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Analysis of noise stability of strip-transformation 

F.A. Murzin, N.A.Ryaskina 

Abstract. In the paper, variations of the strip-method are investigated. Namely, we 

considered variants based on using different matrices: Hadamard, Haar, Frobenius, S-

matrices, etc. These variants of the strip-method were implemented. The main purpose is 

to study the quality of restoration of one-dimensional signals (images are not considered) 

for various matrices in the case of impulse hindrances. Various types of matrices and 

signals have been tested. A theoretical estimation in terms of spectral coefficients of 

decomposition is proposed for the norm of error for the strip-transformation based on a 

Hadamard matrix in the case of an impulse hindrance.  

Keywords: signal processing, orthogonal transformation, strip-method, Hadamard matrix, 

impulse hindrance, error estimation. 

1. Introduction 

An important problem of signal transmission through communication channels is 

the reduction of the level of hindrances and distortions and the accuracy 

increasing (or error decreasing). One of the methods of increasing the noise 

stability by information transfer and storage is the strip-method [1].  

The advantage of this method is as follows: we have a linear combination of 

fragments of an initial signal or image at the starting point, so each fragment of 

the transferred message bears information about all fragments of the initial 

message without exceptions. It allows us, in case of loss or damage of one of 

fragments, to restore the whole signal or image without appreciable distortions.  

At the terminal (receiving) point, a mixture of the signal and noise (received 

from the communication channel) is exposed to the inverse procedure. As a result, 

impulse hindrances are "stretched" lengthwise for the whole duration of the signal 

with simultaneous reduction of their amplitude. This leads to the reduction of a 

relative level of hindrances and, accordingly, to an increase in noise stability. The 

method reminds somewhat of the hologram, and it is widely used at transferring 

signals and images from satellites, since in ionosphere there can be a short-term 

loss of communication, i.e. the whole fragments of signals or images may 

completely vanish. 

In the strip-method, the Hadamard matrices from the class of orthogonal 

matrices are usually used. Orthogonal matrices and the transformations 

constructed on their basis are widely applied to signal and image processing [2–

5]. We can notice that although the strip-method is used for data transmission 
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from satellites, it is poorly studied even for the elementary impulse hindrances 

how the size of errors at signal restoration depends on the matrices.  

In this paper, variations of the strip-method are investigated. Namely, different 

variants of matrices used in this method were considered: Hadamard, Haar, 

Frobenius, S-matrices, etc. The main purpose is to study the quality of restoration 

of one-dimensional signals (images are not considered) for various matrices in the 

case of impulse hindrances. Experiments are carried out and a theoretical 

estimation is presented. 

2. STRIP-transformation of signals 

According to [1], we give a definition of the notion "strip-transformation". At the 

first stage of this transformation, one-dimensional signals are split into blocks of 

identical length.  

We assume that the vector  nvvv ,,1 

  is given and mkn  . Therefore 

it is possible to write  nmkmmm vvvvvvv ,,,,,,,,, 1)1(211 


 . With this 

vector, the following matrix of the size mk   can be associated 
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In addition, we assume that the matrix of the size kk   is also given 
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Usually H is a Hadamard matrix. Thus, the direct strip-transformation consists 

in multiplication of  these matrices , and we obtain 
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Here it is necessary to take into account that any i -th line of the result is a 

linear combination of all initial line-pieces of a signal with coefficients from the 

i -th line of the matrix H . The holographic property of the transformation 

follows from the fact that the i -th line-piece of the result comprises the 

information about all line-pieces of the initial signal. 
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Further, the matrix can be transformed to a vector and as a result we obtain 

 ''

1)1(

'

2

'

1

''

1

' ,,,,,,,,, nmkmmm vvvvvvv 


 . 

The vector 'v


 is called the result of the strip-transformation of the vector v


 

with the help of the matrix H , and this fact is designated as )(' vstrv H


 . 

For the Hadamard and other similar matrices, there is a property 

EkHHHH TT  . Therefore, to execute the inverse transformation, it is 

necessary to use 
TH . Actually, different estimations show that it is better to use 

orthogonal matrices. They give an error smaller in size than others. As a result, 

we obtain )(
1

QH
k

A T  . The initial signal is restored from the matrix A  by 

its extension into a line. 
 

 
 

Figure 1. A general scheme of the strip-transformation 

3. Some classes of matrices 

Further, let us use the following designations. We suppose that the lines and 

columns of matrices are numbered by integer non-negative numbers, including 

zero. Next, if ija  is an element of a matrix, then i is the number of a line, j is the 

number of a column. We assign an impulse hindrance setting one element of the 

matrix Q  equal to zero. It is obvious that it is equivalent to setting one element 

of the vector 'v


 to zero. 

The matrix    1,0,  njiaA ij  is called orthogonal, if a scalar product 

of any two different lines is equal to zero, i.e. for any 21 ii   the equality 
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jiji aa  is valid. It is known that it is equivalent to orthogonality by 

columns. The orthogonal matrices whose elements are 1 are called the 

Hadamard matrices. We will use the various orthogonal matrices as the matrix 

H  from the strip-method definition. 

3.1   Hadamard matrices 

In papers [6–8], the methods of construction of normalized Hadamard matrices, 

known as the Paley constructions, are described. Various examples of application 

of  Hadamard transformation can be found in [9–11]. 

Definition 1. Let р be a prime number, р 2,  be an arbitrary integer which 

is not divided by р. A Legendre symbol ( pα ) is equal to 1 if the equation 

)α(mod2 px   has a decision and 1 otherwise. 

It is well-known [12] that  the following formula is true 

Mp 1)α(  ,   



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p

x

p
xM ,  )1(

2
1

1  pp . 

Here square brackets designate the integral part of a fraction. We notice that the 

resulted formula is very simple for calculation. Certainly, to calculate it on a 

computer, it is not necessary to raise 1 to the power. It is enough to supervise a 

property M of being even. Setting  
2

2 MMR  , we obtain  RM 211  . 

Definition 2. If )( jiA   is )( nn  - matrix, )( skbB   is )( mm  - 

matrix, then Kronecker product BA is called )( nmnm  - matrix. 
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Let us give a short description of some classes of Hadamard  matrices. 

3.1.1. Matrices of order 
kn 2  are defined by induction. 

For к = 1, let 
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If kH  is already defined, then let 
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kk HHH  11  or, what is the same, 
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3.1.2. Matrices of order 1 pn , where )4(mod3p  is a prime number. 

We define )()χ( pkk   and  

1ji ,  0( i  or 0j ), 

),,1(),χ( jipjiijji  , 

)1(,1 piii  . 

Proposition. The following equalities are valid: 

1) ),1,(, jijijiji   , 

2) ),1,(,, jijikjkiji   , 

3) )1,(),χ(,  kikkii , 

4) )1,(,,,   kikpiikii  . 

The proof directly follows from well-known properties [12] of the Legendre 

symbol. 

The first equality from this proposition means that the matrix A is 

antisymmetric. The second equality shows that on any line parallel to the main 

diagonal all elements are equal. The third equality gives, in particular, a structure 

of the first line: it is ),2χ(),1χ(,1,1 . From the fourth equality, it follows that 

in the first line, if we consider its piece 1,13121 ,,, pααα   laying above the 

main diagonal, the elements equidistant from the ends have opposite signs. Thus 

the whole piece is restored by its half. 

As an example, we can consider a matrix of the 12-th order, using for brevity  

instead 1, respectively. 
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а) initial signal b) restored signal c) error 

 

Figure 2. Strip-transformation of the function )8/sin(x ; a Hadamard matrix is used; kn 2  

16n  

 

3.1.3. Another class of Hadamard matrices has been considered. These matrices 

can be represented in a form 
2211 PXPXHn  , where   is the 

Kronecker product. Thereby, 
1P  and 

2P are the Hadamard matrices of the 

second order satisfying the condition 01221  PPPP TT ; 
1X  and 

2X  are 

rarefied matrices which satisfy the condition 01221  TT XXXX . 

An elementary example: 
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Computational experiments for matrices mentioned above are represented 

below. 
 

  
 

a) initial signal b) restored signal c) error 

 

Figure 3. Strip-transformation of the linear function 0)3,2( Q  
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3.2.   Conference matrices 

A conference matrix 
nC  of order n  is  nn  matrix [14] which has zeros on 

the main diagonal and other its elements are equal to 1 or –1, and it satisfies  the 

equality   n

T

nn EnCC 1 . The name "conference" is the result of using such 

matrices when constructing the networks having one and the same attenuation 

between any pair of terminals. Let 114  ptn , where p  is an odd prime 

number. 

Further we define 
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, and  ijn bB 1  is a symmetric matrix. 

Thereby we suppose that 0ijb  for ji  , 1ijb  when ij   is a square 

modulo p , 1ijb  when ij   is not a square modulo p . A cyclic matrix 

nC  will be a conference matrix. A simple example of such matrix is 
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Computational experiments for the matrix mentioned above are represented 

below. 

 

   
a) initial signal b) restored signal c) error 

 

Figure 4. Strip-transformation of a linear function with the help of a conference matrix 
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3.3.   S-matrices 

The S-matrix is defined [15] by induction. We enter a designation nS  for any 

matrix of order n . In fact, we construct a matrix of order 1n . The matrix 1nS  

is derived from a Hadamard matrix of order 
kn 2 by deleting its first line and 

column. Afterwards, the elements in the Hadamard matrix are replaced by the 

following rule. The elements equal to 1 are replaced with zeros,  01 , and 

elements equal to – 1 are replaced with units, )11(  . Here matrices of the first 

and third order are represented 
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The next properties of S-matrices are known:  
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where nI  is an identity matrix and nJ is a matrix all elements of which are 

units. 

   

a) initial signal b) restored signal c) error 
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Figure 5. Strip-transformation of a linear function on the basis of S-matrix 

3.4.   Haar matrices 

A Haar matrix [13] is an orthogonal matrix, i.e. EAAAA TT  . Haar matrices 

are constructed for dimensions kn 2 . It is well known that Haar transformation 

is one of the simplest wavelet-transformations [16–17]. 

Examples of matrices of the 4-th and 8-th order are represented below 
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It is rather simply to formulate a general algorithm for constructing the Haar 

matrices. When the dimension increases, the subsequent "waves" are twice shorter 

than previous and their amplitudes are multiplied by 2 . 

   
a) initial signal b) restored signal c) error 

 

Figure 6. Strip-transformation of a linear function by means of a Haar matrix, n=64 
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a) error for n = 256 b) error for n = 1024 

 
Figure 7. A Haar matrix is used, errors are given for high dimensions 

3.5.   Frobenius matrices 

A Frobenius matrix nA  of order n , i.e. its dimension is nn , looks like [18] 
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where the corresponding elements are taken from a polynomial 
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Such matrix is called an accompanying matrix. If we apply induction by n and 

take into account decomposition by the first line, then we notice that 
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a) restored exponential function b) error 

Figure 8. Strip-transformation of exponential by a Frobenius matrix for n = 1024 

It follows from experiments that this matrix works well, but in the initial part 

we have a "wild" error. As a decision of this problem, we suggest the following 

approach. We can start with any unnecessary signal, which allows us to omit the 

initial part and restore the next informative part of a signal without a strong error. 
 

4. The restored signal error estimation for impulse hindrance in the 

case of STRIP-transformation based on Hadamard matrix 

Let us consider the strip-transformation on the basis of a Hadamard matrix. We 

will try to estimate how the distortion received in a restored signal depends on the 

hindrance brought in an image of the strip-transformation. 

It is well known that the lines of a Hadamard matrix are the Walsch functions 

[13], and further we use the corresponding terminology. Let us designate by 

)(kWal  the function corresponding to the k -th line of a matrix. 

Now let a signal be represented in the form 





1

)()(
N

ok

kWalkaY . Further we 

apply the strip-transformation on the basis of a Hadamard matrix of order N. We 

assume that there is an impulse hindrance which nulls one component of the 

received vector. Let now Y   be the result of an inverse transformation, i.e. the 

restored signal. 

Proposal. The following error estimation is valid 
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|)(|max
1

||'|| ka
N

YY   . 

Proof. If we use designations from Section 1, then we have 

QH
N

AHAQ 11
,  . 

Further we have a matrix of hindrances   of the same dimension as the 

matrix A , in which only one component is not zero, i.e.   looks like as 

   

0 0 0

  0 0

0 0 0
j

c i

 
 

   
 
 
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Analogously, taking into account a hindrance, we obtain 

  11 1
)(

1
' H

N
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N
A . 

So, it follows that |)(|max
1

||
1

||'||||'|| ka
N

c
N

AAYY   . 

5. Conclusion 

In this paper, different variants of matrices used in the strip-method are 

investigated: the Hadamard, the Haar, conference matrices, etc. The methods of 

construction of such matrices are considered. The main question is the quality of 

signals restored by using different matrices in the case of impulse hindrances. 

A brief review of the results obtained is as follows. As for a linear function, we 

can say that the maximum error appears at the beginning of the restored signal for 

all matrices here considered. With the least error, such signal has been restored 

with the help of a Haar matrix. The same result is true for exponentials, but we do 

not give the details here. In this case, we have several peaks, one of which is 

essentially greater than the others. Thus, for exponentials, the Haar matrix works 

better. As for a sinusoid, the situation is more difficult. For example, a Hadamard 

matrix of order n=p+1, p=3 (mod4), р is a prime number, is more suitable for 

processing a sinusoid signal. Probably, such matrices can be efficiently used for 

processing the limited periodic functions. 

The estimation of the norm of error for the strip-transformation based on 

Hadamard matrix in the case of impulse hindrance in terms of spectral 

coefficients of decomposition is obtained. The structure of the matrix 1H  

considered in the last section of this paper is obvious. There is only one column 

with non-zero elements and they are equal to c , since all elements of a 

Hadamard matrix are equal to 1 . Also, we can see that the error in the restored 
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signal is N  times less than a hindrance brought in the image of the strip-

transformation, and this is an important circumstance. 
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