in the slice X into the correspondingrows of the matrix F . Note that this procedure is based on the associativealgorithm from [6].The procedure TMERGE(T;X; F ) writes into the matrix F those rowsof the given matrix T which are selected by ones in X. The rows of thematrix F , which are selected by zeros in X, are not changed.The procedure WCOPY(v;X; F ) writes the binary word v into thoserows of the matrix F which are selected by ones in X. The rows of thematrix F , which are selected by zeros in X, will be set to 000.The procedure TCOPY1(T; j; h; F ) writes h columns from the given ma-trix T , starting with the (1 + (j � 1)h)-th column, into the result matrixF . The procedure CLEAR(j; F ) sets zeros in all j columns of the matrix F .In [10, 11], we have shown that basic procedures take O(k) time each,where k is the number of bit columns in the corresponding matrix.4. A new implementation of Dijkstra's algorithmon the STAR-machineConsider the main idea of Dijkstra's algorithm [1]. It assigns the temporallabels l(v) for each vertex v 2 V so that l(v) � dist(s; v), where dist(s; v) isthe distance from the source vertex s to the vertex v. These labels are con-stantly decreased by means of a certain iteration procedure, and at each steponly a unique temporal label becomes invariant. The algorithm constructs aset of the vertices F � V in such a way that the current shortest path froms to any vertex of F passes only through vertices in F . Initially, F = fsg,l(s) = 0 and 8v =2 F l(v) =1. Let F consist of k vertices (1 � k < n) andu be the last vertex added to F . Then the (k+1)-th vertex for the set F isde�ned as follows.At �rst, we de�ne all the arcs (u; vi), where vi =2 F . Then for everyvertex vi =2 F , we determine the label l(vi) = dist(s; u) + w(u; vi). Afterthat among the vertices vi =2 F being adjacent with a vertex from F , weselect such a vertex v whose label has the minimum value and include it inthe set F . On terminating the algorithm, l(vi) is the weight of the shortestpath from s to vi for all vi 2 V .To perform these steps, the label l(v) is minimized as follows. For allarcs (u; v) 2 E if l(u) + w(u; v) < l(v) then l(v) := l(u) + w(u; v).In�nity will be implemented by the value Pni=1wi, where wi is the max-imum weight of the arcs incident to the vertex vi. Let h be the number ofbits necessary for coding the in�nity. Then the weight matrix consists of hncolumns and any vertex vi of G is associated with the i-th �eld having h bit



66 A.S. Nepomniaschayacolumns. On the STAR-machine, a graph will be represented as a weightmatrix.Now, we propose the main idea of the associative parallel algorithm tosimultaneously select both the shortest path and the distance for all thevertices of the given graph G.First, by means of the method being used in the procedure DIJKSTRA[12], we de�ne the current vertex vk which is included into the tree of theshortest paths and the shortest distance from s to vk. Then we de�ne sucha vertex vi from the tree of the shortest paths which is the next to last onein the shortest path from s to vk. The shortest path from s to vk is obtainedfrom the shortest path from s to vi by adding the vertex vi to it.This associative parallel algorithm will be given as procedure DistPathusing the following input parameters: a graph G given as a weight matrix;the source vertex s; the number of vertices n; the number of bits h requiredfor representing in�nity, and the binary representation of in�nity inf.The procedure returns both the distance matrix D, where in every i-throw there is the distance from s to vi, and the matrix Paths, where in everyj-th column the positions of vertices included in the shortest path from s tovj are selected by ones.This algorithm runs as follows.1. De�ne the position of the current vertex vk, which is added to thetree of the shortest paths, and the distance from s to vk, denoted bydist(s; vk).2. At �rst, de�ne positions of those vertices vj from the shortest pathstree for which there is an arc entering vk, and then compute in paralleldist(s; vj) + w(vj ; vk).3. Select the position of such a vertex vi from the tree of the shortestpaths for which dist(s; vi) + w(vi; vk) = minjfdist(s; vj) + w(vj ; vk)g.After that, select the i-th column of the matrix Paths, put 010 in itsi-th position, and write down this in the k-th column of Paths.The algorithm terminates when all vertices of G are included into theshortest paths tree.To present the procedure DistPath, we need the following auxiliary pro-cedures.The procedure ADJ(T; h; n; inf ; A) uses the weight matrix T , the numberof bits h for coding the in�nity, the number of vertices n, and the binarycode of in�nity inf. It returns the adjacency matrix A for the matrix T .The procedure WTRANS(w; h; n;R) uses the given binary string w andthe above explained parameters h and n. It returns the matrix R, where ineach i-th row there is the string vi = TRIM((i � 1)h + 1; ih; w). In otherwords, the matrix R is a transpose of the given string w.



Concurrent selection of the shortest paths and distances 67In Appendix we will show that the procedure ADJ takes O(hn) time,while the procedure WTRANS requires O(n) time.Now, we present the procedure DistPath.proc DistPath(T: table; s,h,n: integer; inf: word;var D,Paths: table);/* Here, T is the weight matrix, s is the source vertex, h is the number of bitsrequired for representing in�nity, inf is the binary representation of in�nity. */var A,R1,R2: table; U,X,Z: slice(T);k,j: integer; v1,v2: word;Begin ADJ(T,n,h,inf,A);1. CLEAR(n,Paths);2. SET(U); U(s):='0';3. k:=s; WCOPY(inf,U,D);4. /* Here, k saves the last vertex included in the set F . */while SOME(U) do5. begin v1:=ROW(k,T);6. WTRANS(v1,h,n,R1);7. /* The result of transposing the k-th row of the matrix T is savedin the matrix R1. */MATCH(R1,U,inf,X);8. X:=X xor U;9. /* We indicate by 010 in the slice X positions of the vertices which do not belongto F , but they are adjacent to the vertex vk. */v2:=ROW(k,D);10. ADDC(R1,X,v2,R2);11. /* The result of adding l(vk) and the weight of the arc directed from vk to viis written in every i-th row of R2, which corresponds to X(i) = 010. */SETMIN(R2,D,X,Z);12. TMERGE(R2,Z,D);13. /* We decrease the label l(vi) to l(vk) + w(vk ; vi) in every i-th rowof the matrix D which corresponds to Z(i) = 010. */MIN(D,U,X); k:=FND(X);14. U(k):='0';15. /* A new vertex is included in F . */X:=COL(k,A);16. X:=X and (not U);17. /* Positions of vertices from F for which there is an arc entering vkare selected by ones in the slice X . */TCOPY1(T,k,h,R1);18. /* The k-th �eld of the matrix T is stored in the matrix R1. */ADDV(R1,D,X,R2);19.



68 A.S. Nepomniaschaya/* The weights of paths from s to vk selected by ones in X are writtenin the corresponding rows of the matrix R2. */MIN(R2,X,Z);20. i:=FND(Z);21. /* The vertex vi is the next to the vertex vk in the shortest path from s to vk. */X:=COL(i,Paths); X(i):='1';22. COL(k,Paths):=X23. end;24. End.25. Remark 2. It is easy to verify that the basic procedure SETMIN(R2;D;X;Z) (line 12) is applied to the vertices of G which have not yet beenincluded into the tree of the shortest paths. Therefore in the result slice Zthe positions of such vertices are selected by ones. Hence, execution of thebasic procedure TMERGE(R2; Z;D) (line 13) does not change the rows ofD, where distances from the source vertex to the vertices belonging to thetree of the shortest paths, are written.Theorem 1. Let G = (V;E;w) be a directed weighted graph with the sourcevertex s and jV j = n. Let T be its weight matrix, where every arc weight usesh bits and let inf be the binary representation of in�nity. Then the procedureDistPath(T; s; h; n; inf ;D;Paths) returns the matrix D, where in every i-throw there is the distance from s to vi, and the matrix Paths, where in everyi-th column positions of vertices included into the shortest path from s to viare selected by ones. It takes O(nmax(h; n)) time on the STAR-machinehaving no less than n PEs.Proof. We prove this by induction on the number of vertices q in the treeof the shortest paths F .Basis is veri�ed for q = 1. On performing lines 1{2, we obtain theadjacency matrix A for the given weight matrix T and the matrix Pathsconsisting of zeros. After performing line 3, the vertex s is included into thetree of the shortest paths F . On performing line 4, the distance from s to sis written in the s-th row of the distance matrix D and it is equal to zero,and the variable k saves s.Step of induction. Let the assertion be true for 1 � q � l � n�1. Wewill prove it for l = q + 1. By the induction hypothesis, the �rst l verticesare included in the tree F by setting zeros in the corresponding positions ofthe slice U , the variable k saves the current vertex included in F , and forevery vertex vi from F the distance from s to vi is written in the i-th row ofD and positions of vertices belonging to the shortest path from s to vi areselected by ones in the i-th column of the matrix Paths.



Concurrent selection of the shortest paths and distances 69Since U 6= �, we perform the (l + 1)-th iteration. By analogy withproving correctness of the procedure DIJKSTRA [12], on performing lines6{15, a new vertex vk is added to F and the shortest path from s to vk iswritten in the k-th row of D. In view of Remark 2, adding the vertex vk toF does not change the distances from s to other vertices of F written in thematrix D.On ful�lling lines 16{17, positions of those vertices from F , for whichthere is an arc entering vk, are selected by ones in the slice X. As a resultof performing lines 18{19, we compute in parallel the sums dist(s; vj) +w(vj ; vk) for all the vertices vj selected by ones in X and save the resultsin the corresponding rows of the matrix R2. Then by means of the basicprocedure MIN(R2;X; Z) (line 20), we select a path from s to vk havingthe minimum value among all the paths selected by ones in X. Now afterperforming line 21, we determine such a vertex vi which is the next one tothe last vertex vk in the shortest path from s to vk. Since the vertex vi hasbeen included in the tree of the shortest paths before vk, we obtain i 6= k.By the induction assumption, the shortest path from s to vi is written inthe i-th column of the matrix Paths.Finally, on performing lines 22{23, the shortest path from s to vk iswritten in the k-th column of the matrix Paths. Hence, after including thevertex vk in the tree of the shortest paths F , the distance from s to vk iswritten in the k-th row of the matrix D and the shortest path from s to vkis written in the k-th column of the matrix Paths. Since the slice U consistsof zeros, the procedure terminates.Now, we evaluate the time complexity of the procedure DistPath. We�rst observe that execution of lines 1-4 takes no more than O(hn) timein view of the auxiliary procedure WTRANS. Inside the cycle the basicprocedures take O(h) time each, while the auxiliary procedure WTRANStakes O(n) time. Since the cycle is executed n times, we obtain that theprocedure DistPath takes O(nmax(h; n)). 25. ConclusionsIn this paper, we have proposed a new e�cient implementation of Dijkstra'sshortest path algorithm on the STAR-machine which allows one for everyvertex of a directed graph to simultaneously obtain the distance and theshortest path from the source vertex. In [12], to restore the shortest pathfrom the source vertex to a given vertex f , we �rst construct the distancematrix along with an auxiliary matrix being the protocol of this computa-tion. Then by means of this protocol, we restore the shortest path startingfrom the vertex f . Here, taking into account the main advantages of verticalprocessing systems, we can determine the vertex along with the arc which



70 A.S. Nepomniaschayais added to the tree of the shortest paths at each iteration. We have provedcorrectness of the procedure DistPath and evaluate its time complexity.In the same manner, one can modify the implementation of the Bellman-Ford shortest path algorithm on the STAR-machine [13] to determine forevery vertex of a directed graph the distance along with the shortest pathfrom the source vertex.References[1] Dijkstra E.W. A note on two problems in connection with graphs // Nu-merische Mathematik. { 1959. { Vol. 1. { P. 269{271.[2] Driscoll J.R., Gabow H.N., Shrairman Ruth, Tarjan R.E. Relaxed heaps: analternative to Fibonacci heaps with applications to parallel computation //Communications of the ACM. { 1988. { Vol. 31, ü 11. { P. 1343{1354.[3] Falko� A.D. Algorithms for parallel{search memories // J. ACM. { 1962. {Vol. 9, ü 10. { P. 488{510.[4] Fernstrom C., Kruzela J., Svensson B. LUCAS associative array processor. De-sign, programming and application studies. { Berlin: Springer-Verlag, 1986. {(Lecture Notes in Computer Science; Vol. 216).[5] Fet Y.I. Vertical processing systems: a survey // IEEE, Micro. { February,1995. { P. 65{75.[6] Foster C.C. Content Addressable Parallel Processors. { New York: Van Nos-trand Reinhold Company, 1976.[7] Fredman M.L., Tarjan R.E. Fibonacci heaps and their uses in improved net-work optimization algorithms // J. ACM. { 1987. { Vol. 34, ü 3. { P. 596{615.[8] Mirenkov N. The siberian approach for an open-system high-performance com-puting architecture // Computing and Control Engineering Journal. { May,1992. { Vol. 3, ü 3. { P. 137{142.[9] Nepomniaschaya A.S. Language STAR for associative and parallel compu-tation with vertical data processing // Proc. of the Intern. Conf. \ParallelComputing Technologies". { Singapure: World Scienti�c, 1991. { P. 258{265.[10] Nepomniaschaya A.S. An associative version of the Prim{Dijkstra algorithmand its application to some graph problems // Andrei Ershov Second Intern.Memorial Conf. \Perspectives of System Informatics"/ Lecture Notes in Com-puter Science. { Berlin: Springer-Verlag, 1996. { Vol. 1181. { P. 203{213.[11] Nepomniaschaya A.S. Solution of path problems using associative parallel pro-cessors // Proceedings of the International Conference on Parallel and Dis-tributed Systems, IEEE Computer Society Press, ICPADS'97. { Korea, Seoul,1997. { P. 610{617.



Concurrent selection of the shortest paths and distances 71[12] Nepomniaschaya A.S., Dvoskina M.A. A simple implementation of Dijkstra'sshortest path algorithm on associative parallel processors // Fundamenta In-formaticae. { IOS Press, 2000. { Vol. 43. { P. 227{243.[13] Nepomniaschaya A.S. An associative version of the Bellman{Ford algorithmfor �nding the shortest paths in directed graphs // Proceedings of the 6-th Intern. Conf. PaCT-2001 / Lecture Notes in Computer Science. { Berlin:Springer-Verlag, 2001. { Vol. 2127. { P. 285{292.[14] Otrubova B., Sykora O. Orthogonal computer and its application to somegraph problems // Parcella'86. { Berlin: Academie Verlag, 1986. { P. 259{266.[15] Potter J.L. Associative Computing: A Programming Paradigm for MassivelyParallel Computers. { New York and London: Kent State University, PlenumPress, 1992.AppendixHere, we propose the following auxiliary procedures.proc ADJ(T: table; h,n: integer; inf: word; var A: table);/* Here, A is the adjacency matrix for the given weight matrix T . */var i: integer; X,X1,Y: slice; R: table;BeginSET(X);for i:=1 to n dobeginTCOPY1(T,i,h,R);MATCH(R,X,inf,Y);X1:= not Y;COL(i,A):=X1end;End.proc WTRANS(w: word; h,n: integer; var R: table);/* Here, the string w will be cut into n pieces each of length h. */var v: word; i: integer;Begin for i:=1 to n dobeginv:=TRIM((i-1)h+1,ih,w);ROW(i,R):=vend;End.



72


