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Some formulas for families of curves and surfaces
and their applications

A.G. Megrabov

Abstract. A unit vector field τ in the Euclidean space E3 is considered. Let P be
the vector field from the first Aminov divergent representation K = div[(r · τ )P ]
for the total curvature of the second kind K of the field τ . For the field P , an
invariant representation of the form P = − rotR∗ is obtained, where the field R∗

is expressed in terms of the Frenet basis (τ ,ν,β) and the first curvature k and the
second curvature κ of the streamlines Lτ of the field τ . Formulas relating to the
quantities K (or P ), κ, τ , ν, and β are derived.

Three-dimensional analogs to the conservation law divS∗
p = 0, which is valid

for a family of plane curves Lτ , are obtained, where S∗
p is the sum of the curva-

ture vectors of the plane curves Lτ and their orthogonal curves Lν . It is shown
that if the field τ is holonomic: 1) the vector field S(τ ) from the second Aminov

divergent representation K = −1

2
divS(τ ) can be interpreted as the sum of three

curvature vectors of three curves related to surfaces Sτ with the normal τ ; 2) the
non-holonomicity values of the fields of the principal directions l1 and l2 are equal.
Applications of the obtained geometric formulas to the equations of mathematical
physics are discussed.

Keywords: vector field, total curvature, family of curves, family of surfaces, con-
servation laws.

1. Introduction

1.1. The vector physical fields described by the equations of mathematical
physics have vector lines Lτ (e.g., the rays for the eikonal equation or the
streamlines for the Euler hydrodynamic equations) which form a family of
curves {Lτ} and continuously fill a domain D in the three-dimensional space.
The surfaces Sτ with the normal τ which are orthogonal to the curves Lτ
(if such surfaces Sτ exist), e.g., wavefronts for the eikonal equation, also form
a family {Sτ}. It is therefore of interest to study not only the properties of
a fixed curve Lτ or a fixed surface Sτ but also the properties of a family of
curves {Lτ} or a family of surfaces {Sτ} which continuously fill a domain D.

In this paper, we consider the three-dimensional case where we have a
unit vector field τ = τ (x, y, z), a family of spatial curves Lτ with the Frenet
basis (τ , ν, β) [1] (τ is the unit tangent vector, ν is the unit principal normal
vector, β is the unit binormal vector), the first curvature k and the second
curvature κ, and the family {Sτ} of the surfaces Sτ which are orthogonal
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to the curves Lτ and have the normal τ , the principal directions l1 and l2,

the principal curvatures k1 and k2, the mean curvature H
def
= (k1 + k2)/2

and the Gaisusian curvature K
def
= k1k2 [1]. All the quantities τ , ν, β, k, κ,

and l1, l2, k1, k2, H, K are the vector and the scalar fields in the domain D.

1.2. Assume that D is a domain in the Euclidean space E3 with the Carte-
sian coordinates x, y, z; i, j, and k are the unit vectors along the coordi-
nate axes x, y, and z, respectively; τ = τ (x, y, z) = τ1i + τ2j + τ3k is the
unit vector field defined in D, and τk = τk(x, y, z) are the scalar functions
(k = 1, 2, 3), |τ |2 = 1. The geometry of vector fields (see [2]) considers the
case of a holonomic field τ for which there is a family of surfaces Sτ with the
normal τ which are orthogonal to the field τ and the general case, where
the field τ can be non-holonomic. A necessary and sufficient condition for
the holonomicity of the field τ [2, Ch.1,§ 1] is the fulfillment of the identity
τ · rot τ = 0 in D. The geometry of vector fields introduces analogs to the
classical characteristics of the surfaces Sτ for a non-holonomic field τ [2].
For example, the analog to the Gaussian curvature of the surface Sτ is
the total curvature of the second kind K [2]. In the case of a holonomic
field τ , these analogs coincide with the corresponding classical characteris-
tics of the surfaces Sτ with the normal τ ; for example, the above-mentioned
quantity K coincides with the Gaussian curvature [2]. For the quantity K,
Yu.A. Aminov (see [2, Ch. 1, § 7; 3]) has obtained the first divergent repre-
sentation:

K = div[(r · τ )P ], (1)

where r is the radius vector of the point (x, y, z), and the vector P called
the curvature vector of the field τ has the invariant form [2, Ch. 1, § 10]:

P = Kτ − 2 div τKτ + (Kτ · ∇)τ , (2)

where Kτ = kν = rot τ × τ = (τ · ∇)τ =
dτ

ds
= τs is the curvature vector

of the curve Lτ with the unit tangent vector τ and the principal normal ν,
Lτ is a streamline or a vector line of the field τ , k is its curvature, (v ·∇)a is
the derivative of the vector a in the direction of the vector v, d/ds is the
differentiation operator in the direction τ along the curve Lτ with respect
to the natural parameter s; dϕ/ds = ϕs = gradϕ · τ for the scalar function
ϕ(x, y, z). The symbols a · b and a × b denote the scalar and the vector
products of the vectors a and b, ∇ is the Hamiltonian operator (nabla).

1.3. Assume that {Lτ} is a family of curves Lτ which continuously fill the
domain D and:

(A) one and only one curve Lτ ∈ {Lτ} passes through each point
(x, y, z) ∈ D;
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(B) at each point (x, y, z) of any curve Lτ ∈ {Lτ} there is a right-hand
Frenet basis (τ ,ν,β) (β is the binormal), so that the three mutually
orthogonal vector fields τ , ν, and β are defined in D; τ = ν × β,
ν = β × τ , and β = τ × ν;

(C) τ (x, y, z) ∈ C2(D).

It this paper (Section 2, Theorem 3), we will show that under conditions
(A)–(C), the field P of the form (2) from formula (1) can be represented as

P = − rotR∗, (3)

where the vector field R∗ can be given by any of the following invariant
representations:

R∗ def
= κτ + kβ + β div ν − ν divβ, (4)

R∗ = (κ − τ · rot τ )τ +∇(ν,β) = Φ + S∗ × τ , (5)

R∗ = κτ + (τ · rotν)ν + (τ · rotβ)β. (6)

Here κ is the second curvature of the curve Lτ , Φ
def
= κτ+kβ is the Darboux

vector [1], ∇(ν,β)
def
= (β · ∇)ν − (ν · ∇)β is the Poisson bracket [2] for ν

and β, S∗ is the sum of three curvature vectors of vector lines Lτ , Lν , and
Lβ of the fields τ , ν, and β, respectively. The formulas for the quantities K
(or P ), κ, τ , ν, and β will be derived in Section 2.3.

1.4. Let us introduce the vector field

S(τ )
def
= rot τ × τ − τ div τ = Kτ − τ div τ . (7)

In the plane case (τ = τ (x, y) = τ1i + τ2j, τ3 ≡ 0, θ ≡ π/2, β = k,
κ = 0), as shown in [4], we have S(τ ) = S∗

p , where S∗
p = Kτ+Kν is the sum

of the curvature vectors Kτ = kν and Kν = kνη = −kντ of the two plane
curves Lτ and Lν from the mutually orthogonal families {Lτ}, {Lν} (k, τ ,
and ν are the curvature, the unit tangent vector, and the unit normal of
the curve Lτ , and kν , ν, η = −τ are the same quantities for the curve Lv).
It has been found [4] that divS∗

p = divS(τ ) = 0, i.e., S∗
p is a solenoidal

field and S∗
p = − rot[α(x, y)k], where α = α(x, y) is the angle that the

vector τ makes with the axis Ox: τ = τ (α) = cosα i+ sinα j. The identity
divS∗

p = 0 ⇔ divS(τ ) = 0 can be regarded as the law of conservation for
the family {Lτ} of plane curves [4]. It explains the geometric meaning of
the differential conservation laws for the eikonal equation (here S∗

p is the
sum of the curvature vectors of the rays and fronts) and for the Euler’s
hydrodynamic equations (here S∗

p is the sum of the curvature vectors of
streamlines and the curves orthogonal to them) in the two-dimensional case
obtained in [5, 6].
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As stated in [5], any vector field v = v(x, y, z) = |v|τ with the direc-
tion τ (|τ | ≡ 1) and modulus |v| 6= 0 in D (v ∈ C1(D)) satisfies the identity
S(τ ) = T (v), where T (v) = grad ln |v|+ (rotv × v − v div v)/|v|2. There-
fore, in the plane case, the identity divS(τ ) = 0 is equivalent to the identity
divT (v) = 0. In the case v = gradu(x, y), the latter was obtained (see the
references in [4–6]) as vector representation of the formula relating to the
differential invariants of the Lie group G. (The group G is an equivalence
group of the eikonal equation u2x + u2y = n2(x, y) and other equations of
mathematical physics, as well as an extension of the group of conformal
transformations of the plane x, y to the space x, y, t, u1 = u, u2 = n2.) This
formula expresses the Gaussian curvature K = −∆ lnn2/(2n2) of the sur-
face with the linear element ds2 = n2(x, y)(dx2 + dy2) in terms of the other
differential invariants of the group G. The search for the three-dimensional
analogs to the conservation law divS(τ ) = 0 for the plane case, the ge-
ometric meaning of the field S(τ ), and their applications in mathemat-
ical physics has led to the results described in [4–6] and in the present
paper.

In the three-dimensional case, the analog to the field S∗
p is naturally

defined as the sum S∗ = Kτ +Kν +Kβ of the three curvature vectors of
the vector lines of the Frenet unit vector fields τ , ν, β of the curves Lτ ,
and S(τ ) 6= S∗. The relationship between the fields S(τ ) and S∗ is given
in Lemma 3; the measure of a difference between S(τ ) and S∗ is in a sense
the field R∗. Generally, in the three-dimensional case, divS(τ ) 6= 0 and
divS∗(τ ) 6= 0. The three-dimensional scalar and vector analogs to the
conservation law divS(τ ) = 0 ⇔ divS∗

p = 0 for the plane case is obtained
in Section 2.3. Note that the vector field S(τ ) enters the second Aminov
divergent representation [2, Ch. 1, § 8] for the total curvature K of the second
kind of the vector field τ : K = −divS(τ )/2 (in this case, −div τ = 2H,
where H is the mean curvature).

1.5. In Sections 3.2 and 3.3, it is shown that in the case of a holonomic
field τ :

• the vector field S(τ ), as well as the field S∗, can be geometrically in-
terpreted as the sum of three curvature vectors of three curves (related
to the surfaces Sτ with the normal τ );

• the non-holonomicity values [2, Ch. 1, § 1] the principal direction fields
on Sτ are equal.

1.6. Section 4 contains applications of the geometric formulas obtained in
Sections 2 and 3 for the equations of mathematical physics.
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2. Representation of the field P in the form of P = − rotR∗

2.1. The vector fields S(τ ), S∗, and R∗. We represent the field τ as

τ = τ (α, θ)
def
= cosα sin θ i+ sinα sin θ j + cos θ k, (8)

where α = α(x, y, z) is the angle that the vector (τ1i+ τ2j) makes with the
axis Ox, so that cosα = τ1/

√
g, sinα = τ2/

√
g, where g = τ21 + τ22 , i.e.,

α(x, y, z) is the polar angle of the point (ξ = τ1, η = τ2) in the plane ξ, η:

α
def
= arctg(τ2/τ1) + (2k + δ)π, k ∈ Z, δ = 0, and δ = 1, respectively,

in quadrants I, IV and II, III of the plane ξ, η; θ = θ(x, y, z) is the angle

between the vector τ and the axis Oz: θ
def
= arccos(τ3/|v|), so that 0 ≤

θ ≤ π, cos θ = τ3, and sin θ =
√
g. This means that α and θ are spherical

coordinates in the space ξ = τ1, η = τ2, ζ = τ3.

Lemma 1. Let conditions (A)–(C) be satisfied. Then the field S(τ ) of the
form (7) can be represented in D as S(τ ) = sin θ gradα × ν1 − grad θ ×
ν2, divS(τ ) = 2(τ · sin θA), where sin θA = − gradα × grad cos θ =

rot(cos θ gradα) = − rot(α grad cos θ), A
def
= gradα × grad θ; the princi-

pal normal ν and the binormal β of the curve Lτ ∈ {Lτ}, and the field S(τ )
can be represented as (k 6= 0) ν = (αs sin θ ν2 +θsν1)/k, β = (−αs sin θ ν1 +

θsν2)/k, where ν1
def
= cosα cos θ i+ sinα cos θ j− sin θ k (sin θ ν1 = cos θ τ −

k), ν2 = − sinα i+cosα j, αs = dα/ds = gradα ·τ , θs = dθ/ds = grad θ ·τ ;

S(τ ) = (A1 × ν − A2 × β)/k, where A1
def
= sin θ (θs gradα − αs grad θ),

A2
def
= αs sin2 θ gradα + θs grad θ. The unit vectors (τ ,ν1,ν2) form the

right-hand system, i.e., ν1 × ν2 = τ , τ × ν1 = ν2, ν2 × τ = ν1.

Proof. From formula (8) we have τs = αs sin θ ν2 + θsν1 and div τ =
sin θ (gradα · ν2) + grad θ · ν1, whence using the well-known formulas [7]
ν = τs/k and β = τ × ν and expressing ν1 and ν2 in terms of ν and
β, we obtain the formulas of the lemma for ν, β, and S(τ ). The formula
for divS(τ ) can be obtained, for example, by rewriting S(τ ) in the form
S(τ ) = − sin2 θ rot(αk)− sin θ cos θ rotν2− cosα rot(θj) + sinα rot(θi) and
using the well-known formula [7] div(ϕ rota) = gradϕ · rota.

Lemma 2. Let conditions (A)–(C) be satisfied. Then for the first curva-
ture k and the second curvature κ of the curve Lτ ∈ {Lτ} in the domain D,
the following formulas hold (k 6= 0): k2 = α2

s sin2 θ + θ2s , κ = ϕs + αs cos θ,

and ϕs = gradϕ · τ = [(θsαss − αsθss) sin θ + αsθ
2
s cos θ]/k2, where ϕ

def
=

arctg
αs sin θ

θs
, αss =

d2α

ds2
= gradαs · τ , and θss =

d2θ

ds2
= grad θs · τ .
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Proof. The lemma follows from the well-known formulas [7] k2 = |τs|2,
κ = ([τ × τs] · τss)/k2 = (τss · kβ)/k2 (we have kβ = τ × kν = τ × τs),
and τss = (τs)s, the expression τs = αs sin θ ν2 + θsν1, and the formulas of
Lemma 1 for β, ν1, and ν2 using simple calculations.

The field R∗ included in formula (3) appears in the following

Lemma 3. Let the family {Lτ} of the curves Lτ with the Frenet unit vec-
tors τ , ν, and β, the first curvature k, and the second curvature κ in the
domain D satisfy conditions (A)–(C). Let the field S∗ be the sum of the
three curvature vectors:

S∗ def
= Kτ +Kν +Kβ = (τ · ∇)τ + (ν · ∇)ν + (β · ∇)β

= rot τ × τ + rotν × ν + rotβ × β
= −(τ div τ + ν div ν + β divβ) = [S(τ ) + S(ν) + S(β)]/2.

Here Kτ = (τ · ∇)τ = rot τ × τ = kν, Kν = (ν · ∇)ν = rotν × ν,
and Kβ = (β · ∇)β = rotβ × β are the curvature vectors of the vector
lines Lτ , Lν , and Lβ of the fields τ , ν, and β, respectively. Then, in D,
S∗ = S(τ ) + τ × R∗, where the vector field R∗ is expressed by any of
formulas (4)–(6).

Proof. The expression S∗ = −(τ div τ + ν div ν + β divβ) follows from
the well-known formulas div(a× b) = (b · rota)− (a · rot b), a× (b× c) =
b(a · c) − c(a · b), τ = ν × β [7], ν = β × τ , and β = τ × ν. Combining
this expression for S∗ with the original one (in terms of rotors), we obtain
S∗ = [S(τ ) + S(ν) + S(β)]/2. Substituting the formulas for ν and β from
Lemma 1, the formula for k2 from Lemma 2, the relations between τ , ν1,
and ν2 from Lemma 1 into the expression for S∗, after lengthy but simple
calculations, we obtain −S∗ = gradα× k+ grad θ× ν2 + gradϕ× τ , where
the function ϕ is defined in Lemma 2. Combining the latter equality with
the first formula for S(τ ) from Lemma 1 and with allowance for sin θ ν1 =
cos θ τ−k, we obtain S∗ = S(τ )+τ×R∗, where R∗ = gradϕ+cos θ gradα.

We will now show that the latter vector R∗ satisfies the invariant ex-
pression (4). Indeed, R∗ · τ = ϕs + αs cos θ = κ by virtue of Lemma 2.
Multiplying the identity S∗ = S(τ ) +τ ×R∗ vectorially by ν and by β and
using the well-known formulas a×(b×c) = b(a ·c)−c(a ·b), a×a = 0, and
τ ·ν = τ ·β = 0 [7], we obtain ν ·R∗ = −divβ and β ·R∗ = k+div ν, respec-
tively. This brings about the desired formula for R∗. Using the formulas
kβ = τ×(rot τ×τ ) = rot τ−τ (τ ·rot τ )⇒ k = β·rot τ , rot τ = rot(ν×β) =
ν divβ−β div ν+∇(ν,β), ν ·rot τ = 0, divβ = div(τ×ν) = −τ ·rotν, and
div ν = div(β × τ ) = τ · rotβ − k, we obtain the remaining representations
for R∗ in the lemma.
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Remark 1. The formula divS∗ = (κ − τ · rot τ )2 − [τ · (rotν × rotβ) +
ν · (rotβ × rot τ ) + β · (rot τ × rotν)] is proved in a similar way.

From formulas (2), R∗ = gradϕ+cos θ gradα, S∗ = S(τ )+τ ×R∗, and
Lemma 1, we obtain

Corollary 1. Under conditions (A)–(C), in D, we have rotR∗ = sin θA =

sin θ (gradα× grad θ), divS(τ ) = 2(τ · rotR∗), and divS∗ =
1

2
divS(τ ) +

κ(τ · rot τ ) + k(τ · rotβ).

The latter is derived using the equalities divS∗ = divS(τ )+R∗ · rot τ −
rotR∗ ·τ and R∗ · rot τ = κ(τ · rot τ )+k(τ · rotβ) by virtue of ν · rot τ = 0,

β · rot τ = k, and rotR∗ · τ =
1

2
divS(τ ).

2.2. Invariant forms of the vector rotR∗

Theorem 1. Let conditions (A)–(C) be satisfied. Then, the quantity rotR∗

with the vector field R∗ defined by any one of formulas (4)–(6) has any of
the representations

rotR∗ =
1

2
τ divS(τ )− kν(ν · rotβ)− kβ(κ + β · rotβ) (9)

= τ
[1

2
divS(τ ) + k(τ · rotβ)

]
− k rotβ − κkβ

= τ divS∗ − κ rot τ − k rotβ, (10)

where the vector fields S(τ ) and S∗ are defined in (7) and in Lemma 3.

Proof. We calculate the quantity β · rotβ using the formulas
β = (−αs sin θ ν1 + θsν2)/k (from Lemma 1), rotν1 = cos θ (gradα× ν2)−
grad θ×τ , and rotν2 = − gradα×(cosα i+sinα j), the relations τ = ν1×ν2,
ν1 = ν2 × τ , and ν2 = τ × ν1, and the formulas of Lemma 2 for k2 and κ.
Then we obtain β · rotβ = −κ + sin θ [θs(gradα · ν) − αs(grad θ · ν)]/k.
Here, substituting αs = gradα · τ , θs = grad θ · τ and using the well-known
formula (a · c)(b · d)− (b · c)(a · d) = [a× b] · [c× d] [7, § 7] for a = grad θ,
b = gradα, c = τ , and d = ν, we obtain β · rotβ = −κ − sin θ [(τ ×
ν) · (gradα × grad θ)] = −κ − (β · sin θA)/k = −κ − (β · rotR∗)/k. This
results in β · rotR∗ = −k[κ + β · rotβ]. Similarly we obtain ν · rotβ =
− sin θ [θs(gradα · β)− αs(grad θ · β)] = −(ν · sin θA)/k = −(ν · rotR∗)/k,
whence ν · rotR∗ = −kν(ν · rotβ). From Corollary 1 we have τ · rotR∗ =
1

2
divS(τ ), which leads to formula (9). From this formula, by virtue of

Corollary 1, we obtain identity (10).

In the similar way we prove the following
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Lemma 4. Let conditions (A)–(C) be satisfied. Then the vector fields A1

and A2 defined in Lemma 1 are expressed in the domain D in terms of the
characteristics τ , ν, β, k, and κ of the curves Lτ ∈ {Lτ} by the formulas
A1 = kν(κ+β · rotβ)−kβ(ν · rotβ) and A2 = k[kτ +ν(β · rotν)−β(κ+
ν · rotν)].

2.3. The relationship between the quantities div S(τ ) = −2K, κ,
τ , ν, and β. On the conservation laws for the family of curves Lτ

Theorem 2. Let conditions (A)–(C) be satisfied. Then, in the domain D,

we have
1

2
divS(τ ) = κ(κ−τ ·rot τ )−τ ·(rotν×rotβ)⇔ κ2 =

1

2
divS(τ )+

κ(τ · rot τ ) + τ · (rotν × rotβ) = τ · (rotR∗ + κ rot τ + rotν × rotβ).

Proof. From the definition of the quantities A1 and A2 in Lemma 1 we
obtain sin θ gradα = (θsA1 + αs sin θA2)/k

2 and grad θ = (−αs sin θA1 +
θsA2)/k

2⇒ sin θA = sin θ gradα×grad θ = rotR∗ = (A1×A2)/k
2, whence,

using the formulas from Lemma 4, we have

rotR∗ = τ [κ2 − κ(τ · rot τ )− τ · (rotν × rotβ)]−
kν(ν · rotβ)− kβ(κ + β · rotβ). (11)

The theorem is proved by multiplying the latter equation by τ and using
formula (9).

Remark 2. The formulas in Corollary 1 and Theorem 2 containing the
expressions divS(τ ) and the formulas in Theorem 1 are respectively the
scalar and vector analogs to the conservation law divS(τ ) = 0⇔ divS∗

p = 0
of the plane case for the family of plane curves {Lτ}. In the plane case, we
have τ = τ (x, y), β ≡ k, κ = 0 ⇒ R∗ = 0, S(τ ) = S∗

p , and rotR∗ = 0,
and these formulas imply this conservation law. In the three-dimensional
case, Theorem 1 leads to a higher-order conservation law divF = 0 for the
family {Lτ} of curves Lτ . Here the vector solenoidal field F is expressed in
terms of the characteristics τ , ν, β, k, and κ of the curves Lτ and is the
right-hand side of any of formulas (9)–(11). For example,

div
[1

2
τ divS(τ )− kν(ν · rotβ)− kβ(κ + β · rotβ)

]
= 0, (12)

div[τ divS∗ − κ rot τ − k rotβ] = 0, (13)

where the fields S(τ ), S∗ are expressed using formulas (7) and Lemma 3.
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2.4. Solenoidal representation of the vector P in terms of the
field R∗

Theorem 3. Assume that for the family {Lτ} of streamlines Lτ of the
unit vector field τ in the domain D conditions (A)–(C) are satisfied and
(τ ,ν,β), k, and κ are the Frenet basis, the first curvature, and the second
curvature of the curves Lτ . Then the field P in formula (1) can be repre-
sented as (3), where the field R∗ is expressed by any of the invariant forms
(4)–(6). Furthermore, in addition to formula (2), anyone of the expressions
in terms of the quantities τ , ν, β, k, and κ contained in the right-hand
sides of formulas (9)–(11) is valid for the field (−P ).

Proof. We show that the right-hand sides of (2) and (9) differ only in their
signs. From the second Frenet equation dν/ds = (τ · ∇)ν = −kτ +κβ and
the formulas rotβ = rot(τ × ν) = (ν · ∇)τ − (τ · ∇)ν + τ div ν − ν div τ ,
div ν = τ · rotβ − β · rot τ , and k = β · rot τ , we obtain (ν · ∇)τ =

rotβ+κβ− τ (τ · rotβ) +ν div τ . Next we use K = −1

2
divS(τ ) [2, Ch. 1,

§ 8], (Kτ · ∇)τ = k(ν · ∇)τ , and the theorem is proved.

Corollary 2. Representation (1) is equivalent to the formula

K = − grad(r · τ ) · rotR∗ ⇔ K = div[grad(r · τ )×R∗].

Remark 3. The Frenet unit vectors ν and β and the first curvature k of
the curves Lτ can be expressed in terms of τ :

ν = (rot τ × τ )/k, β = τ × ν, k = |rot τ × τ |. (14)

Substituting the latter for ν and β into the formula [2, Ch. 1, § 15]:

κ =
1

2
(τ · rot τ − ν · rotν − β · rotβ) (15)

we also express the second curvature κ in terms of the single quantity τ .

As, by virtue of formulas (4)–(7), Lemmas 3 and 4, and Theorems 1–3,
the quantities S(τ ), S∗, R∗, divS(τ ), divS∗, rotR∗, and K are expressed
in terms of the unit vectors τ , ν, and β, the first curvature k and the
second curvature κ of the curves Lτ , it follows that all these quantities
can ultimately be expressed only in terms of the field τ . Therefore, all the
formulas in Theorems 1–3 and Lemmas 3 and 4 can be expressed only in
terms of the field τ , i.e. the unit tangent vectors of the curves Lτ .
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3. Properties of the family {Sτ} of surfaces Sτ

3.1. Conditions on the family {Sτ}. Let us assume that for the field τ
in D, there exists a family of surfaces Sτ orthogonal to the field τ . Accord-
ing to the Jacobi theorem [2, Ch. 1, § 1], this is equivalent to the identity
τ · rot τ = 0 in D. Let {Sτ} be the family of surfaces Sτ with a unit nor-
mal τ = τ (x, y, z) which continuously fill the domain D in the space x, y, z.
The principal direction will be represented by the unit vector li (i = 1, 2)
with the corresponding direction; the vector li is the unit tangent vector of
the curvature line Li on Sτ , and at a point (x, y, z) ∈ Sτ it is equal to the
derivative of the radius vector r = r(x, y, z) of the point of the surface Sτ
with respect to the principal direction at the point (x, y, z). Suppose that:

(D) one and only one surface Sτ ∈ {Sτ} passes through each point
(x, y, z) ∈ D;

(E) at each point (x, y, z) ∈ D, there exists a right-hand system of mutu-
ally orthogonal unit vectors τ , l1, and l2, where τ is the unit normal
and l1 and l2 are the principal directions on the surface Sτ passing
through this point. For this, it is sufficient that each surface Sτ ∈ {Sτ}
be C2-regular [8]. Thus, in the domain D, we define three mutu-
ally orthogonal unit vector fields τ (x, y, z), l1(x, y, z), and l2(x, y, z);
l1 = l2 × τ , l2 = τ × l1, and τ = l1 × l2;

(F) τ , l1, l2 ∈ C1(D).

3.2. The equality of non-holonomicity values of the fields l1 and l2

Theorem 4. Let a family {Sτ} of surfaces Sτ with the unit normal τ =
τ (x, y, z) satisfy conditions (D)–(F) in the domain D. Then the non-holo-
nomicity values of the vector fields of the principal directions l1 and l2 (unit
tangent vectors of the curvature lines Li on Sτ ) are equal in D :

l1 · rot l1 = l2 · rot l2. (16)

Proof. Writing down the general formulas [7, § 17] rot[a× b] = (b · ∇)a−
(a ·∇)b+adiv b−b diva, and grad(a ·b) = (b ·∇)a+ (a ·∇)b+b× rota+
a × rot b for a = l2 and b = τ , subtracting and taking into account the
Rodrigues formulas [8] written as (l1 · ∇)τ = −k1l1 and (l2 · ∇)τ = −k2l2,
we obtain rot l1 = (2k2+div τ )l2−τ div l2+rot τ×l2+rot l2×τ . Multiplying
the latter scalarly by l1, we prove the theorem. Another proof follows from
the fact that the principal curvatures are stationary values of the normal
curvatures [9].
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Remark 4. Theorem 2 for τ · rot τ = 0, τ ∈ C2(D) implies the following
formula relating to the Gaussian curvature K of the surface Sτ ∈ {Sτ}, the
Frenet basis (τ ,ν,β), and the second curvature κ of the vector lines Lτ of
the field of normals τ of the surfaces Sτ :

K = τ · (rotν × rotβ)− κ2. (17)

Here the second curvature κ of the curves Lτ can be expressed in terms of
the Frenet unit vectors τ , ν, β by formula (15), assuming τ · rot τ = 0.

3.3. Geometric meaning of the field S(τ )

Theorem 5. Let τ = τ (x, y, z) be a unit vector field in the domain D;
the family {Lτ} of vector lines Lτ of the field τ and the family {Sτ} of
surfaces Sτ with normal τ are mutually orthogonal in D. Let conditions
(D)–(F) be satisfied in D. Then the field S(τ ) of the form (7) at any point
(x, y, z) ∈ D is the sum of the three curvature vectors: S(τ ) = Kτ +Kg1 +
Kg2 = Kτ + 2Hτ (H is the mean curvature of the surface). Here Kτ =
(τ ·∇)τ = rot τ×τ is the curvature vector of the vector line Lτ of the field τ
at the point (x, y, z); Kg1 = kg1τ and Kg2 = kg2τ are the curvature vectors
(at the same point) of two geodesic lines with the curvatures kg1 and kg2
at the surface Sτ which pass through the point (x, y, z) ∈ Sτ in any two
mutually orthogonal directions.

Proof. For a geodesic line γi (i = 1, 2) on the surface Sτ , the principal
normal coincides with the normal τ to the surface, and the curvature kgi
everywhere is equal to the normal curvature kni [1, § 73]. Therefore, Kgi =
kniτ ⇒ Kg1 +Kg2 = (k1n + k2n)τ = (k1 + k2)τ = 2Hτ = −τ div τ .

4. Application of the obtained geometric formulas to the
mathematical physics equations

Suppose that v = v(x, y, z) = |v|τ is a vector field with direction τ (|τ | ≡ 1)
and modulus |v| 6= 0, defined in a domain D of the three-dimensional Eu-
clidean space E3. The vector lines Lτ of the fields v and τ coincide and
v · rotv = |v|2(τ · rot τ ). Therefore, a necessary and sufficient condition for
the existence of a family {Sτ} of surfaces Sτ with the unit normal τ , which
are orthogonal to the fields v and τ (the condition on holonomicity of the
field τ ) is the identity v · rotv = 0 ⇔ τ · rot τ = 0.

Remark 5. On the other hand, as stated by the theorem from Problem 136
in [7, § 17], in order that the variable vector field v can be represented
as v = ψ gradϕ, where ϕ and ψ are scalar functions, it is also necessary
and sufficient that the identity v · rotv = 0 be satisfied. Therefore, for
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vector fields of the form v = ψ gradϕ, and only for them, there exists
a family {Sτ} of surfaces Sτ orthogonal to the fields v and τ , i.e., the
case of the holonomic field of directions τ reduces to fields of the form
v = ψ gradϕ. Below we will take into account the fact that S(τ ) = T (v),
where T (v) = grad lnv + (rotv × v − v div v)/|v|2 (see Section 1).

4.1. The eikonal equation. We consider the eikonal equation

| grad τ |2 def
= τ2x + τ2y + τ2z = n2(x, y, z) for a scalar time field τ = τ(x, y, z),

which is the basic mathematical model of kinematic seismics (geometric
optic) in an inhomogeneous isotropic medium with the refractive index
n(x, y, z). The function τ(x, y, z) is the travel time of a signal (wave) of any
nature, whose kinematics satisfies the Fermat principle, along the ray (the
geodesic line of the metric ds2 = n2(x, y, z)(dx2+dy2+dz2)) which connects
the point source and the point (x, y, z). In this case, the ray plays the role
of a curve Lτ and is the vector line of the vector potential (non-force) field
v = grad τ with tangent unit vector τ = grad τ/n and modulus | grad τ | = n.
Obviously, in this case, the field τ is holonomic (τ ·rot τ = v ·rotv = 0); the
role of the surfaces Sτ orthogonal to the rays Lτ is played by the wavefronts
τ(x, y, z) = const (level surfaces of the scalar field τ).

From the general geometric formula (17) for τ ∈ C3(D) and n ∈ C2(D),
we obtain the following expression for the Gaussian curvature K of the
front Sτ : K = τ · (rotν × rotβ) − κ2. Here τ = grad τ/n; the principal
normal ν and the binormal β of the ray are calculated by formulas (14), and
the second curvature κ of the ray is calculated by (15). Another formula

for K of the form K = −1

2
divT , where T = T (grad τ) = grad lnn −

∆τ

n2 grad τ , or K = −1

2

[
∆ lnn− div

(
∆τ

n2 grad τ
)]

, follows from the equality

K = −1

2
divS(τ ) [2, Ch. 1, § 8] and the identity S(τ ) = T (v). Generally,

for the solutions τ of the eikonal equation, all the formulas in Sections 2
and 3 hold, including the formulas for divS(τ ) and divS∗ from Corollary 1
and Theorem 2, which are analogs to the conservation law divT = 0 for the
plane case (see [6] and Remark 2) and the conservation law (12), (13), with
consideration of the equalities τ · rot τ = 0, τ = grad τ/n and Remark 3.

4.2. The Euler hydrodynamic equations. Let v = v(x, y, z, t) = vτ be
the velocity in the Euler hydrodynamic equations vt+grad v2/2−v×rotv =
F − grad p/ρ, which can be rewritten as G = −T (v) (= −S(τ )), where

G
def
= (vt+v div v+grad p/ρ−F )/v2, in domain D; v

def
= |v|, v ∈ C2(D), the

pressure p ∈ C2(D), the density ρ ∈ C1(D), and the body force F ∈ C1(D).

Here the role of the curves Lτ is played by the streamlines (the vector
lines of the field v or τ at fixed t). The class of fields v for which there
exists a family {Sτ} of the surfaces Sτ orthogonal to the field v (curves Lτ )
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is described by the formula v = ψ gradϕ, where ψ and ϕ are scalar functions
(Remark 5). This class, in particular, includes the potential field v = gradϕ.
To calculate the Gaussian curvature K of the surface Sτ orthogonal to the
streamlines Lτ , we use formula (17) taking into account the equality τ = v/v

and Remark 3. The second formula for K of the form K =
1

2
divG follows

from the identities K = −1

2
divS(τ ) and G = −T (v) = −S(τ ). The

formulas for divS(τ ) and divS∗ from Corollary 1 and Theorem 2, which
are analogs to the conservation law divG = 0 for the plane case ([5] and
Remark 2) and conservation laws (12), (13), also hold for the velocity field v
with allowance for the equality τ = v/v and Remark 3.
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