Bull. Nou Comp. Center, Comp. Science, 3 (1995), 69-75
© 1995 NCC Publisher

On parallel recursive mapping algorithm
for pyramidal multiprocessor systems*

0.G.Monakhov

A problem of mapping of an information graph of a complex algorithm into
the pyramidal interprocessor network of a parallel computer system is considered.
The parallel recursive algorithm for. optimal or suboptimal solution of the map-
ping problem, the objective functions for mapping and experimental results for the
pyramidal multiprocessor system MEMSY are presented.

1. Introduction

There is considered a problem of mapping of the information graph of a
complex algorithm into the pyramidal interprocessor network of the par-
allel computer system (CS), which consists of processor nodes (PN) with
distributed shared memory. The mapping problem [1-4] is known as NP-
complete problem, and it is reasonable to develop a parallel algorithm for
solving the problem. In this paper the parallel recursive algorithm is pre- .
sented for optimal or suboptimal solution of the mapping problem, the ob-
jective functions for mapping are developed. It is shown by experiments
on multiprocessor system MEMSY that the proposed algorithm is faster as
compared to the sequential centralized algorithm.

2. Optimal mapping problem

Let a model of a parallel program be the graph G, = (M, E,), where M is
a set of modules (processes), E, be a set of edges, representing information
connections between modules. Let ¢; be defined as weight of the module
t € M, representing the execution time (or the number of computational
steps) of the module i. Let v;; be defined as weight of the edge (i,) € E,,
representing the number of information units passed from the module & to
the module j.

A model of the multiprocessor system with distributed memory is an
undirected graph G, = (P, E,) representing the network topology (struc-

*Supported by the Russian Foundation for Basic Research under Grant No. 94-01-
00682.

70 4 0.G.Monakhov,

ture) of the system, where P is a set of PN, and edges E, represent inter-
connection links between PN.

The distance between the nodes ¢ and j of the graph G, (G,) is denoted
as d;;. The neighborhood of the node i with the radius p > 1 is the set
Ly(i) = {j € M | di; < p}. Let L(3) = Ly ().

Let ¢ : M = P be the mapping of an information graph of the parallel
program G into the structure G, of CS. Let the mapping ¢ be represented
by the vector X = {zu; i € M,k € P}, where :r,.k - 1 if (i) = k and
zik = 0 if (i) # k.

Let the quality..of t.he mappmg parallel progra.m gra.ph into the struc-
ture of CS for the given vector X be described by the functional: F(X) =
Fg(X) + Fc(X), where Fg(X) represents computational cost (the over-
all module execution time of a parallel program on the system or the load
balancing of PN for given X), and Fg(X) represents the interprocessor com-
munication cost (the overall interaction. time between modules, which are
distributed in different PN, or the distance between adjacent modules of the
program graph on CS structure for given X). The optlmal mapping problem
of a parallel program graph into CS structure consists in optimization of the
functional F(X) by means of the parallel recursive algorithm.

3. Cost functionals of mapping

Now let us describe two examples of the objective cost functions which
represent the computational load balance of PN and the communication
cost for the given mapping X

R(X)= [SIS zie —M-“’k) +Zz > dkpziksz]v

i=1 p=1i=1 jeL()

where Mz = Eper, (%) ity ”w/|L]

The first term in this expression describes deviation of PN load from
average load in the neighborhood of PNy with the radius p > 1, the second
term describes the distance between PN and processors, which contains the
‘adjacent modules to the modules embedded into PN, 1 < k < n.

[Z tz.k+2 > Cij.(vij)dkpzikz.i?)]’

=1 p=1 JEL(:')

where ¢;;(v;;) is the time needed to transfer v;; data units between the
modules i and j, when they are located in the peighbouring PN. The first
term in this expression describes the overall module execution time, the
second term describes the overall interprocessor communication time, m =
[M|,n=|P|and 3}, zix = 1.

On parallel recursive mapping algorithm 71

Thus, the optimization of the mapping ¢ consists in minimizing the
nonlinear function F(X) with linear restrictions and integer variables. Let
Z denote this task. The optimal solution of the task Z will be found by the
following parallel recursive mapping algorithm.

4. Parallel recursive mapping algorithm

In this section, there is presented a hierarchical recursive parallel mapping
algorithm for partitioning the modules of a parallel program, described by
the graph G,, into n > 4 sets and allocating each set on its own processor |
of the pyramidal multiprocessor system. The goal of the algorithm is to
produce an allocation with the minimal communication cost and the com-
putational load balance of processors.

At the first step algorithm divides a given parallel program graph inte
four parts and finds the optimal partition according to the given cost func-
tion. Then, each part of the graph is allocated to each node on the upper
plane of the system. Each node on the upper plane divides its part of the
program graph into five parts and allocates these parts to its own node and
to four down nodes on the lower plane. Then, this algorithm is recursively
repeated on the lower plane and on each other plane of the system until the
bottom plane. In the end each node of the system has its own part of the
program graph (Figure 1).

%®@ﬁ7

V4 A\

Figure 1. Graph of the recursive mapping algorithm

“"

The algorithm contains a basic procedure — bisection, which divides the
modules of the program graph into two sets with the minimal communica-

72) 0.G.Monakhov

tion cost between them and roughly equal computation load. The bisection
algorithm consists of the following steps.

1. All modules are divided into two sets: |Pj| =n — 1 and |P,| = 1.

2. ‘A module i € P, is removed to P, where the module 7 has the maximal
gain Di = 3 jep, dij — Ljep, dij-
3. If Yjep, ti < Ljep, ti» then go to Step 2, else end.

The hierarchical recursive mapping algorithm divides the given parallel
program graph and allocates the parts of the program graph on processors
of a system with pyramidal topology. The upper level (plane) of the system
contains 4 nodes and other levels contain 4* nodes, where k is the number
of the levels. The recursive algorithm consists of the following steps.

'1. The modules of the program graph are divided by bisection algorithm
into four parts (at first — into two parts, then each part — again into
two parts) and are allocated to four processors of the upper plane.

2. Each processor of the upper plain divides its part of the program
graph into five parts and allocates these parts to its own node and to
four down nodes on the lower plane connected with this node. Each
processor p; € {p1, P2, P3, pa} of the upper plane executes (in parallel
with others) the following algorithm.

2.1. All modules allocated to p; are divided into two sets: S; and
Sy =0. Let M = M\ S;.

2.2. A module ¢ € S; is removed to Ss, where the module ¢ has the
maximal gain D; = }cpp, dij = Yjes, dij-

2.3. While 3¢5, t; < Tjes, tj o to Step 2.2.

2.4. Modules of the set S; are allocated to the processor p; and mod-
ules of the set S; are divided by the bisection algorithm into four
parts and are allocated to four processors of the lower plane (as
at Step 1).

2.5. In parallel, each processor of lower plain applies the algorithm
recursively from Step 2.1.

The algorithm is recursively repeated until the bottom plane of the system
and can map of a program graph into the pyramidal system with a given
number of levels.

5. MEMSY - pyramidal multiprocessor system

MEMSY (Modular Expandable Multiprocessor System) [5] is an experi-
mental multiprocessor system with a scalable architecture based on locally

On parallel recursive mapping algorithm 73

shared memory between a set of adjacent nodes and other communication
media. The MEMSY system continues the line of systems which have been
built at the University of Erlangen, Nurnberg (Germany) using distributed
shared-memory and pyramidal topology.

The MEMSY structure consists of the two planes with 4 nodes in the
upper plane and 16 processor nodes in the lower plane. In each plane the
processor nodes form a rectangular grid. Each node has a shared-memory
module, which is shared with its four neighbouring nodes. Each grid is
closed to a torus. One processing element of the upper plane has access to
the shared memory of the four nodes directly below it, thereby forming a
small pyramid (Figure 2).

D - upper plane

8 9 10 H)

QL—RI D
16 17 w \19

Figure 2. Structure of MEMSY system

O - lower plane

-t

The MEMSY consists of the following functional units: 20 processor
nodes, one shared-memory module (communication memory — 4 Mbytes)
at each node, the interconnection network between processor nodes and
communication memories, a special optical bus (FDDI net) connecting all
nodes, a global disk memory (1.57 Gbytes). Each node of the MEMSY
consists of four processors MC88000 with 25 Mflops performance, 32 Mbytes
local memory, 500 Mbytes local disk memory.

The programming model of the MEMSY was designed to give a direct
access to the real structure and the power of the system. The applica-
tion programmer can use a variety of different mechanisms for communi-
cation and coordination defined as a set of system library calls which can
be called from C and C++ languages. There are the following mechanisms
for communication and coordination: shared communication memory be-
tween neighbouring nodes, message passing mechanisms, semaphores and
spinlocks, EDDI net for fast transfer of high volume data. The operating
system of MEMSY (MEMSOS) is based on Unix adapted to the parallel

74 . - 0.G.Monakhov

hardware. The multitasking/multiuser feature of Unix and traditional I/0
library calls for focal and global data storage are supported. The MEMSOS
allows different applications (single user parallel program) to run simulta-
neously and shields from one another.

6. Experimental results on MEMSY system

The proposed parallel mapping algorithm has hierarchical recursive struc-
ture and suits for the pyramidal topology of MEMSY. This algorithm was
implemented on MEMSY for one, two and four nodes with communication
via shared memory. In experiments there were allocated simple program
graphs — square grids with a given size, but arbitrary weighted graphs of
parallel programs can be also allocated. There were obtained mapping of
the given graphs on all MEMSY nodes, the computing time, speed up and
efficiency of the mapping algorithm and values of the objective cost function.
The results are presented in Tables 1 and 2.

Table 1. Computing time (Ty), speed up (Sy = Ti1/Tw) and
efficiency (Exy = Sn/N) of the parallel mapping algorithm exe-
cuted on N nodes for mapping of square grid (a x a) into MEMSY
architecture

Size Of T| Tz Tq Sz 34 Ez Eq

grid sec. sec. sec.
10 x 10 8 5| 4|16 [20 |08 0.5
15 x 15 97 57 40 { 1.7 | 2.43 | 0.85 | 0.61

20 x 20 529 310 201 | 1.7 | 2.63 | 0.85 | 0.66
25 x 25 2058 1190 874 1 1.72 | 235 | 0.86 | 0.59
30x30 | 6145 | 3558 | 2510 | 1.72 | 2.45 | 0.86 | 0.61
35 x 35 | 15839 | 9421 5931 | 1.68 | 2.67 | 0.84 | 0.66
40 x 40 | 35253 | 20359 | 13162 | 1.73 | 2.68 | 0.865 | 0.67

Table 2. The objective cost function values (Fy) obtained by
the parallel mapping algorithm on N nodes for mapping of square
grid (a x a) into MEMSY architecture

S| B | B | R | R/E | R/R
10 x 10 840 840 844 1.0 0.995
15 x 15 1778 1770 1676 1.004 1.06

20 x 20 2488 2488 2546 1.0 0.997
25 x 25 4326 4230 4184 1.02 1.033
30 x 30 5786 5786 5726 1.0 1.01

35 x 35 7884 7716 7628 1.02 1.033
40 x 40 9600 9600 9546 1.0 1.005

Thus, the results show that the proposed parallel recursive algorithm

On parallel recursive mapping algorithm - 75

is efficient and produces an optimal or good suboptimal solution of the
mapping problem. The algorithm has hierarchical recursive structure and
suits well for application on the multiprocessor system MEMSY.

Acknowledgements. 1 would like to thank Professor H. Wedekind for sup-
porting this work. I also thank MEMSY system group and especially T. Thiel
and S. Turowski for helpful consultations and providing access to MEMSY
system.

References

[1] N.N. Mirenkov, Parallel programming for multimodule computer systems, Ra-
dio i svyas, Moscow, 1989. -

[2] F.Berman, L. Snyder, On mapping parallel algorithms in parallel architectures,
J. Parallel Distrib. Comput., 4, 1987, 439-458.

[3] D. Fernandez-Baca, Allocating modules to processors in a distributed system,
IEEE Trans. Software Eng., 15, 1989, 1427-1436.

[4] O.G. Monakhov, Parallel mapping of parallel program graphs into parallel com-
puters, Proc. Internat. Conf. “Parallel Computing 917, Elsevier Science Pub-
lishers, Amsterdam, 1992, 413—418.

[5] F. Hofman, M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand, C.-U. Lin-
ster, T. Thiel, S. Turowski, MEMSY: a modular expandable multiprocessor
system, Technical report, University of Erlangen-Nurnberg, 1992.

