
Bull. Nov. Comp.Center, Num.Anal., 13 (2005), 67–75
c© 2005 NCC Publisher

Mixed vector finite element method for solving
first order system of Maxwell equations∗

O.V. Nechaeva, E.P. Shurina

Abstract. This work is devoted to the construction and study of a computational
scheme based on the mixed vector finite element method for modeling of the three-
dimensional nonstationary electromagnetic fields. Numerical study of convergence
of the mixed vector finite element method in the three-dimensional case on a class
of problems, having a known smooth analytical solution is performed.

1. Introduction

The electromagnetic processes are described by a system of the Maxwell
equations. When modeling electromagnetic fields, it is necessary to take
into account the physical continuity conditions of electric and magnetic
fields, typical of composite areas, where each of subregions has different
physical characteristics. The problem of creation of efficient algorithms for
the solution to the problems in electromagnetism is a real-life problem of
computational mathematics.

Recently, alternative to the potential formulation of the problem is mod-
eling of the electromagnetism problems in natural variables, i.e., writing
down equations for the electric field intensity and the magnetic flux den-
sity or the magnetic field intensity. At the moment, the most wide-spread
method for solving problems of electromagnetism is changing the system of
the Maxwell equations to second order equations for the electric field (E)
or the magnetic field (H), respectively [1–4]. The finite element method
(FEM) and its modifications are widely used for solving the Maxwell equa-
tions system [5–7]. The FEM is a general method for the solution of dif-
ferential equations [8]. To solve the second order equations in the natural
variables E and H, the vector FEM with a vector basis (edge elements),
where degrees of freedom connected with the edges of a finite element net, is
used. The edge elements provide continuity of a tangential component field
on the inter-element and the inter-fragmentary borders in the area with dis-
continuous physical characteristics. Another approach is a direct solution
to the system of first order equations on the basis of a mixed vector basis,
consisting of edge elements and face elements, where degrees of freedom are
connected with faces [9, 10].
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Face-elements realize continuity of a normal component of the magnetic
flux density (B). The mixed vector FEM allows solution of the electromag-
netism problems in natural variables, with simultaneous obtaining values of
electric and magnetic fields and with allowance for the physical characteris-
tics of electromagnetic fields, such as continuity of a tangential component
of the field (E or H), or a normal component of the field (D, B).

In this paper, a mixed vector variational formulation for a system of the
Maxwell equations in the time domain is constructed [11]. A mixed vector
finite element analogue of the variational formulation is obtained on paral-
lelepiped grids for edge- and face-basis functions. It is a systematic numeri-
cal research of the mixed vector FEM convergence in the three-dimensional
case on a class of problems, having a known smooth analytical solution.

2. A mathematical model

We consider the system of the Maxwell equations, describing the behavior
of the main electromagnetic field features:

rotE = −∂B

∂t
, rotH =

∂D

∂t
+ σE + J0, (1)

div D = ρ, div B = 0. (2)

The material equations are of the form

D = εE, B = µH, (3)

where E is an electric field intensity, D is an electric flux density, H is
a magnetic field intensity, B is a magnetic flux density, J0 is an external
current density, σ is a specific conductivity, ρ is an electric charge density,
ε is an electric permittivity, µ is a magnetic permeability.

Using correlations (3), and assuming µ = const, we rewrite system (1),
(2) as follows:

rotE = −∂B

∂t
, µ−1 rotB = ε

∂E

∂t
+ σE + J0,

div εE = ρ, div B = 0.

We assume that the area, in which the electromagnetic field spreads,
consists of subregions, values of the parameters ε and σ being given in each
one. On the boundaries of the two subregions (Γ), the following conditions
are given: n×E|Γ = 0.

The initial conditions and the boundary condition on the domain bound-
ary are given as follows:

E|t=t0 = E0, B|t=t0 = B0, E × n|∂Ω = Eg.
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3. Variational formulation

We define the following function spaces

H(rot; Ω) =
{

v ∈ [L2(Ω)]3 : rot v ∈ [L2(Ω)]3
}

,

H(div; Ω) =
{

v ∈ [L2(Ω)]3 : div v ∈ L2(Ω)
}

,

H0(rot; Ω) =
{

v ∈ H(rot; Ω) : v × n|∂Ω = 0
}

,

H0(div; Ω) =
{

v ∈ H(div; Ω) : v · n|∂Ω = 0
}

,

where n is the external normal vector to the boundary ∂Ω.
For incorporated spaces, the following inclusion conditions are valid

1. If ϕ ∈ H(Ω), then gradϕ ∈ H(rot; Ω).

2. If E ∈ H(rot; Ω), then rotE ∈ H(div; Ω).

We define the inner product as follows:

(f, g) =
∫

Ω
f · g dΩ.

Assuming the domain Ω does not have free charges (ρ = 0), it is possible
to formulate the required problem for the electric and the magnetic fields:

For a given external current density J0 such that div J0 = 0, find E ∈
H(rot; Ω) and B ∈ H(div; Ω) such that :

rotE = −∂B

∂t
on Ω, µ−1 rotB = ε

∂E

∂t
+ σE + J0 on Ω, (4)

E|t=t0 = E0, B|t=t0 = B0, E × n|∂Ω = Eg. (5)

Applying the scalar multiplication of functions from H0(div; Ω) and
H0(rot; Ω) to the first and the last equations from (4), we arrive to the
required variational formulation for problem (4), (5):

Find E ∈ H(rot; Ω) and B ∈ H(div; Ω) such that for ∀V ∈ H0(rot; Ω),
∀F ∈ H0(div; Ω)

(rotE,F ) = − ∂

∂t
(B,F ),

(µ−1 rotB,V ) =
(
ε
∂E

∂t
,V

)
+ (σE + J0,V ).

Using the vector identity div(a× b) = b · rota− a · rot b, we obtain∫
Ω

rotµ−1B · V dΩ =
∫

Ω
rotV · µ−1B dΩ +

∫
Ω

div (V × µ−1B) dΩ.
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Using the Gauss–Ostrogradski formula∫
Ω

div u dΩ =
∫

∂Ω
u · n dS

and taking into account the definition of the test function V , we have∫
Ω

div (V × µ−1B) dΩ =
∫

∂Ω
(V × µ−1B) · n dΩ = 0.

Then the final mixed variational formulation for the electric and the
magnetic fields assumes the form:

Find E ∈ H(rot; Ω) and B ∈ H(div; Ω) such that ∀V ∈ H0(rot; Ω),
∀F ∈ H0(div; Ω) ∫

Ω
rotE · F dΩ = − ∂

∂t

∫
Ω

B · F dΩ, (6)

∂

∂t

∫
Ω

εE · V dΩ =
∫

Ω
µ−1 rotV ·B dΩ−

∫
Ω

(σE + J0) · V dΩ. (7)

Let us write down the condition of the magnetic field conservation as
follows

∂

∂t
(µ−1B,F ) = (µ−1 rotE,F ).

This is the projection rotE on the space H(div; Ω). From the inclusion
condition 2 it follows that this projection is exact (strict). Consequently,
magnetic charges are preserved, i.e.,

div
∂

∂t
B = 0.

Since the electric field is broken, electric charges retained in the varia-
tional sense. The variational divergence has the form∫

Ω
ϕ div εE dΩ =

∫
Ω

εE · gradϕ dΩ.

Taking into account the inclusion condition 1, we obtain
∂

∂t
(εE, gradϕ) = 0 ∀ϕ ∈ H(rot; Ω), (8)

i.e., the electric field is orthogonal to all irrotational fields.
Let us write down Ampere’s variational law(

ε
∂E

∂t
,V

)
= (µ−1 rotV ,B). (9)

Changing V by gradϕ, rewrite (9) in the form

(ε
∂E

∂t
, gradϕ) = (µ−1 rot gradϕ, B).

Taking rot grad f ≡ 0 into account, we come to the condition of the conser-
vation of charge (8).
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4. Discretization of variational formulation

Assume that the domain Ω is partitioned on a set of matched elements. Let
us consider a parallelepiped element. We mark the lengths of the sides of
the parallelepiped in the directions x, y, and z as lx, ly, and lz, respectively.
Let us mark the center of the parallelepiped as (xc, yc, zc).

Define a discrete space Hh(rot; Ω) ⊂ H0(rot; Ω) entering basis functions
on one element as follows (Figure 1):

Ni = Nxii, Ni+4 = Nyij, Ni+8 = Nzik for i = 1, 2, 3, 4.

Here i, j, k –– unit orts,

Nx1 =
1

lylz

(
yc+

ly
2
−y

)(
zc+

lz
2
−z

)
, Nx2 =

1
lylz

(
y−yc+

ly
2

)(
zc+

lz
2
−z

)
,

Nx3 =
1

lylz

(
yc+

ly
2
−y

)(
z−zc+

lz
2

)
, Nx4 =

1
lylz

(
y−yc+

ly
2

)(
z−zc+

lz
2

)
,

Ny1 =
1

lxlz

(
zc+

lz
2
−z

)(
xc+

lx
2
−x

)
, Ny2 =

1
lxlz

(
z−zc+

lz
2

)(
xc+

lx
2
−x

)
,

Ny3 =
1

lxlz

(
zc+

lz
2
−z

)(
x−xc+

lx
2

)
, Ny4 =

1
lxlz

(
z−zc+

lz
2

)(
x−xc+

lx
2

)
,

Nz1 =
1

lylx

(
xc+

lx
2
−x

)(
yc+

ly
2
−y

)
, Nz2 =

1
lylx

(
x−xc+

lx
2

)(
yc+

ly
2
−y

)
,

Nz3 =
1

lylx

(
xc+

lx
2
−x

)(
y−yc+

ly
2

)
, Nz4 =

1
lylx

(
x−xc+

lx
2

)(
y−yc+

ly
2

)
.

We define a discrete space Hh(div; Ω) ⊂ H0(rot; Ω) determining basis
functions on one element as follows (Figure 2):

Figure 1. Edge functions Figure 2. Face functions



72 O.V.Nechaeva, E.P. Shurina

Fi = Fzik, Fi+2 = Fyij, Fi+4 = Fxii for i = 1, 2.

Here
Fz1 =

1
lz

( lz
2

+ zc − z
)
, Fz2 =

1
lz

( lz
2

+ z − zc

)
,

Fy1 =
1
ly

( ly
2

+ yc − y
)
, Fy2 =

1
ly

( ly
2

+ y − yc

)
,

Fx1 =
1
lx

( lx
2

+ xc − x
)
, Fx2 =

1
lx

( lx
2

+ x− xc

)
.

The incorporated basis functions possess the following characteristics.
The functions Ni guarantee the tangential continuity of electric field E and
magnetic field H across the edges and the surfaces of the elements:

div Ni = 0, rotNi 6= 0.

The functions Fi guarantee the normal continuity of magnetic flux density
B and electric flux density D across the faces of the elements:

rotFi = 0, div Fi 6= 0.

The functions Ni and Fi satisfy the inclusion condition 2. For instance,

rotN1 = rot
(

1
lylz

(
yc +

ly
2
− y

)(
zc +

lz
2
− z

)
i

)
= − 1

lylz

((
yc +

ly
2
− y

)
j +

(
zc +

lz
2
− z

)
k

)
= − 1

lz
F3 −

1
ly

F1.

The characteristics of the functions Ni and Fi allow us to conclude that they
can be chosen as basis functions.

Using the discrete spaces Hh(rot; Ω) and Hh(div; Ω), we formulate dis-
crete analogues of the variational formulations (6), (7):

Find E ∈ Hh(rot; Ω), B ∈ Hh(div; Ω) such that ∀V ∈ Hh(rot; Ω),
∀F ∈ Hh(div; Ω) the equations (6), (7) hold.

Let us seek the functions E and B on the basis of spaces Hh(rot; Ω) and
Hh(div; Ω) in the form

E =
∑

i

αi(t)Ni, B =
∑

j

βj(t)Fj .

As a result, we obtain a coupled system of ordinary differential equations
related to the factors αi(t) and βj(t):

A
d

dt
βj(t) = −Kαi(t),

C
d

dt
αi(t) = KT βj(t)−Mαi(t)−G.
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Using the Rodrigue–White scheme for the time approximation, we arrive
at the system of linear algebraic equations

Aβn+1/2 = Aβn−1/2 −∆tKαn,(
C +

∆t

2
M

)
αn+1 =

(
C − ∆t

2
M

)
αn + ∆tKT βn+1/2 + ∆tGn+1,

(10)

where entries of the matrices A, C, K, M and the vector of the right-hand
side G are defined as follows:

[A]ij =
∫

Ω
µ−1Fi · Fj dΩ, [C]ij =

∫
Ω

εNi ·Nj dΩ,

[M ]ij =
∫

Ω
σNi ·Nj dΩ, [K]ij =

∫
Ω

µ−1Fi ·Nj dΩ,

[G]i =
∫

Ω
J0 ·Ni dΩ +

∫
Γ2

(Ni × µ−1B) · n dΓ.

Let us define local matrices for the vector basis functions

[A]eij =
∫

Ωe

µ−1F e
i · F e

j dΩ, [R]eij =
∫

Ωe

N e
i ·N e

j dΩ,

[K]eij =
∫

Ωe

µ−1F e
i ·N e

j dΩ,

where Ωe is a finite element.
As a result, we obtain a specific structure of the local matrices

(Ke)T =
µ−1

6



2lxlz lxlz −2lxly −lxly 0 0
−2lxlz −lxlz −lxly −2lxly 0 0

lxlz 2lxlz 2lxly lxly 0 0
−lxlz −2lxlz lxly 2lxly 0 0
−2lylz −lylz 0 0 2lxly lxly
−lylz −2lylz 0 0 −2lxly −lxly
2lylz lylz 0 0 lxly 2lxly
lylz 2lylz 0 0 −lxly −2lxly
0 0 2lylz lylz −2lxlz −lxlz
0 0 −2lylz −lylz −lxlz −2lxlz
0 0 lylz 2lylz 2lxlz lxlz
0 0 −lylz −2lylz lxlz 2lxlz



,

Ae =
lxlylz

6
µ−1


2 1 0 0 0 0
1 2 0 0 0 0
0 0 2 1 0 0
0 0 1 2 0 0
0 0 0 0 2 1
0 0 0 0 1 2

 , Re =

 Rxx 0 0
0 Ryy 0
0 0 Rzz

 ,
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[Rpp]kl =
∫

Ωe

NpkNpl dΩ, Rpp =
lxlylz
36


4 2 2 1
2 4 1 2
2 1 4 2
1 2 2 4

 , p ∈ {x, y, z}.

5. Numerical experiments

The numerical investigation of the mixed vector FEM was carried out on
problems (4), (5) of modeling of a nonstationary electromagnetic field in the
domain Ω = [0, 1]3, t ≥ 0. Testing was carried out on the known analytical
solution:

E =

 x2y
−2xy2

2xyz

 e−αt, B =
1
α

 2xz
−2yz

−2y2 − x2

 e−αt.

The exterior current density corresponding to the analytical solution has the
form

J0 =
1

αµ

 2y
−4x

0

 e−αt + (σ − εα)

 x2y
−2xy2

2xyz

 e−αt,

where σ = 1 (Om·m)−1, ε = ε0, µ = µ0, α = 107.
In the table below, the results of the numerical solution of the problem

on a number of nested grids are presented. We use here the following nota-
tions: NE

i and NB
i are the dimensions of spaces Hh(rot; Ω) and Hh(div; Ω),

respectively; h is a spatial in all the three directions; ∆t is a time step;
∆E and ∆B are the relative errors of the approximate solution for the
fields E and B respectively at the point (0.4, 0.4, 0.4) at the time moment
t = 2.01 · 10−10 s; ∆E = |E − Ẽ|/|E|, ∆B = |B − B̃|/|B|, E and B are
the analytic solutions, Ẽ and B̃ are the numerical solutions.

On every time step, the resulting systems of linear algebraic equations
(SLAE) are solved by the conjugate gradient method, the condition of the
solver exit being reduction of the ratio error in 1014 times. Dimensions of
the SLAE are provided in the table.

The result of the given study verifies stability and convergence of the
presented computational scheme on smooth solutions.

Results of modeling on a number of nested grids

NE
i NB

i h ∆t ∆E ∆B

540 450 0.2 2 · 10−12 4.658 · 10−2 4.548 · 10−2

3630 3300 0.1 1 · 10−12 1.165 · 10−2 1.137 · 10−2

26460 25200 0.05 5 · 10−13 2.913 · 10−3 2.842 · 10−3
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