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Problem of determining the source from
a Hopf-type system

A.X. Mukimov, B.J. Mamasoliyev, Kh.Kh. Imomnazarov,
[LK. Iskandarov

Abstract. A one-dimensional inverse problem for a quasilinear hyperbolic system
with an unknown excitation source is considered. The Cauchy problem for a non-
linear Hopf-type system is studied. The Fourier transform is used to reduce the
inverse problem to a direct problem, and the existence and uniqueness theorem
is proved. The approach used can become the basis for constructing an effective
numerical algorithm for the inverse problem.
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Introduction

The theory of two-phase filtration finds important application in solving
problems of petroleum engineering, soil science, biomechanics and others
practical areas. Increasing attention is being paid to modeling of multiphase
flows in connection with burial radioactive waste. Simulation and numerical
analysis of two-phase filtration in elastically deformable porous media are
important element in the development of cost-effective and safe cleaning
devices, reducing the number of laboratory and field experiments, identify
the main mechanisms, optimize existing strategies and evaluate possible
risks. In recent years, interest in processes has significantly increased of
multiphase filtration in low-permeability fractured porous collectors. One
of the important reasons for this is the fact that fractured hydrocarbon
deposits contain more than 20 percent of world oil reserves [1].

In this paper, we study the inverse problem for a system of the Hopf-type
equations with an unknown source, under the condition of overdetermination
of solutions, specified on a fixed line. The original problem is reduced to the
study of the Cauchy problem for a system of ordinary nonlinear integrod-
ifferential equations containing a convolution, for which unique solvability
has been proven. Unique solvability of the inverse problem is proven, and a
representation of its solution is obtained through the solution of the above-
mentioned Cauchy problem [2]. Similar problems for linear and semilinear
equations are considered in [3-5]. Inverse problems with final overdetermi-
nation are studied for parabolic equations and equations of a viscous in-
compressible fluid in [6-8]. For studies of direct problems for Burgers-type
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equations and systems, see, for example, [9-11]. The issues of correctness of
the linear inverse problem for a three-dimensional equation of mixed type
of the second kind of the second order in an unbounded parallelepiped are
considered in [12]. Similar problems for a system of the Hopf-type equations
in the class of analytic functions are considered in [13-16].

1. The Hopf type system of equations

The Cauchy problem in a strip Hjg ) = {(t,2) : 0 <t < T, x € R} for a
system of the Hopf-type equations is considered [17-19]:

% + u% = —b(u —v) + f(z)g1(¢), (1)
% + v% = eb(u —v) + f(2)ga(t), (2)
uli=o = u*(x), vli=o = v°(x). (3)

where the function f(z) is given, € = p1/p2 is a dimensionless positive con-
stant, b is a positive constant. The unknown functions gx = gx(t) (k = 1, 2),
t € [0,T], and solutions u, v of the system of equations (1), (2) must be
determined. The system (1), (2) differs from the system of two-velocity
hydrodynamics in the dissipative case due to the coefficient of friction, the
absence of pressure and the condition of incompressibility. For this rea-
son, problems arise associated with the Hopf-type system, which gives the
simplest quasi-linear system of equations [20].

2. Inverse source problem for a Hopf-type system

Let us assume we have additional override conditions

u’m:() = QD(t), U’x:() = 7/1(?5)7 te [OaT]7 (4)

and the functions ¢(t), ¥(t) satisfy the matching conditions

(0) = u’(0), ¥(0) =2°(0),

The functions u®(x), v%(z), f(x) and @(t), 1 (t) are assumed to be real.
Next, we study the real solution to the classical inverse problem.

Suppose that there exist the Fourier transforms U(t,y), V(t,y) (with
respect to x) of the solution u(t, x), v(t,z) for (1)—(3)

U V(t0) = o5 [ (ulta)ot0)eds = Fuo)(ty), - (5)

21 J_
[e.e]

(u(t,x),v(t,z)) = / (U(t,y),V(t,y))e “de = F~1(U,V)(t, ).

—0o0
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Applying the Fourier transform in variables x to (1), (2) we have

u? n
8Ugtay> 45 F (25 (t9) = —b(U )~ V() + Fan(t),  (6)
v? n
8V(gi, Y, %F@T«) (t,y) =eb(U(t,y) = V(t,y) + F(y)g2(t),  (7)
where F(y) = F(f)(y).
Let in (1) and (2) = 0. Using (3) and (5), we obtain

o) +iolt) [ Ut ) dy = —bt) — (8) + F(0)r ),

g (t) = f(lo){sa(t) +iplt) [~ Uity dy}, ®)
1 ~ . o0
galt) = f(o){w) it [ vy dy}. )

In formulas (8) and (9)
P(t) = @e(t) +b(p(t) = (1), D(t) = vu(t) — eb(ep(t) — ¥(1))-

Further, without loss of generality, we can assume that f(0) = 1.

Since we are looking for a real solution u(t,x), v(t,z), gi(t), g2(t), it is
worth considering the real parts of the functions g¢i(t), g2(t) in (8) and (9)
(see [21, Remark 3.1])

Red o(0) + istt) [

o)

yU(t,y) dy},

Re{uxt) +iv) |

—00

yV(t,y) dy}.

Suppose that the functions U%(y) = F(u%)(y), V°(y) = F(v°)(y) are con-

tinuously differentiable on (—oo, 00), F(y) and F(y) continuous on (—o0, 00),
the functions ¢(t), 1 (t) are continuously differentiable in [0, 7] and

(L+ [T )]+ (L + [y [F ()] +

500+ [ Fw)| <a®). ye (o) (o)
L+ [y M VO + (1 + [y F ()] +

VW) + [ F W] < bl ye(-oo0) ()

where A = const > 0 and k£ > 0 is an integer.
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Since
F)(ty) = [ Uty - 2)ds
we represent

u2
F(a—>(t,y) = iyF(u?)(t,y) = zy/ U(t, 2)U(t,y — 2)dz

ox e

and substitute the real parts of gi(t), g2(t) from (8), (9) into (6), (7) to
obtain the integro-differential equation

Wty . ” /°° U(t,2)U(t,y — 2)dz = —b(U(t,y) — V(t,y)) +

i .
Re{ () +ipl0) [ yU(t.w)dy} o) (12)

av;i, W 4y /Z V(t,2)V(ty — 2)dz = eb(U(t,y) — V(t,y)) +
Re{(0) +iw(e) [y () dy} (o), (13)

with parameter and initial Cauchy data
U(0,y) =U%y), V(0,y)=V(y). (14)

Note that system (12) and (13) are not the result of applying the Fourier
transform to system (1) and (2), since, instead of g; and g2 in (8), (9), we
take only their real parts.

We will prove the existence and uniqueness of solution to (12)—(14) using
the method of cutting functions [21]. We introduce a sequence of cutting
functions in the class such that

17 ‘y’ S 1-“ 27
S = 15
~(Y) {0’ ly| > N (15)

and approximate (12)—(14) by the problem

UtN(t,y) + iy /_OO SN(z)UN(t, 2)Sn(y — z)UN(t,y —z)dz
= —b(U™(t,y) = V™ (t,)) + Re{ p(0) + (1) / uSn U ) dy }F(y),
- (16)
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VNt y) + iy /_Oo SN (VN (t 2)Sn(y — VN (ty — 2)de

ySn (VN (t,y) dy}F (),
(17)
(18)

= (U™ (1) — V¥ (t.9) + Re{0(0) + (1) /

—0o0

UN(0,y) = Sv(m)U°(y), VN(0,y) = Sn(y)V°(y), N >3.

By virtue of (15), we can replace the integrals in (16), (17) with integrals
over a segment [—N, N| and obtain

N
UN (t,y) + iy / Sn()UN (,2)Sn(y — UM (t,y — 2) d=
-N
N
ySn (U™ (t,y) dy } F(y),
N

= b0 () = VY (t9) + Re{p0) +iott) [
(19)

N
VtN(t, y) + iy/ SN(Z)VN(t, 2)Sn(y — z)VN(t,y —2)dz
-N

N ~
ySn )V (ty) dy } F (),
N

= WU (1)~ VY (t) + Re{i00) + i0(0) [
(20)

Solving the Cauchy problem for system (18)-(20) we obtain a system of
nonlinear integral Volterra equations of the second kind

e 4+ e~ b(1+e)t 1 — e~ b(1+e)t
UN(t,y) = ———Sn()U°(y) + B B

1+4+¢
B + 6—b(1+€)t t N
(1+¢)? /0

ySy ()0 (7, 5)dy }F(y) -
N
N
i [ SMAU S - 90 (ry - 2] +

-N

Sn(y)VO(y) +

(eeblFem) |:Re{<,5(7’)+i(,0(7‘)/

N

(1= 05 [Re{i(r) + i01r) [ uSy V™ (rd o) -

N
zy/ Sn(2)VN(r,2)Sn(y — 2)VV(r,y — 2) dz] dr +
N

(st [ s

N ~
ySN (U™ (r,y)dy } P (y) —
N

N
w [ SvEUN Sy~ DUy - 2) dz] n
N
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N

(1200597 [Rei) + i01) [ uSo)V ™ () b PO~

N
iy/ SN(z)VN(T, 2)Sn(y — z)VN(T, y—z) dz] ] dr, (21)
-N

(1 _ e—b(1+a)t)
1+«

1 + Ee—b(l“r&)t

1+e¢
N

(e + 1497) [Re{gr)4i0(r) [y (U™ () ) -

g
VN (t,y) =

e(1— e 1)
(1+2) /0

Sv(yU°(y) + Sv(y)V°(y) +

N
zy/ Sn(2)UN (1,2)Sn(y — 2)UN (1,y — 2) dz| +
-N

N

(1= " bigr) [Re{zﬁ(ﬂ + it)(7) / LSV V(T vy }E(y) -

N
—iy/ S’N(z)VN(T, 2)Sn(y — z)VN(T, Y — z)dz]
N

ce—b(l+e)t  pt N i
1+<1+5)2 /0 [5(1 — 1) [Re{¢(7)+w(7) / NySN(y)UN (7, y)dy}F (y) —

N
zy/ SN(Z)UN(T,Z)SN(Z/—Z)UN(T,y—Z)dZ] +
-N

N

(100 [Ref )+ 060) [ usnV Y} Ew) -

N
z'y/ SN(Z)VN(T, 2)Sn(y — z)VN(T, Yy — z)dzH dr. (22)
—-N

Using the method of contraction mappings, it can be shown that for fixed
N > 3, there exist classical solutions U (¢,y), VN (t,y) € Ct{f (o £51) of
problem (18)—(20) in IIjg ;. Here the constant ¢, is positive and, generally
speaking, depends on N.

Following [5], taking into account [21, Lemma 3.1], a priori estimates of
solutions UM (¢,y), VN (t,y) are established:

PN ) < e, [PV ) S eay (Gy) € gy (23)
Here and below, the constants ci, c2, ... do not depend on N, while ¢,
depends on dy(4), d2(4), |¢llc11]s 1¥llctjo,r) and does not depend on N,
for all N > 3. From equations (19), (20) we obtain

‘UtN(t7 y)’ < c3, "/tN(t7 y)‘ < ¢4, (t7 y) € H[O,t*t}' (24>
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Differentiating both parts of system (21), (22) with respect to y, we can
show that the following estimates are valid

|U;V(t7y)| < ¢s, |VyN(t7y)| < ¢, (tvy) € H[O,t*]' (25)

Using (23)—(25) and Arzela’s compactness theorem in C, we can choose
subsequences {UN*}, {V Nk} such that

v s U, v SV, N — oo, (26)

uniformly on each compact K in Iljg ).
The uniqueness of the solution is proved in the usual way. Thus, we
arrive at the following

Theorem. Let conditions (10), (11), f(0) = 1 be satisfied and ¢, €
CY0,T). Then there exists a unique solution U(t,y), V(t,y) to system
(12)-(14) in the strip Iy,). The value 0 < t. < T depends only on the

constants di(4), da(4) and [|¢llcrjorys 19llcror-

Let us now prove that the solution u(t,x), v(t,x), g1(t), g2(t) to the
original problem (1)—(4) is

(wlt.),o60)) = [ W), Veg)e = da, (27)
() = Re{p0) +ig(0) [~ w0t v}, (28)
() = Re{ () + 100 [ Vit dy}: (29)

It is easy to see that g1(t) and go(t) are real functions. We will show that
u(t,x), v(t,x) are also real functions and satisfy (1)—(4) (where g;(¢) and
g2(t) are defined in (28) and (29), respectively). We apply the inverse Fourier
transform to (12)—(14) by y and see that u(t,x), v(t, z) are a solution to the
problem

ou ou
En + Uor = =b(u—v)+ f(x)g1(t), (¢, 7)€ Mgy, (30)
ov ov
a + U% = eb(u - ’U) + f(x)QQ(t)’ (t7 'T) € Ht[O,t*b (31)
uli—o = u°(z), v|i=o = °(z). (32)
or
ou ou ou
aitl + Ulaixl - U267; = _b(ul - Ul) + f(x)gl(t)v (t,fl)) € H[O,t*b (33)
ov ov ov
8—; v18—$1 - vza—; = eb(uy —v1) + f(x)ga(t), (t,x) €My, (34)



30

A.X. Mukimov, B.J. Mamasoliyev, Kh.Kh. Imomnazarov, I. K. Iskandarov

Ous Ous ouq

T tugs Tuag = —blua—va), (L) €llpyy,  (35)

8’()2 81)2 avl
E + Ul% + 02% = Eb(“? - 'UQ), (tvx) € H[O,t*]a (36)
w)i—o = u(z), vili=o =1°(x), u2li=0 =0, wv2l=0 =0. (37)

where u1,v1 and us, vy are the real and imaginary parts of the functions u,
v (u = uy + fug, v = v +iv2), and ¢1(¢), ¢g2(t) are the functions in (28),
(29). Since uq, v and ug, vy is a classical bounded solution of (33)—(37) (see
(26)), we can consider system (35), (36) as a linear system with respect to
ug,vo and apply the method of characteristics (see, for example, [10,22])
to obtain uy = 0, vo = 0. Consequently, © = u;, v = v; is a real solution
of (30)—(32) or (which is the same) (1)-(3), and ¢1(¢), g2(t) are given by
equations (28), (29).
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