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Exchanges in circulant networks:
algorithms and lower bounds*

E.A. Monakhova, 0.G. Monakhov

In this paper we consider the routing, broadcast and gossiping problems in
circulant networks. The circulant graphs are studied extensively as reliable inter-
connection networks for the multiprocessor systems. The optimal circulants have
the minimu}n diameter and the minimum average distance and, respectively, max-
imum of the reliability and connectivity. Review of the earlier published results in
Russia and also new results are presented in the paper. The distributed routing
algorithm for the optimal circulants proposed here has constant complexity inde-
pendent of the number of processors in the system and is adapted to failures of
processors and links. We consider gossiping in the store-and-forward, full-duplex
and shouting model for the case when communicating nodes can exchange up to
a fixed number p of packets at each round of gossiping (p-gossiping). A general
method for evaluation of the lower bounds for p-gossiping in circulant graphs is
established. The efficient parallel decentralized broadcast and gossiping algorithms
for two-dimensional optimal circulants are proposed.

1. Introduction

In most parallel algorithms the data exchanges take place between the pro-
cessors of computing systems and affect on the efficiency of parallel programs
execution. The basic patterns of interprocessor communications are rout-
ing. broadcast and gossiping. A significant variety of parallel algorithms
including sorting, matrix operations, linear system solution uses such pat-
terns of communications as broadcast and gossiping. One-to-all broadcast
5 an operation where a single processor (source) must send identical data
in message (packet) to all other processors of the system. All-to-all broad-
cast, also known as gossiping or the total exchange, is a generalization of
one-to-all broadcast in which all processors simultaneously initiate a broad-
cast. The broadcast and gossiping are widely studied for the Cayley graphs
under different communication models [15, 4, 16, 17]. We consider the store-
and-forward, full-duplex and shouting model. In such a model the protocol
consists of a sequence of rounds (steps) and during each round each node
can send (and receive) messages from all its neighbors. Here we research the
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case where at each round communicating nodes can exchange up to a fixed
number p of packets. The gossiping in the Cayley graphs under p = 1 has
been considered in [17]. We will consider the case of p > 1. Let us call this
as p-gossiping. In [17] the authors indicated the lower bound of p-gossiping
time (number of rounds) equal to [(N — 1)/ép], N is a number of nodes, é
is a minimum degree of a graph. Analogous problem has been considered in
[16] for the toroidal mesh under the limited size of the buffers. A number of
papers investigates the problem of estimation of the minimum p-gossiping
time for other graphs and communication models. We will consider the
problem of estimating of the lower bounds of p-gossiping time in circulant
graphs which are the symmetric Cayley graphs. We introduce the general
method for evaluation of the lower bounds of p-gossiping for circulants.

The efficiency of algorithms for the basic communication schemes di-
rectly depends on the topology of links between processors. Namely, the
efficiency is determined by the diameter of topology (the maximum of all
over the minimum distances between each pair of processors). Therefore,
consideration of optimal graphs as a model of parallel systems topology al-
lows realization of communication algorithms in a minimum time (for the
given number of processors) without excessive copies of messages. In this pa-
per efficient algorithms are presented for routing, broadcast and p-gossiping
in the optimal two-dimensional circulant networks. Circulant graphs are
studied extensively [1-10, 13], see also the survey of Bermond et al. [14],
including more than 70 references. The circulant graphs are used in the
design and realization of local area networks and architectures of parallel
computing systems: Illiac IV, MPP, CRAY T3D.

2. Graph definitions

The circulant graph is defined as the graph G(N;sy,s2,...,5,) with N
nodes, labeled with integer modulo N, having i + s;, ¢ £ 83, ..., 1 £ 8y
(mod N) nodes adjacent to each node i. The numbers s; are named gener-
ators (jump sizes). Degree § = 2n (n is a dimension) of a node in an undi-
rected graph G is the number of edges incident to it. Note, some toroidal
meshes are the circulants. Synthesis of the optimal circulants is a certain
problem of graph theoretical optimization representing the generalization
(in the class of circulants) of the (d, k)-graph problem [11]. This problem
is in the search for a graph with the minimum diameter and the minimum
average distance among all circulants having N nodes and dimension n (let
this set be C(N,n)). The diameter of G is defined by D = max;; d;;, where
d;j is the length of the shortest path from the node i to the node j. The
average distance of G is defined as D = Y;;d;;/N?. Let for any graph
G € C(N,n), K, denotes the number of nodes to be attained from node
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0 by using at most m jump sizes and let K, be the upper bound for
Kam. Let Lym = Knm — Kqm-1, L}, ,, be the upper bound for L, on
set C(N,n). The values of K}, .., L}, ,, for any n, m were determined in
f9, 12, 3). Forn =2 K3,, = 2m?* +2m+ 1, L;,, = 4m. Forn = 3
K3, = (4m®+ 6m?+8m)/3+1, L}, =4m? + 2.

The graphs achieving the upper bounds are called the optimal graphs,
mamely, a graph G € C(N,n) is optimal, if L, » = L}, ,, for any 0 < m <
D* —1and L, p» = N - K}, p._;, where an optimal diameter D* is given
from the correlation K} p._; < N < K} p.. As it is shown in [9] the
optimal graph has a minimum D and D and a maximum of the reliability
and connectivity among all the graphs from C(N,n).

As a mydel of interprocessor networks of parallel systems the optimal
two-dimensional circulant graphs with analytically obtained description
G(N;s,s + 1), where s = |(v2N — 1 — 1)/2], will be considered. These
graphs were given in [2, 3, 6]. The optimal graphs G(N;s, s+ 1) have the
following properties:

(a) to exist for any natural N > 4;

(b) to have a minimum D and a minimum D, equal to the lower bounds,
and a maximum of reliability and connectivity among all two-dimen-
sional circulants with N nodes;

(c) to have the description G(N;s,s+1) for given s for all 2s? —1 < N <
252 + 45 + 3.

The geometrical representation of the considered graph is in Figure la.
The integers in squares are the numbers of nodes. Two nodes ¢ and j are
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Figure 1. (a) Geometrical representation of the optimal circulant graph G(35;4,5);
(®) Numeration of output (input) poles
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connected by the edge, if (i - j) (mod N) € {s,s+1,-s,—(s+1)}. For
simplicity not all edges are shown. Under such a representation all the nodes
of the graph lie inside a rhombus with the diagonal 2D*. The number D* is
the diameter of considered graph and D* = [(V2N - 1-1)/2][2]. Figure la
illustrates the graph G(35;4,5). When N increases from 252—1t0 2s2+45+3
the rhombus is filled out sequentially the new nodes (dotted line squares)
in the order indicated by arrows. Let nodes of a graph be associated to
the processors and the edges to links between the adjacent processors. The
output (input) poles of every processor (node) are numerated by numbers
1,2, 3,4 (Figure 1b), and correspond to the generators s+1, s, —(s+1), —s.

3. Routing algorithm

The relative address in circulants assigns the whole set of the shortest
paths from the node i into the node j and is n-dimensional vector A4;; =
(mgj,wi’, .+yZ,;_;), whose each component indicates the number of edges
with the corresponding generator and the direction of movement along the
given generator on the shortest path.

The main problem in circulants in organization of a routing algorithm
is determination of the shortest path between two nodes according to their
given relative addresses with respect to the third node (without loss of gen-
erality the node with number 0 will be assumed to be the third node). The
following results permit us to solve the given problem efficiently using the
parameters of the graph description [4].

Proposition 1. For the circulant G(N;s.s + 1) for all i,j € {0,1,...,
N—-—l}, if!x“-?«_—mo’l-{—lyo-’ —y?‘] < _D"‘, then A,’j = Aoj-—Ag,' else A,’j = Aok,
where k = ((2%7 - 2%)s 4 (y% - y%) (s + 1)) (mod N).

Proposition 2. For the circulant G(N;s.s + 1) letk € {0,1,...,N — 1}
be the number of a node, Ay = k (mod s). Then Aox = (2%, %) where
under k < ¢*

20 — [k/s] — Ak = (s+1), ¥% = A+ s when [k/s] - Ar>s+1, (1)
2% = [k/s] - Ak +(s+1), y% =04 — s when [k/s]-Ar < Ak —s, (2)
2% = (k/s] - Ak, y* = Ap when Ay —s S[k/s] - Ak <s+1; (3)

under k > i* Ao = —Aon_k, Aon—k is computed by formulas (1)-(3),

N—s?+1 when 25 =1 < N <252 41,

o s24+s+1 when 232+1§N52s2+23+1,

] N=s2-1 when 252+ 25+ 1< N <252+ 35+ 2,
242542 when 257 +35s+2< N <252+ 45+ 3.
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The proof of Prof;ositions 1-2 and the routing algorithm based on relative
addresses are presented in [4]. The analogous results for routing were shown
in [13].

The distributed algorithm realizes the pair interactions of processors and
is based on the dynamic adaptive decentralized search of the shortest paths.
The proposed distributed algorithm is executed in each transit processor
belonging to the shortest path between the two given nodes. Let it be nec-
essary to transmit the data from the source ¢ to the destination j along the
shortest path under the possible failures of processors and links. The data
transmission begins with formation of a message in the source. The relative
address A;; of destination is initially computed in the source (Propositions 1
and 2) and\defines all shortest paths between the source and destination.
The relative address Ag; is modified in each transit node k thus that the
current relative address assigns the whole set of the shortest paths from this
transit node to destination. The choice of a transit node originates according
to distinct from zero coordinates of Aij and the current state of adjacent
nodes and links. Namely, when the message arrives in the processor the
adjacent processor belonging to the shortest path with a smaller message
loading is chosen as transit. In this case the modification of Agj consists
in decrease of the corresponding coordinate on unit. If all directions be-
longing to the set of the shortest paths up to the rejected destination, then
the choice produces among remaining directions according to degree of ad-
Jacent processors loading. In this case if a distance separating transit node
from destination is larger then a diameter D*, then the relative address is
computed anew (Proposition 1). The end of the routing algorithm is the
equality to zero all coordinates of relative address. The proposed dynamic
adaptive routing algorithm possesses the constant complexity independent
of N and is compared to the complexity of routing for hypercubes.

4. Lower bounds

We determine now the lower bounds of the number of rounds for completion
of the gossip for any circulant graph with arbitrary degree under considered
communication model. In the accepted communication model the protocols
for both broadcast and gossiping consist of a sequence of- steps (rounds)
and at during each step, each processor can send messages to and receive
different messages from all its neighbours. Each processor can send (and
receive) up to a fixed number p of messages via each link at each step. We
denote Tj(p, G) and Ty(p,G), respectively, the broadcast and the gossiping
time, that are numbers of steps to complete the protocol in the network G
under above conditions and T} (p,G) and T;(p,G) the minimum broadcast
and the minimum gossiping time.
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Proposition 3. The minimum number T;(p,G) of rounds to complete the
p-gossiping process in the circulant graph G € C(N,n) is not less than
k+ (N - K, ,)/0p, where k is gwen from conditions L}, , < ép < L}, ;4.

Proof. Note, the same view of gossiping process from any node of a graph
follows from the properties of the circulants. For any graph G € C(N, n) we
have Ln; < L, ;. So, no more than one packet (L;,,/8) can be transmitted
using a given link at the first step of gossiping, no more than L}, ,/8 packets
at the second step, and so on; and at step k and further at most p packets can
be transmitted, where k is a minimum number that satisfies the inequalities:
Ly, < ép < L} 4y For completion of the algorithm, a total of (N-1)/é
packets must pass through the link. The minimum number of steps (denoted
by t) must satisfy the following inequality:

Z Ly k)op > N - 1.
Taking into account K;, = YEoLi, = 1+ 35, L} ;, one sees that
T;(p,G) > (N - K} )/5p+k )

Note. The given lower bound T} (p,G) improves the lower bound given
in [17] for the Cayley graphs, where optimal gossip time is evaluated by
[(N —1)/6p] rounds, é is minimum degree of a graph.

Proposition 4. When one allows to ezchange up to a fized number p of
packets at each round, the minimum number of rounds T;(p,G) to complete
the gossiping process in the circulant graphs with degree 4 is not less than
(N-1)/4p+ (p—-1)/2.

Proof. Under § =4 from L}, <dp < L}, ., and the expressions for K3,
and L3 ,, it follows that k = p and
N-1 2’ +2p N-1 p-1
T (p,G) > - = . a
7 (7, G) > " +p ™ ™ +—
Proposition 5. The optimal number p needed to reach the minimum num-

ber of rounds to execute the gossiping process in the circulant graphs with
degree 4 is not less than

2D+1j: 2D+1)2 N-1
2 4 2
Proof. In order to reach the minimum number of rounds, ¢ must be equal

to the diameter. So we search for optimal value of p from the equality

D = (N -1)/4p+ (p — 1)/2. This corresponds to the following optimal
number of packets:
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. 1 (2D+1)2 N-1
> — - . o
p_D+2:i:\/ 2 2

Note. For the optimal circulants with N = 2D? 4+ 2D + 1 we have p*=D.

Proposition 8. When one allows to exchange up to a fired number p of
packets at each round, the minimum number of rounds T; (p,G) to complete
the gossiping process in the circulant graphs with degree 6 is not less than

(N = 1)/6p+ k{1 — (22 + 3k + 4)/9p)], where k = [/(3p— 1)/2)-

Proof. The value of k must satisfy the inequalities 4k% 4+ 2 < 6p < 4k? +
8k + 6. Solving the quadratic equation 2k% 44k +3 — 3p = 0, we will obtain
ky = /(3p—1)/2 — 1. The expression for k follows from the inequalities

VBr—1)/2-1<k</(@Bp-1)/2. a

5. Parallel decentralized broadcast and gossiping
algorithms

Here we consider the broadcast problem for two-dimensional optimal circu-
lants and then consider two different optimal gossiping algorithm for them.

The statement of the problem is the following: to organize transmission
of messages from any processor to all the others (broadcast) and from every
processor of the system to all others (gossiping) in the minimum' time and
without transmission of excess copies of messages (no duplication). The
latter requirement is induced by the necessity to minimize the loading on a
network under transmission.

5.1. Broadcast algorithm

A solution of this problem (cf. [4]) is in 1) construction of the regular min-
imum spanning trees with the root in a source and 2) transmitting copies
of messages only along the directed edges of these trees. The form of these
trees is identical from any node-source in consequence of the regularity of
connections. With the increase of N the features of the considered opti-
mal graphs make possible to conserve a view of the constructed tree only
by adding the necessary edges to the last layer. In Figures'2 and 3 two of
possible minimum spanning trees for graphs G(N;4,5), 31 < N < 51 are
shown. A node-source is situated in the center, the arrows at the edges indi-
cate the directions of transmission copies of messages between the adjacent
processors. The spanning tree for N = 31 (the minimal number of proces-
sors under which the description (N;4,5) is optimal) is denoted by arrows
and circles. The arrows with the digits indicate an order in which new edges
of a spanning tree appear under increase N from 2s% — 1 to 2s?+4s+3. For
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Figure 2. Minimufn spanning tree for Figure 3. A variant of mini-
graph G(N;4,5) mum spanning tree

a more uniform filling in of the quadrants new nodes appear in turn in the
opposite quadrants. There will be considered the algorithms of broadcast
and gossiping for the tree represented in Figure 2.

Consider the parallel decentralized algorithm of broadcast which is also
node-invariant and invariant to the number N of processors in the system.
The structure of a broadcast message is msg := {T,R,U,V}, where: T -
is the text of the message; R € {0,1,...,D*} is the counter of the dis-
tance between the processor, executing the broadcast algorithm, and the
processor-source; U € {0,1}, U + 1 is the number of output poles on which
the processor executing the broadcast algorithm transmits copies of a mes-
sage; V € {0,1,..., D* — 1} determines the endpoint of the algorithm work
when R = D* — 1 (it is necessary to send a copy of a message only for
V>0).

When it is necessary to transmit copies of the message to neighbours the
broadcast algorithm forms the parameters R, U , V, determines the numbers
of output poles and then sets the message to the output queue.

Changing N in the range of optimality two intervals

2 ~1< N<2s® +25+1, (4)
25° +25+2< N <252+ 4543 (5)

will be distinguished (where s > 1 is any positive integer).

Let § = N —(2s—1) for interval (4) and § = N — (2s%+2s+1) for interval
(5). Compute §;(8;) as a number of spanning tree edges situated in the last
layer from the node-source respectively in I (ITI) quadrant (see Figure 2):
61 = [8/2], 6 = 6 — §;. Using these values the broadcast algorithm in
the node-source forms a parameter V. The proposed broadcast algorithm
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Program 1. The broadcast algorithm in the processor-source

begin
R :=0;
U:=1,

if inequality (4) and 6y (d2) > 0, then Vy(3) = 81(82) = 1;
else V1(3) = 61 (62);
send msg from input 0 to output 1(3);
if inequality (5), then Va(4) :=0;
else
if 81(62) > 0, then Vy(4) := s,
else Vo(q) :=5 -1,
send msg from input 0 to output 2(4);
end ;

Program 2. The broadcast algorithm in the transit processor

begin
send msg from input i to output 0;
R:=R™+1,
if (R=D*)or (R=D*—1)and (V" = 0)), then stop;
else (V :=V™);
if (U™ # 0), then
begin
U:=0;
send msg from input i to output (i + 2) (mod 4) + 1;
U =T,
if (R# D*—1)and (V™ < R) and (V™ # 0), then V :=0;
if (R = D* — 1), then stop;
end;
send msg from input i to output (i +1) (mod 4) + 1,
stop,
end

is shown in Programs 1 and 2. The algorithm begins its work in the source
(or transit) processor after receiving a message from input 0 (or 1, 2, 3, 4).
In Program 2. the parameters R™, U™, V™ of the incoming message from
the input i transform in parameters R, U, V for message in output queue.

Using the value V allows us to avoid of the excess transmission of message
copies at distance R = D* —1 steps from a source. If a message with R = D*
arrives in the processor, then it is to be received, because it entered the first
time, after that the processor terminates the broadcast algorithm. Taking
into consideration the above-said one can come to the following conclusion.

Proposition 7. For the circulant G(N;s,s+1) withany N > 4 using the
proposed broadcast algorithm

Ty(1,G) = T;(1,G) = D".
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5.2. Gossiping algorithms

The gossiping algorithms are based at the proposed broadcast. They are
considered as a superposition of broadcast algorithms executed for all pro-
cessors of the system. An exit to gossiping is realized by each processor
when a message appears. As a result every processor transmits its data to
all others without excess copies and receives data from all the processors.

The first presented gossiping algorithm [4] introduces the ordering in the
incoming messages processing. As we know the numbers of the output poles
for incoming messages are defined by the broadcast algorithm. A sequence
of acceptance from the input poles and of the incoming messages processing
for gossiping will be assigned according to the following rules which follow
from the accepted communication model (the number p packets in this case
is bounded by a diameter of the graph):

1) the first to treat message arrived at input 0;

2) i:=1;

3) to process Fg(i) messages, arrived at input 3;

4) i:=1i+1,if i > 4, then i := 1; go to 3).
The function Fg(i) sets a number of the messages which have passed the
distance R from the source to a current processor and arrived at input .
The values of Fg(i) are defined in the following way:

e fRe{l,2,...,D* -1} and i € {1,2,3,4)}, then Fr(?)=R.

e If R = D* and 6,(4;) = s + 1, then

FR(2) (FR(4)) = 82(61) - 1,

Fn(l)(FR(3))={1s,' :: %

o If R=D* and &,(8;) < s+ 1, then
Fr(2) (Fr(4)) = 82(81),

FR(I)(FR(s))r{ P E‘éi

The function Fg(i) is defined, if we consider a sink tree or a tree of paths
which is generated by flowing of the messages to an arbitrary processor
of the system (it corresponds to the central circle of the rhombus) from
the other processors. This tree is represented in Figure 4 and is formed
as a superposition of paths incoming to the central processor from each
processors along the relevant to it tree represented in Figure 2. The arrows
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Figure 4. The sink tree for graph G(N;4,5) Figure 5. The order of messages
arrival situated at equal distance
from source

with the numbers assign a sequence of appearance new edges under change
of the number of processors in the system. In this case all the processors of
the system are divided on four domains corresponding to the poles on which
messages from these domains arrive to the central processor. The numbers
in Figure 5 indicate the order of messages arrival lying at equal distance
from the accepting processor. The gossiping algorithm completes the work
after processing of Fgr(i) messages incoming at the input ¢ for i = 4 and
R =D~

Note that
4 D*

YN Fr(i))=N-1.

i=1 R=1 '
Based on the analysis of the gossiping algorithm the following result was
proved.

Proposition 8. For the circulant G(N;s,s + 1) with any N > 4 under
proposed gossiping algorithm

T,(D,G) = T;(D,G) = D*.

Consider the gossiping for the optimal circulants with N = 2D?+2D+1
for any fixed p. Let the broadcast tree be a tree in Figure 2. But in contrast
to the given above gossiping algorithm at each round of this gossip the
communicating nodes can exchange no more than p packets.

The numbers of the output poles for incoming messages will be defined
by the proposed broadcast algorithm. A sequence of acceptance from the
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input poles and of the incoming messages processing for p-gossiping will be
assigned according to the following rules which follow from the accepted
communication model:

1) the first to treat message arrived at input 0;

2) i:=1;

3) to process all packets up to p, arrived at input i;

4) i:=1+41,if i > 4, then i := 1; go to 3).

In this case we can state the following results:

Proposition 8. For the circulant G(N; D, D+ 1) with N = 2D2 4+ 2D + 1
minimum gossiping time of the proposed gossiping algorithm is

. _[D(D+1) p—~1]
Ty(p'G)—[. % 5 +p-1.

Proof. For every node of circulant G(N; D, D+1) we will consider the sink
tree. This tree is represented in Figure 4. In this case all the processors of
the system are divided on four domains corresponding to the poles on which
messages from these domains arrive to the central processor. Consider a do-
main corresponding to one of the poles. The number of nodes of the domain
is N—;—l = ﬂ%ﬁl—l. After p — 1 steps of the gossiping algorithm the states of
the nodes in the considered domain
are shown in Figure 6.
When all the remaining packets
will come in the central node (at
most p packets with one link during a
D-p round), the gossiping algorithm ugrill
be finished. The necessary minimum

J number of rounds z must satisfy the

inequality:

] 2 @ & . >§:i_(D+p)(D+1—-p)
Figure 6 Peats 2 '
gure i=p
This is simplified to z = [(D + p)(D + 1 - p)/2p], and

. _ D(D+1)_p—1"
TG = [R5 221,y

Thus we gave the optimal algorithm of p-gossiping for two-dimensional cir-
culants and its time is coincided with the given lower bound. a
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6. Conclusion

In this paper the basic patterns of the interprocessor exchanges including
routing, broadcast and gossiping for two-dimensional circulant networks are
proposed. The distributed dynamic adaptive routing algorithm for the opti-
mal circulants considered here has constant complexity independent of the
number of processors in system and is adapted to the failures (or loading
degree) of processors and links. A new method of evaluation of lower bounds
for p-gossiping time in arbitrary circulant graphs is established. This method
may be extended to the other classes of the homogeneous Cayley graphs.
The parallel decentralized node-invariant broadcast and p-gossiping algo-
rithms for optimal two-dimensional circulants are proposed and the bounds
of execution\times of the protocols depending on the diameter of the net-
works are obtained. That implies the existence of the minimum broadcast
and gossiping time (and the minimum message loading) for optimal two-
dimensional circulant networks under execution of the proposed protocols.
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