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On existence of optimal double-loop
computer networks*

E.A. Monakhova

A class of two-dimensional regular graphs called circulants and its special case
of the double-loop networks are considered. Such graphs provide a practical interest
as reliable interconnection networks for the multimodule supercomputer systems.
A solution to the problem of determining the best double-loop networks with the
minimum of a diameter and mean distance for the structures of computer systems
is considered. A new method of geometrical representation (visualization) of the
optimal circulants at the plane and connected with it complete design of transfor-
mations and movements generating the optimal graphs are obtained. Some new
classes of analytical representation of optimal circulants are proposed. New results
on solution of a problem of existence for the optimal two-dimensional loop networks
are presented.

1. Introduction

In this work we consider an important class of regular graphs known as
circulant networks [1-7, 9, 12]. Particular cases of these graphs are realized
as interconnection networks in ICL DAP, ILLIAC IV, MPP, CRAY T3D,
Intel Paragon etc. _

In general case a circulant is defined as the network G(N; sy, s2,. .., s,)
with N nodes, labeled as 0,1,2,...,N — 1, having i & s1,i + s9,...,i %+ s,
(mod N) nodes adjacent to each node i. The sequence S = (s;) (0 <
§1 < 52 < ... < 8y, < (N +1)/2) is a sequence of the generators of the
finite Abelian automorphism group associated to a graph. The degree 2n
(n is dimension) of a node in an undirected graph G is the number of edges
incident to it. In what follows we will apply and distinguish a representation
of self graph G(N; S) and its description {N;S}.

The graph G(N;1,s;,...,8,) when s; = 1 is a particular case of the
drculants. Such circulants known as loop networks have been studied in (3,
4. 6-14, 16]. The synthesis of optimal circulants is a fundamental problem of
graph theoretical optimization representing the generalization of the (d, k)-
graph problem. This problem is in a search for a graph with the minimum
of a diameter and a mean distance among all circulants having N nodes
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and dimension 7. Let this set be (N, n). The diameter of G € T(N,n) is
defined by d = max;; d;;, where d;; is the length of shortest path from a node
i to a node j. The average distance of G is defined as d = mi\lf_—lf i dije
Let d(N) = ming {d(G(N;9))}.

Let for any graph G € T(N,n) K, ., denote the number of nodes to be
attained from the node 0 by using at most m generators, and let K; ., be
the upper bound for K, . Let L, ,, = K nm — Knm-1, L}, , be the upper
bound for Ly, on set T(N,n). The values of K} ., L}  for any n,m were
determined by Korneev [15], Wong and Don Coppersmith [7]. For n = 2
K;n=2m*+2m+1, Ly, = 4m.

The graphs achieving the upper bounds are called optimal, namely, a
graph G € T(N,n) is optimal, if L, m = L}, for any 0 < m < d* - 1
and Lpgx = N — K, ;%—1, where an optimal diameter d* is given from the
correlation K7 ;%3 < N < K7 +. The optimal diameter d* = ulb(N) is
the exact lower bound of d(N). As it is shown [15], the optimal graph has a
minimum d and d, and a maximum of reliability and connectivity among all
graphs from T'(V,n). Note that a term “optimal” is used in the literature
in different senses. For example, in [8-11] a graph is optimal if d(G) = d(N)
and tight optimal if d(G) = ulb(N). The term "optimal” used here is more
stronger because it implies also the minimum of mean distance, namely, the
coincidence of mean distance with its exact lower bound.

The diameters of optimal circulants are computed from the expression
for K .- The general dependence is in that a diameter is proportional
to ¥/N. Wong and Coppersmith [7] gave the lower bound for d(N) equal
(V2N —-3)/2in the case of n = 2. The exact lower bound for d(N) in the case
when n = 2 should be ulb(N) = [(v2N =1 - 1)/2], where [z] denotes the
smallest integer greater than z or equal to it. This lower bound was pointed
out by Monakhova [6], Boesch and Wang [2] and Bermond et al. [4].

For circulant graphs with n = 2 Monakhova [6], Boesch and Wang [2],
Bermond et al. [4], Beivide et al. [5] showed that for any N > 4 exists the
optimal graph G(N; sy, 52) for the values of s; = ulb(N), s; = ulb(N) + 1.
The exact formulation of this result is the following [6].

Theorem 1. For any natural N > 4 the optimal circulant G(N; sy, 82)
exists and has a description in the form

{N;s,s+1}, s=[(V2N-1-1)/2],

where |z is the nearest integer to z.

The problem of finding of the optimal two-dimensional circulants with
s1 = 1 or double-loop networks is more difficult because such graphs exist
not for all values of N. For example, Monakhova [13] and Bermond et al. [4]
proved that for N = 2t2+2t+1, d(N;1,2t4+1) = ulb(N), but for N = 2¢2+42¢
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Du et al. [8] and Tzviely [10] showed that d(N) = ulb(N) + 1. Du, Hsu,
Li and Xu [8] obtained new classes of values of N for which double-loop
networks can be found, that achieve lower bound ulb(N). In addition to
these 16 {pfinite classes of values N, Monakhova [3] indicated some new
such classes.

In [10] Tzvieli has identified several optimal families of networks, each of
which intersects each R[d] = {N4_; +1,..., Ny}, where Ny = 2d? + 2d + 1,
in a set of cardinality O(v/d). Results in [10] also include bounds of optimal
generators and an algorithm to compute those generators whenever they
exist. Though this gives a much wider coverage than the classes defined in
[8], many values of N remain yet to be classified.

In [3, 11] some necessary and sufficient conditions of existence of the
optimal double-loop networks were pointed out. Bermond and Tzvieli [11],
Monakhova [3], Mukhopadhyaya and Sinha [9] determined new dense infinite
families of values of NV, that are optimal. These families cover almost all
elements of R[d] except one or two values, if d or d + 1 is prime [3, 11], and
cover 92% of all values of N up to 10° [11].

In these works the following problem remained unsolved for further in-
vestigation: obtain the necessary and sufficient conditions of the existence
of two-dimensional optimal loop networks and classify those N’s for which
the tight optimal double-loop networks can be found.

2. Equivalence classes of optimal circulants

Henceforward we will use the knowledge how one may get other descriptions
of a circulant, if one of its descriptions is known [3].

Let us have some description of the circulant graph G(N;'S). Multiply all
si by an element ¢ of leaden system of deductions (mod N). As a new s} we
take the residues of the division ts; to N, if they are less than [N/2] or take
the additions of these residues to NV, if they are greater than [N/2]. The given
transformation transferring all s; into s/ is called equivalent transformation
and the relation between sets S and S’ and also between the graphs G(N; S)
and G(N; S') - the relation of equivalence. If now ¢ runs the leaden system
of deductions (mod N), then all graphs G(N;S') given from G(N; S) form
the equivalence class. The equivalence of graphs G(N; S) and G(N; S’) has,
as a consequence, their isomorphism. The reverse property, generally, does
not hold. For circulants with the prime number of nodes the notions of
equivalence and isomorphism coincide.

Taking into consideration the above-said one may determine the value of
s for the optimal double-loop networks G(N; 1, s) using the description of a
graph from Theorem 1. For example, the optimal graph with N = 36 has
alb(.V) = 4 and s; = 4, s = 5. The leaden system of deductions (mod 36)
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is 1, 5, 7, 11, 13, 17. Transferring given generators 4, 5 into s}, s} gives
a new equivalent optimal graph G(36;1,8). Under realization of equivalent
transformations we use the next result from [13]. The abbreviation ged(a, b)
denotes the greatest common divisor of the integers @ and b. -

Lemma 1. Let N, a and s < (N +1)/2 be the natural numbers, a/N
and gcd(N, s) = a. Then an element q of the leaden system of deductions
(mod N) ezists such that sq = q (mod N).

But for some N’s this method cannot be used because the optimal circu-
lant graphs with description in the form of {N; 1,5} do not exist. Let E(N)
denote the number of equivalence classes of optimal two-dimensional circu-
lants for given N. In [3] two open questions for further investigation were
offered: 1) obtain E(N) for any N; 2) classify all N’s for which E(N)=1.A
solution to these questions gives the key to a problem of existence of optimal
double-loop networks.

3. Geometrical visualization of the optimization
problem for two-dimensional circulants

Following [10] we use the notations: N; = 242 +2d+ 1, Rld] = {Ny_; +1,

+++yNa}, d > 0. Thus, all natural numbers are partitioned into intervals

R[d], d > 0, and |R[d]| = 4d. In the range R[d] we distinguish the following

points: ¢,[d] = 2d* — d, g,[d] = 242, gs[d] = 2d? + d, 9a[d] = 2d? + 2.
Denote four sectors (quartiles) by

Quld] = {Ni_1 +1,...,q[d]}, Q,[d] = {ald] +1,..., go[d]},
Qald] = {ga[d] +1,...,45[d]}, Q4[d] = {gs[d] +1,..., N}

Consider the following method of geometrical visualization of optimal cir-
culants at the plane.

A circulant G(N; sy, s,) may be constructed as a rhombus-similar frame
of lattice unit squares in Z2 in the following way. Label each lattice point
(4,7) by (s1i + s25) (mod N). As a result every label 0 <Sm<N-1is
repeated in rhombuses infinitely many times, resulting in a tessellation of
Z2. In Figure 1 a tessellation of the plane is presented by the rhombuses
relating to the circulant with d = 3,81 =1,8 =7and N = 25, The
optimal graph G(25; 1,7) is represented with N = N4. Note any optimal
circulant forms dense tessellation out of rhombuses at the plane without
blanks between them but with possible coverings of nodes (under N < Ng)
inside the rhombuses (Figures 1 and 2). In Figure 3 an example of packing
at the plane nonoptimal circulant is presented.
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Figure 2. The optimal circulants
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Figure 3. Nonoptimal tessellation of the plane

The optimization problem consists in finding a rhombus-similar frame
out of N unit squares with the minimum of diameter and minimum of mean
distance which periodically tessellates the plane without blanks with possible
symmetric coverings of nodes of rhombuses at most at two latter layers of
graph nodes. For a given frame of rhombus the second problem consists in
finding the values of s; and s; that enable this optimal construction. In
so doing we will be interested in the case of s; = 1 that corresponds to a
double-loop network.

A mechanism of optimal constructions obtaining for any NV is the follow-
ing. In Figure 4 an initial position of dense tessellation of circulants with
N = Ny and the scheme of further movements at the plane are presented.
Let us sequentially reduce the number of nodes in the graph beginning with
N = Njgto N = Ng_; + 1, getting in so doing the optimal constructions.
This is reached by means of a movement the layers of tessellation A and B
(or C and D) in two opposite directions along an axis X (or Y) on equal
number of steps. In Figure 5 all four possible (intermediate) states of rhom-
bus with N € Q4[d] are presented. These states corresponds to the optimal
graphs. The optimal constructions of another form in the sector Q4[d] are
impossible because the covering nodes must be placed symmetrically at the
opposite edges of the rhombus and situated only at the latter layer of graph
nodes.
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Figure 4. The scheme of movements
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The following position is an initial one for the sector Q3[d]: two opposite
edges of rhombus are filled completely covering unit squares. Reducing the
number of uncovering squares (nodes in a graph) layers of tessellation A and
B (or C and D) may be moved by two means:

1. The movement along the same axis along which the layers have been
just moved.

This case is presented in Figure 2a and it corresponds to the equiva-
lence class of optimal descriptions of circulants of the form {N;d,d+1}.
Such movement is possible for N € Qs[d]. For N € Q2[d] the view of
a movement and an example of relevant optimal graph are shown in
Figure 2b. This case corresponds to the equivalence class of optimal
descriptions of circulants of the form {N;d - 1,d}.

2. The movement perpendicular that axis along which the layers have
been just moved.
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Figure 6. The sectors Q»[d] and.Q3[d]




On existence of optimal double-loop computer networks 37
1 ’

These optimal constructions are presented in Figure 6: all four possible
states. Note the descriptions of these optimal constructions are not
equivalent to the description {/V;d,d+ 1} for the sector Qs[d] and to
the description {N;d — 1, d} for the sector Q3[d]. So if the values of s,
and s, determining the optimal constructions in Figure 6 exist, then
the description {N;s;, sz} will form a new equivalence class of optimal
descriptions different from known.

The values of s; and s; for an optimal description of a graph, if they
exist, relating to the optimal constructions (1)-(4) in Figure 6 must satisfy
respectively the following congruences:

(d+ 1)sy 3 (d— 1)sy (mod N), ks; +(2d—k—1)s, =0 (mod N), (1)
(d—1)s; + (d+1)s; =0 (mod N), (2d—k—1)s; =ks, (mod N), (2)
(d+1)s1+(d—1)s; =0 (mod N), ks; =(2d—-k—1)s; (mod N), (3)
(d=1)s; = (d+1)s; (mod N), (2d—k—1)s; +ks; =0 (mod N), (4)

where k is calculated from the equality N = Ng —d — 2(k + 1).

The following position is an initial one for the sector Q;[d]: all edges of
rhombus are filled completely covering unit squares, but two opposite edges
are filled still completely covering unit squares at the layer of graph nodes
d-1.

Reducing the number of uncovering squares (nodes in a graph) we move
those layers of tessellation A and B (or C and D) which are perpendicu-
lar to ones that have been just moved. All four possible states of optimal
constructions are presented in Figure 7 (1-4). The variants of such move-
ments in this sector are the same as in the sector Q4[d] and correspond to
an equivalence class of optimal descriptions of the form {N;d - 1,d}.

4. The conditions of existence and analytical
descriptions for optimal graphs

4.1. The sector Q4[d]

Theorem 2. Let N € Qq4[d], d > 0. Ifged(N,d) > 1 and ged(N,d+1) > 1,
then the optimal double-loop network G(N; 1, s) does not ezist.

Proof. From consideration of the optimal constructions (1)—(4) in Figure 5
#t should be that a value of s for optimal double-loop network G(N;1,s),
if it exists, must satisfy one of four following congruences: ds = (d + 1)
(mod N), (d+ 1)s = (N — d) (mod N), ds = (N — d — 1) (mod N), or
(d+1)s=d (mod N).
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Consider a possibility of integer-valued solutions of the first congruence.
As gcd(d, N) > 1, then integer-valued solutions exist, if the number d + 1 is
divided on ged(d, N), but this does not take place because ged(d, d+1) = 1.
The analogous results may be proved for all other congruences. Thus if
N € Qq4[d] and ged(N,d) > 1 and gcd(N,d + 1) > 1, then the optimal
double-loop network G(NV; 1, s) does not exist. o

In the considered sector it should .be a presence of only one equivalence
class of optimal two-dimensional circulants for the given N € Q4[d], formed
by the description {N;d,d+ 1}, that is E(N) = 1. Thus combining this
result with results of Theorem 6 [3] we obtain: in the sector Q4[d] the
conditions ged(V, d) = 1 or gcd (N, d+1) = 1 are the necessary and sufficient
conditions %br the existence of the optimal double-loop networks of the form
{N;1,s}.

4.2. The sectors Q;[d] and Q;[d]

The right bounds of all sectors, namely, the values q1[d], g2(d], g3[d] and Ny,
and also the points differing on unit from them, were considered earlier. The
values go[d] and Ny were investigated in [4, 6, 10, 13], where an existence of
optimal loop networks G(N; 1, s) for these N was proved. The existence of
optimal loop networks for ¢;[d] and ¢3[d] follows from Theorem 6 [3]: in the
first case N = d(2d — 1) and ged(NV,d — 1) = 1 take place, in the second case
N = d(2d + 1) and ged(N,d+ 1) = 1 take place. Note that for N = g¢3[d]
the optimal values for s must satisfy the following congruences: ds = d
(mod N) and ds = (N — d) (mod N), where ged(d, N) = d > 1. As values
of d and N — d are divided on d, then d the solutions for these congruences
exist, which may be easily found. For values ¢;[d]+ 1, i < 3, the existence
of optimal loop networks was shown in [8]. Therefore we will consider the
sectors (z[d] and Qs[d] for the values ¢1[d]+2 < N < g3[d] - 2, d > 1,
excepting also from consideration the values N = ¢y[d] + 1.

At first consider the point g;[d], i.e., N = 2d?, which lies at the bound
of Q2[d] and Q3[d] sectors. We will consider the odd d. For these N we give
a new equivalence class of optimal descriptions for the loop networks which
does not coincide with the earlier known from [10] and obtain analytical
representation for s.

Lemma 2. Let N = 2(2m + 1)%, m > 0. Then the equivalence class of
optimal descriptions of the forms {N;m,3m + 1}, {N;m+ 1,3m + 2} and
{N:1,s}, where s = 4m? under the odd m and s = 4m? — 2 under the even
m, erists.

Proof. For N = 2d® (d > 1 is an odd number) there are the optimal
descriptions of the forms {N;d — 1,d} and {N;d,d + 1} which belong to
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one equivalence class. Transform them in the descriptions {N;d-1-(d-
1)/2,d+ (d-1)/2} and {N;d - (d - 1)/2,d+ 1+ (d - 1)/2}. Substituting
d by 2m + 1 we obtain the descriptions of the forms {N;m,3m + 1} and
{N;m+1,3m + 2}. Define to what description of the form {N;1,s} these
descriptions are equivalent.

1. Let m = 2r+1, r > 0. As long as ged(m, N) = 1, then from Lemma 1
it follows: an integer number ¢ < (N/2) exists for which ged(g, V) =1
and mg =1 (mod N). Take as g the number ((m — 1)N/24+1)/m =
4m? — 3. Then s = (3m + 1)(4m? — 3) — 3(m — 1)N/2. Hence under
the odd m s = 4m?2.

2. Let m =27, r > 0. Aslong as gcd(m+1, N) = 1, then from Lemma 1
it follows: an integer number g < (N/2) exists for which ged(g, N) =1
and (m+1)g=1 (mod N). Take as ¢ the number (mN/2 + 1)/(m+
1) = 4m? + 1. Then s = 3mN/2 — (3m + 2)(4m? + 1). Thus if m is
even s = 4m? — 2. o

Note that the optimal descriptions given in Lemma 2 relate to a equiv-
alence class different from equivalence classes of descriptions {N;d-1,d}
and {N;d,d+ 1} [3].

In the sectors Q2[d] and Q3[d] we will consider two infinite families of lines
(values of V). Consider a family of the lines, parallel to a line N = 242 +d
and lying at odd number of steps from it:

N=2d+d-2k-1, 0<k<d-1, d>1. (5)

On the other hand consider a family of the lines, parallel to a line N =
2d? — d and lying from it at odd number of steps, which are perpendicular
to a family of lines (5):

N=2d-d+2k+1, 0<ki<d-1, d>1. (6)

The following connection takes place between the parameters d, k and k;:
d=k+k +1.

Every considered NV belongs simultaneously to two lines of the families (5)
and (6) and may be determinated by the assignment of any two parameters
from d, k, k.

For N defined by (5) (or (6)), which has the optimal descriptions
{N;d,d+ 1}, for N > 2d? - 2, and {N;d - 1,d}, for N < 2d? +1 [3),
another equivalence class of the optimal descriptions exists. It is obtained
analogously to the results of Lemma 2 in the following way:

1) for 2d> < N < 2d? + d (when k < ky) the optimal description
{N;d,d+ 1} transforms in the form {N;d — k,d + 1 + k}, where k
is obtained from (5) and equals to k = d? — (N —d + 1) /2;
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2) for 2d> —d < N < 2d* (when k; < k) the optimal description
{N;d-1,d} transforms in the form {N;d—1—k;,d+k,} or {N;k,2d—
k-1}.

Lemma 3. Let N be defined by (5) and ged(N, sy, 82) = 1, where (sy, s2)
is any from the following couples of numbers

(k-1,2d+k+2), (k,2d—k—1), (d—k,d+1+k),

(7)
d—k+1,3d—k-2), (d—1,d+1).

Then the optimal circulant G(N; sy, s3) exists.

Proof. The realization of condition ged(N, s;,s2) = 1 denotes that the
graph G(N; sy, sz) is connected. Show that it is optimal. Let s; = k — 1,
s = 2d + k + 2. By substituting the values s; and s; into congruences
(1) we obtain they being its solutions. Thus these values define the optimal
circulant. The proofs for remaining values are analogous. The values s; = &,
s2 = 2d —k —1 are the solution to congruences (2),s; =d—k, s =d+k+1
are the solution to congruences (3), sy =d—k+1, s =3d — k — 2 are the
solution to congruences (4) and s; =d — 1, s; = d+ 1 are a trivial solution
to congruences (1). a

Theorem 3. Let N be defined by (5). Then the optimal double-loop network
G(N;1,s) exists, if N is relatively prime at least to one of the numbers: k—1,
k,d-1,d,d+1,d-k,d—k+1,d+k+1,2d—k—1,2d+k+2,3d-k-2.

Proof. If N is relatively prime to d, then according to Theorem 6 [3] the
optimal loop network G(N;1,s) exists. Let N be relatively prime to any
other number from (7), then according to Lemma 3 the optimal circulant
G(N; sy, s3) exist where (s1, s;) is one from (7). Then by Lemma 1 a number
relatively prime to N exists that transfers (mod N) relatively prime with
N number s; (or s3) into 1. Thus in this case the optimal loop network
G(N;1,s) also exists. ' o

Theorem 4. Let N be defined by (5). Let gcd(N,d) > 1 and gcd(N,d—1) >
L. for N € Q2[d], or ged(N,d+ 1) > 1, for N € Qa[d]. The optimal loop
metwork G(N; 1,5) does not ezist: if ged(N, sy, 82) = 1, where (s, ;) is at
least one couple from (7), but ged(N,s1) > 1 and ged(N, s3) > 1.

Proof. According to Theorem 7 [3] the optimal description of the form
{N:1.5} does not exist which is equivalent to the description {N;d,d + 1}
{or {N;d - 1,d}). According to Lemma 3 a connected optimal circulant
G(N; 5, 52) exists, where (51, s;) is at least one couple from (7). But by an
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equivalent transformation of the values (sy, s;) none of them are not trans-
formed into 1 (see Lemma 1). Thus in the equivalence class of a description
{N; 51,55} there is absent the description of the form {N;1,s}. a

Based on the results of Theorems 3 and 6 [3] and considering under
81 = 1 a possibility of integer-valued solutions of congruences (1)-(4) we
obtain the necessary and sufficient conditions of existence of the optimal
double-loop networks G(N;1,s).

Theorem 5. Let N be defined by (5). Then the optimal double-loop network
G(N;1,s) exists if and only if at least one of the following conditions is
realized: 1) ged(N,d) = 1; 2) ged(N,d — 1) = 1; 3) ged(N, d + 1) = 1;
4) ged(N,k) = 1; 5) ged(N,2d — k — 1) = 1; 6) ged(N,d - 1) = 2 and
ged(N,2d —k—1)/k and ged(N,3d — k—2)/d+ 1 — k; 7)ged(N,d+1) =2
and ged(N,k)/2d — k — 1 and ged(N,d+ 1 + k) /d — k.

Now in the sectors Q3[d] and Qs[d] we will consider two infinite families
of lines (values of N), parallel to a line N = 2d% + d but lying from it at
even number of the steps:

N=2d+d-2, 0<k<d, d>S3. (8)

Analogously consider a family of the lines, parallel to a line N = 242 —
and lying from it at even number of steps, which are perpendicular to a
family of lines (8):

N=2d"-d+2,, 0<k <d d=k+k >3

The families of values of N defined by (5) and (8) cover in totality all
values of NV in the sectors Q2[d] and Q3[d].

Theorem 8. Let N be defined by (8). Letged(N,d) > 1 and ged(N,d-1) >
1, for N € Q;[d], or ged(N,d+1) > 1, for N € Qs[d). Then the optimal
double-loop network G(N;1,s) does not ezist.

Proof. According to Theorem 7 [3] the optimal description of the form
{N;1,5} does not exist which is equivalent to the description {N;d,d+ 1}
(or {N;d —1,d}). Therefore if the optimal description of the form {N;1,s}
exists it must be in another equivalence class of optimal descriptions. But
such class exists not for all values of N, namely for N from (8) it does not
exist because under creation of optimal constructions in the sectors Q-[d]
and Q3[d] (see Figure 6) they are not formed for N from (8). O
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4.3. The sector Q,[d]

In the sector @,[d] an infinite line of values of N exists, for which there are
two equivalence classes of optimal circulants. This line is parallel to a line
N=2d-2d+42anditis

N=2d*-2d+5, d>5. (9)

A number of N, lying at this line, has the second equivalence class of
descriptions of optimal circulants different from class of description {N;d —
1,d}. The graphs with N from (9) have 4 nodes at distance d from node
0 and it is possible the following optimal placement of nodes in rhombus
at the plan® (see Figure 7(5)). If a description of the form {N;1,s} exist
for such optimal construction, then it must satisfy the following congruence:
(d+1)s = d — 2 (mod N). It means that a value of m exists for which
(d+1)s—mN =d -2 or mN — (d+1)s = d — 2. By solving the equations
relatively s and taking into account that N is assigned by (9) we deduce:
8 = 2dm—4m+1+3(3m—1)/(d+1), or s = 2dm—4m—14-3(3m+1)/(d+1).
From here s is an integer number, if d = 3m — 2 in the first case, or d = 3m
in the second case. So we receive

Lemma 4. For N defined by (9) a second equivalence class of optimal
descriptions ezists having a description in the form of {N;1,s} for the
following values of d and s: s = 2(d* — 2d)/3 + 2 under d = 3m and
s =2(d? - 4)/3+ 4 under d = 3m — 2.

The data of a catalogue analisys of optimal circulants [13] and their geo-
metrical representation in the sector Q;[d] that can be seen in Figure 7,
where the optimal constructions for equivalence class of the description
{N;d - 1,d} are mentioned, indicate in_behalf of the following:

Conjecture.  All values of N € Q[d], except the values defined in
Lemma 4, have one equivalence class of optimal circulants and, respectively,
the conditions ged(N,d) = 1, or ged(N,d — 1) = 1 are the necessary and
sufficient conditions for the existence of the optimal double-loop networks
G(N;1,s).
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