$Bull.\,Nov.\,Comp.\,Center,$ Math. Model. in Geoph., 19 (2016), 29–41 © 2016 NCC Publisher

Some formulas for families of curves and surfaces and their applications

A.G. Megrabov

Abstract. A unit vector field $\boldsymbol{\tau}$ in the Euclidean space E^3 is considered. Let \boldsymbol{P} be the vector field from the first Aminov divergent representation $K = \operatorname{div}[(\boldsymbol{r} \cdot \boldsymbol{\tau})\boldsymbol{P}]$ for the total curvature of the second kind K of the field $\boldsymbol{\tau}$. For the field \boldsymbol{P} , an invariant representation of the form $\boldsymbol{P} = -\operatorname{rot} \boldsymbol{R}^*$ is obtained, where the field \boldsymbol{R}^* is expressed in terms of the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$ and the first curvature k and the second curvature \varkappa of the streamlines L_{τ} of the field $\boldsymbol{\tau}$. Formulas relating to the quantities K (or \boldsymbol{P}), \varkappa , $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$ are derived.

Three-dimensional analogs to the conservation law div $S_p^* = 0$, which is valid for a family of plane curves L_{τ} , are obtained, where S_p^* is the sum of the curvature vectors of the plane curves L_{τ} and their orthogonal curves L_{ν} . It is shown that if the field τ is holonomic: 1) the vector field $S(\tau)$ from the second Aminov divergent representation $K = -\frac{1}{2} \operatorname{div} S(\tau)$ can be interpreted as the sum of three curvature vectors of three curves related to surfaces S_{τ} with the normal τ ; 2) the non-holonomicity values of the fields of the principal directions l_1 and l_2 are equal. Applications of the obtained geometric formulas to the equations of mathematical physics are discussed.

Keywords: vector field, total curvature, family of curves, family of surfaces, conservation laws.

1. Introduction

1.1. The vector physical fields described by the equations of mathematical physics have vector lines L_{τ} (e.g., the rays for the eikonal equation or the streamlines for the Euler hydrodynamic equations) which form a family of curves $\{L_{\tau}\}$ and continuously fill a domain D in the three-dimensional space. The surfaces S_{τ} with the normal τ which are orthogonal to the curves L_{τ} (if such surfaces S_{τ} exist), e.g., wavefronts for the eikonal equation, also form a family $\{S_{\tau}\}$. It is therefore of interest to study not only the properties of a fixed curve L_{τ} or a fixed surfaces S_{τ} but also the properties of a family of curves $\{L_{\tau}\}$ or a family of surfaces $\{S_{\tau}\}$ which continuously fill a domain D.

In this paper, we consider the three-dimensional case where we have a unit vector field $\boldsymbol{\tau} = \boldsymbol{\tau}(x, y, z)$, a family of spatial curves L_{τ} with the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$ [1] ($\boldsymbol{\tau}$ is the unit tangent vector, $\boldsymbol{\nu}$ is the unit principal normal vector, $\boldsymbol{\beta}$ is the unit binormal vector), the first curvature k and the second curvature $\boldsymbol{\varkappa}$, and the family $\{S_{\tau}\}$ of the surfaces S_{τ} which are orthogonal to the curves L_{τ} and have the normal τ , the principal directions l_1 and l_2 , the principal curvatures k_1 and k_2 , the mean curvature $H \stackrel{\text{def}}{=} (k_1 + k_2)/2$ and the Gaisusian curvature $K \stackrel{\text{def}}{=} k_1 k_2$ [1]. All the quantities $\tau, \nu, \beta, k, \varkappa$, and l_1, l_2, k_1, k_2, H, K are the vector and the scalar fields in the domain D.

1.2. Assume that D is a domain in the Euclidean space E^3 with the Cartesian coordinates x, y, z; i, j, and k are the unit vectors along the coordinate axes x, y, and z, respectively; $\boldsymbol{\tau} = \boldsymbol{\tau}(x, y, z) = \tau_1 \boldsymbol{i} + \tau_2 \boldsymbol{j} + \tau_3 \boldsymbol{k}$ is the unit vector field defined in D, and $\tau_k = \tau_k(x, y, z)$ are the scalar functions $(k = 1, 2, 3), |\tau|^2 = 1$. The geometry of vector fields (see [2]) considers the case of a holonomic field τ for which there is a family of surfaces S_{τ} with the normal τ which are orthogonal to the field τ and the general case, where the field τ can be non-holonomic. A necessary and sufficient condition for the holonomicity of the field τ [2, Ch.1,§1] is the fulfillment of the identity $\tau \cdot \operatorname{rot} \tau = 0$ in D. The geometry of vector fields introduces analogs to the classical characteristics of the surfaces S_{τ} for a non-holonomic field τ [2]. For example, the analog to the Gaussian curvature of the surface S_{τ} is the total curvature of the second kind K [2]. In the case of a holonomic field τ , these analogs coincide with the corresponding classical characteristics of the surfaces S_{τ} with the normal τ ; for example, the above-mentioned quantity K coincides with the Gaussian curvature [2]. For the quantity K, Yu.A. Aminov (see [2, Ch. 1, $\S7$; 3]) has obtained the first divergent representation:

$$K = \operatorname{div}[(\boldsymbol{r} \cdot \boldsymbol{\tau})\boldsymbol{P}], \tag{1}$$

where \boldsymbol{r} is the radius vector of the point (x, y, z), and the vector \boldsymbol{P} called the curvature vector of the field $\boldsymbol{\tau}$ has the invariant form [2, Ch. 1, § 10]:

$$\boldsymbol{P} = K\boldsymbol{\tau} - 2\operatorname{div}\boldsymbol{\tau}\boldsymbol{K}_{\tau} + (\boldsymbol{K}_{\tau}\cdot\nabla)\boldsymbol{\tau}, \qquad (2)$$

where $\mathbf{K}_{\tau} = k\boldsymbol{\nu} = \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau} = (\boldsymbol{\tau} \cdot \nabla)\boldsymbol{\tau} = \frac{d\boldsymbol{\tau}}{ds} = \boldsymbol{\tau}_s$ is the curvature vector of the curve L_{τ} with the unit tangent vector $\boldsymbol{\tau}$ and the principal normal $\boldsymbol{\nu}$, L_{τ} is a streamline or a vector line of the field $\boldsymbol{\tau}$, k is its curvature, $(\boldsymbol{v} \cdot \nabla)\boldsymbol{a}$ is the derivative of the vector \boldsymbol{a} in the direction of the vector \boldsymbol{v} , d/ds is the differentiation operator in the direction $\boldsymbol{\tau}$ along the curve L_{τ} with respect to the natural parameter s; $d\varphi/ds = \varphi_s = \operatorname{grad} \varphi \cdot \boldsymbol{\tau}$ for the scalar function $\varphi(x, y, z)$. The symbols $\boldsymbol{a} \cdot \boldsymbol{b}$ and $\boldsymbol{a} \times \boldsymbol{b}$ denote the scalar and the vector products of the vectors \boldsymbol{a} and \boldsymbol{b} , ∇ is the Hamiltonian operator (nabla).

1.3. Assume that $\{L_{\tau}\}$ is a family of curves L_{τ} which continuously fill the domain D and:

(A) one and only one curve $L_{\tau} \in \{L_{\tau}\}$ passes through each point $(x, y, z) \in D;$

- (B) at each point (x, y, z) of any curve $L_{\tau} \in \{L_{\tau}\}$ there is a right-hand Frenet basis (τ, ν, β) (β is the binormal), so that the three mutually orthogonal vector fields τ , ν , and β are defined in D; $\tau = \nu \times \beta$, $\nu = \beta \times \tau$, and $\beta = \tau \times \nu$;
- (C) $\boldsymbol{\tau}(x, y, z) \in C^2(D).$

It this paper (Section 2, Theorem 3), we will show that under conditions (A)–(C), the field P of the form (2) from formula (1) can be represented as

$$\boldsymbol{P} = -\operatorname{rot} \boldsymbol{R}^*,\tag{3}$$

where the vector field \mathbf{R}^* can be given by any of the following invariant representations:

$$\boldsymbol{R}^* \stackrel{\text{def}}{=} \boldsymbol{\varkappa} \boldsymbol{\tau} + k\boldsymbol{\beta} + \boldsymbol{\beta} \operatorname{div} \boldsymbol{\nu} - \boldsymbol{\nu} \operatorname{div} \boldsymbol{\beta}, \tag{4}$$

$$\mathbf{R}^* = (\boldsymbol{\varkappa} - \boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) \boldsymbol{\tau} + \nabla(\boldsymbol{\nu}, \boldsymbol{\beta}) = \boldsymbol{\Phi} + \boldsymbol{S}^* \times \boldsymbol{\tau}, \tag{5}$$

$$\boldsymbol{R}^* = \boldsymbol{\varkappa}\boldsymbol{\tau} + (\boldsymbol{\tau}\cdot\operatorname{rot}\boldsymbol{\nu})\boldsymbol{\nu} + (\boldsymbol{\tau}\cdot\operatorname{rot}\boldsymbol{\beta})\boldsymbol{\beta}.$$
 (6)

Here \varkappa is the second curvature of the curve L_{τ} , $\Phi \stackrel{\text{def}}{=} \varkappa \tau + k\beta$ is the Darboux vector [1], $\nabla(\nu, \beta) \stackrel{\text{def}}{=} (\beta \cdot \nabla)\nu - (\nu \cdot \nabla)\beta$ is the Poisson bracket [2] for ν and β , S^* is the sum of three curvature vectors of vector lines L_{τ} , L_{ν} , and L_{β} of the fields τ , ν , and β , respectively. The formulas for the quantities K(or P), \varkappa , τ , ν , and β will be derived in Section 2.3.

1.4. Let us introduce the vector field

$$\boldsymbol{S}(\boldsymbol{\tau}) \stackrel{\text{def}}{=} \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau} - \boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau} = \boldsymbol{K}_{\tau} - \boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}.$$
(7)

In the plane case ($\boldsymbol{\tau} = \boldsymbol{\tau}(x, y) = \tau_1 \boldsymbol{i} + \tau_2 \boldsymbol{j}$, $\tau_3 \equiv 0$, $\theta \equiv \pi/2$, $\boldsymbol{\beta} = \boldsymbol{k}$, $\boldsymbol{\varkappa} = 0$), as shown in [4], we have $\boldsymbol{S}(\boldsymbol{\tau}) = \boldsymbol{S}_p^*$, where $\boldsymbol{S}_p^* = \boldsymbol{K}_{\tau} + \boldsymbol{K}_{\nu}$ is the sum of the curvature vectors $\boldsymbol{K}_{\tau} = k\boldsymbol{\nu}$ and $\boldsymbol{K}_{\nu} = k_{\nu}\boldsymbol{\eta} = -k_{\nu}\boldsymbol{\tau}$ of the two plane curves L_{τ} and L_{ν} from the mutually orthogonal families $\{L_{\tau}\}, \{L_{\nu}\}$ ($k, \boldsymbol{\tau}$, and $\boldsymbol{\nu}$ are the curvature, the unit tangent vector, and the unit normal of the curve L_{τ} , and $k_{\nu}, \boldsymbol{\nu}, \boldsymbol{\eta} = -\boldsymbol{\tau}$ are the same quantities for the curve L_{ν}). It has been found [4] that div $\boldsymbol{S}_p^* = \text{div } \boldsymbol{S}(\boldsymbol{\tau}) = 0$, i.e., \boldsymbol{S}_p^* is a solenoidal field and $\boldsymbol{S}_p^* = -\text{rot}[\alpha(x, y)\boldsymbol{k}]$, where $\alpha = \alpha(x, y)$ is the angle that the vector $\boldsymbol{\tau}$ makes with the axis $Ox: \boldsymbol{\tau} = \boldsymbol{\tau}(\alpha) = \cos \alpha \, \boldsymbol{i} + \sin \alpha \, \boldsymbol{j}$. The identity div $\boldsymbol{S}_p^* = 0 \Leftrightarrow \text{div } \boldsymbol{S}(\boldsymbol{\tau}) = 0$ can be regarded as the law of conservation for the family $\{L_{\tau}\}$ of plane curves [4]. It explains the geometric meaning of the differential conservation laws for the eikonal equation (here \boldsymbol{S}_p^* is the sum of the curvature vectors of the rays and fronts) and for the Euler's hydrodynamic equations (here \boldsymbol{S}_p^* is the sum of the curvature vectors of streamlines and the curves orthogonal to them) in the two-dimensional case obtained in [5, 6]. A.G. Megrabov

As stated in [5], any vector field $\boldsymbol{v} = \boldsymbol{v}(x, y, z) = |\boldsymbol{v}|\boldsymbol{\tau}$ with the direction $\boldsymbol{\tau}$ ($|\boldsymbol{\tau}| \equiv 1$) and modulus $|\boldsymbol{v}| \neq 0$ in D ($\boldsymbol{v} \in C^1(D)$) satisfies the identity $S(\tau) = T(v)$, where $T(v) = \operatorname{grad} \ln |v| + (\operatorname{rot} v \times v - v \operatorname{div} v)/|v|^2$. Therefore, in the plane case, the identity div $S(\tau) = 0$ is equivalent to the identity div T(v) = 0. In the case $v = \operatorname{grad} u(x, y)$, the latter was obtained (see the references in [4-6]) as vector representation of the formula relating to the differential invariants of the Lie group G. (The group G is an equivalence group of the eikonal equation $u_x^2 + u_y^2 = n^2(x,y)$ and other equations of mathematical physics, as well as an extension of the group of conformal transformations of the plane x, y to the space $x, y, t, u^1 = u, u^2 = n^2$.) This formula expresses the Gaussian curvature $K = -\Delta \ln n^2/(2n^2)$ of the surface with the linear element $ds^2 = n^2(x, y)(dx^2 + dy^2)$ in terms of the other differential invariants of the group G. The search for the three-dimensional analogs to the conservation law div $S(\tau) = 0$ for the plane case, the geometric meaning of the field $S(\tau)$, and their applications in mathematical physics has led to the results described in [4-6] and in the present paper.

In the three-dimensional case, the analog to the field S_p^* is naturally defined as the sum $S^* = K_{\tau} + K_{\nu} + K_{\beta}$ of the three curvature vectors of the vector lines of the Frenet unit vector fields τ , ν , β of the curves L_{τ} , and $S(\tau) \neq S^*$. The relationship between the fields $S(\tau)$ and S^* is given in Lemma 3; the measure of a difference between $S(\tau)$ and S^* is in a sense the field R^* . Generally, in the three-dimensional case, div $S(\tau) \neq 0$ and div $S^*(\tau) \neq 0$. The three-dimensional scalar and vector analogs to the conservation law div $S(\tau) = 0 \Leftrightarrow \operatorname{div} S_p^* = 0$ for the plane case is obtained in Section 2.3. Note that the vector field $S(\tau)$ enters the second Aminov divergent representation [2, Ch. 1, §8] for the total curvature K of the second kind of the vector field τ : $K = -\operatorname{div} S(\tau)/2$ (in this case, $-\operatorname{div} \tau = 2H$, where H is the mean curvature).

1.5. In Sections 3.2 and 3.3, it is shown that in the case of a holonomic field τ :

- the vector field S(τ), as well as the field S*, can be geometrically interpreted as the sum of three curvature vectors of three curves (related to the surfaces S_τ with the normal τ);
- the non-holonomicity values [2, Ch. 1, §1] the principal direction fields on S_{τ} are equal.

1.6. Section 4 contains applications of the geometric formulas obtained in Sections 2 and 3 for the equations of mathematical physics.

2. Representation of the field P in the form of $P = -\operatorname{rot} R^*$

2.1. The vector fields $S(\tau)$, S^* , and R^* . We represent the field τ as

$$\boldsymbol{\tau} = \boldsymbol{\tau}(\alpha, \theta) \stackrel{\text{def}}{=} \cos \alpha \sin \theta \, \boldsymbol{i} + \sin \alpha \sin \theta \, \boldsymbol{j} + \cos \theta \, \boldsymbol{k}, \tag{8}$$

where $\alpha = \alpha(x, y, z)$ is the angle that the vector $(\tau_1 \mathbf{i} + \tau_2 \mathbf{j})$ makes with the axis Ox, so that $\cos \alpha = \tau_1/\sqrt{g}$, $\sin \alpha = \tau_2/\sqrt{g}$, where $g = \tau_1^2 + \tau_2^2$, i.e., $\alpha(x, y, z)$ is the polar angle of the point $(\xi = \tau_1, \eta = \tau_2)$ in the plane ξ, η : $\alpha \stackrel{\text{def}}{=} \operatorname{arctg}(\tau_2/\tau_1) + (2k + \delta)\pi, \ k \in \mathbb{Z}, \ \delta = 0, \text{ and } \delta = 1$, respectively, in quadrants I, IV and II, III of the plane $\xi, \eta; \ \theta = \theta(x, y, z)$ is the angle between the vector $\boldsymbol{\tau}$ and the axis $Oz: \ \theta \stackrel{\text{def}}{=} \operatorname{arccos}(\tau_3/|\boldsymbol{v}|)$, so that $0 \leq \theta \leq \pi, \ \cos \theta = \tau_3$, and $\sin \theta = \sqrt{g}$. This means that α and θ are spherical coordinates in the space $\xi = \tau_1, \eta = \tau_2, \ \zeta = \tau_3$.

Lemma 1. Let conditions (A)–(C) be satisfied. Then the field $\mathbf{S}(\tau)$ of the form (7) can be represented in D as $\mathbf{S}(\tau) = \sin\theta \operatorname{grad} \alpha \times \boldsymbol{\nu}_1 - \operatorname{grad} \theta \times$ $\boldsymbol{\nu}_2$, div $\mathbf{S}(\tau) = 2(\tau \cdot \sin\theta \mathbf{A})$, where $\sin\theta \mathbf{A} = -\operatorname{grad} \alpha \times \operatorname{grad} \cos\theta =$ rot($\cos\theta \operatorname{grad} \alpha$) = $-\operatorname{rot}(\alpha \operatorname{grad} \cos\theta)$, $\mathbf{A} \stackrel{\text{def}}{=} \operatorname{grad} \alpha \times \operatorname{grad} \theta$; the principal normal $\boldsymbol{\nu}$ and the binormal $\boldsymbol{\beta}$ of the curve $L_{\tau} \in \{L_{\tau}\}$, and the field $\mathbf{S}(\tau)$ can be represented as $(k \neq 0) \ \boldsymbol{\nu} = (\alpha_s \sin\theta \ \boldsymbol{\nu}_2 + \theta_s \ \boldsymbol{\nu}_1)/k$, $\boldsymbol{\beta} = (-\alpha_s \sin\theta \ \boldsymbol{\nu}_1 + \theta_s \ \boldsymbol{\nu}_2)/k$, where $\boldsymbol{\nu}_1 \stackrel{\text{def}}{=} \cos\alpha \cos\theta \ \mathbf{i} + \sin\alpha \cos\theta \ \mathbf{j} - \sin\theta \ \mathbf{k} \ (\sin\theta \ \boldsymbol{\nu}_1 = \cos\theta \ \boldsymbol{\tau} - \mathbf{k})$, $\boldsymbol{\nu}_2 = -\sin\alpha \ \mathbf{i} + \cos\alpha \ \mathbf{j}$, $\alpha_s = d\alpha/ds = \operatorname{grad} \alpha \cdot \tau$, $\theta_s = d\theta/ds = \operatorname{grad} \theta \cdot \tau$; $\mathbf{S}(\tau) = (\mathbf{A}_1 \times \boldsymbol{\nu} - \mathbf{A}_2 \times \boldsymbol{\beta})/k$, where $\mathbf{A}_1 \stackrel{\text{def}}{=} \sin\theta \ (\theta_s \operatorname{grad} \alpha - \alpha_s \operatorname{grad} \theta)$, $\mathbf{A}_2 \stackrel{\text{def}}{=} \alpha_s \sin^2\theta \operatorname{grad} \alpha + \theta_s \operatorname{grad} \theta$. The unit vectors $(\tau, \boldsymbol{\nu}_1, \boldsymbol{\nu}_2)$ form the right-hand system, i.e., $\boldsymbol{\nu}_1 \times \boldsymbol{\nu}_2 = \tau$, $\tau \times \boldsymbol{\nu}_1 = \boldsymbol{\nu}_2$, $\boldsymbol{\nu}_2 \times \tau = \boldsymbol{\nu}_1$.

Proof. From formula (8) we have $\tau_s = \alpha_s \sin \theta \nu_2 + \theta_s \nu_1$ and div $\tau = \sin \theta (\operatorname{grad} \alpha \cdot \nu_2) + \operatorname{grad} \theta \cdot \nu_1$, whence using the well-known formulas [7] $\nu = \tau_s/k$ and $\beta = \tau \times \nu$ and expressing ν_1 and ν_2 in terms of ν and β , we obtain the formulas of the lemma for ν , β , and $S(\tau)$. The formula for div $S(\tau)$ can be obtained, for example, by rewriting $S(\tau)$ in the form $S(\tau) = -\sin^2 \theta \operatorname{rot}(\alpha k) - \sin \theta \cos \theta \operatorname{rot} \nu_2 - \cos \alpha \operatorname{rot}(\theta j) + \sin \alpha \operatorname{rot}(\theta i)$ and using the well-known formula [7] div($\varphi \operatorname{rot} a$) = $\operatorname{grad} \varphi \cdot \operatorname{rot} a$.

Lemma 2. Let conditions (A)–(C) be satisfied. Then for the first curvature k and the second curvature \varkappa of the curve $L_{\tau} \in \{L_{\tau}\}$ in the domain D, the following formulas hold $(k \neq 0)$: $k^2 = \alpha_s^2 \sin^2 \theta + \theta_s^2$, $\varkappa = \varphi_s + \alpha_s \cos \theta$, and $\varphi_s = \operatorname{grad} \varphi \cdot \boldsymbol{\tau} = [(\theta_s \alpha_{ss} - \alpha_s \theta_{ss}) \sin \theta + \alpha_s \theta_s^2 \cos \theta]/k^2$, where $\varphi \stackrel{\text{def}}{=} \operatorname{arctg} \frac{\alpha_s \sin \theta}{\theta_s}$, $\alpha_{ss} = \frac{d^2 \alpha}{ds^2} = \operatorname{grad} \alpha_s \cdot \boldsymbol{\tau}$, and $\theta_{ss} = \frac{d^2 \theta}{ds^2} = \operatorname{grad} \theta_s \cdot \boldsymbol{\tau}$. **Proof.** The lemma follows from the well-known formulas [7] $k^2 = |\tau_s|^2$, $\varkappa = ([\tau \times \tau_s] \cdot \tau_{ss})/k^2 = (\tau_{ss} \cdot k\beta)/k^2$ (we have $k\beta = \tau \times k\nu = \tau \times \tau_s$), and $\tau_{ss} = (\tau_s)_s$, the expression $\tau_s = \alpha_s \sin \theta \nu_2 + \theta_s \nu_1$, and the formulas of Lemma 1 for β , ν_1 , and ν_2 using simple calculations.

The field \mathbf{R}^* included in formula (3) appears in the following

Lemma 3. Let the family $\{L_{\tau}\}$ of the curves L_{τ} with the Frenet unit vectors τ , ν , and β , the first curvature k, and the second curvature \varkappa in the domain D satisfy conditions (A)–(C). Let the field S^* be the sum of the three curvature vectors:

$$S^* \stackrel{\text{def}}{=} K_{\tau} + K_{\nu} + K_{\beta} = (\tau \cdot \nabla)\tau + (\nu \cdot \nabla)\nu + (\beta \cdot \nabla)\beta$$

= rot $\tau \times \tau$ + rot $\nu \times \nu$ + rot $\beta \times \beta$
= $-(\tau \operatorname{div} \tau + \nu \operatorname{div} \nu + \beta \operatorname{div} \beta) = [S(\tau) + S(\nu) + S(\beta)]/2.$

Here $\mathbf{K}_{\tau} = (\boldsymbol{\tau} \cdot \nabla)\boldsymbol{\tau} = \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau} = k\boldsymbol{\nu}, \ \mathbf{K}_{\nu} = (\boldsymbol{\nu} \cdot \nabla)\boldsymbol{\nu} = \operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu},$ and $\mathbf{K}_{\beta} = (\boldsymbol{\beta} \cdot \nabla)\boldsymbol{\beta} = \operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta}$ are the curvature vectors of the vector lines L_{τ}, L_{ν} , and L_{β} of the fields $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$, respectively. Then, in D, $\mathbf{S}^* = \mathbf{S}(\boldsymbol{\tau}) + \boldsymbol{\tau} \times \mathbf{R}^*$, where the vector field \mathbf{R}^* is expressed by any of formulas (4)–(6).

Proof. The expression $S^* = -(\tau \operatorname{div} \tau + \nu \operatorname{div} \nu + \beta \operatorname{div} \beta)$ follows from the well-known formulas $\operatorname{div}(a \times b) = (b \cdot \operatorname{rot} a) - (a \cdot \operatorname{rot} b), a \times (b \times c) =$ $b(a \cdot c) - c(a \cdot b), \tau = \nu \times \beta$ [7], $\nu = \beta \times \tau$, and $\beta = \tau \times \nu$. Combining this expression for S^* with the original one (in terms of rotors), we obtain $S^* = [S(\tau) + S(\nu) + S(\beta)]/2$. Substituting the formulas for ν and β from Lemma 1, the formula for k^2 from Lemma 2, the relations between τ, ν_1 , and ν_2 from Lemma 1 into the expression for S^* , after lengthy but simple calculations, we obtain $-S^* = \operatorname{grad} \alpha \times k + \operatorname{grad} \theta \times \nu_2 + \operatorname{grad} \varphi \times \tau$, where the function φ is defined in Lemma 2. Combining the latter equality with the first formula for $S(\tau)$ from Lemma 1 and with allowance for $\sin \theta \nu_1 =$ $\cos \theta \tau - k$, we obtain $S^* = S(\tau) + \tau \times R^*$, where $R^* = \operatorname{grad} \varphi + \cos \theta \operatorname{grad} \alpha$.

We will now show that the latter vector \mathbf{R}^* satisfies the invariant expression (4). Indeed, $\mathbf{R}^* \cdot \boldsymbol{\tau} = \varphi_s + \alpha_s \cos \theta = \varkappa$ by virtue of Lemma 2. Multiplying the identity $\mathbf{S}^* = \mathbf{S}(\boldsymbol{\tau}) + \boldsymbol{\tau} \times \mathbf{R}^*$ vectorially by $\boldsymbol{\nu}$ and by $\boldsymbol{\beta}$ and using the well-known formulas $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b}), \mathbf{a} \times \mathbf{a} = 0$, and $\boldsymbol{\tau} \cdot \boldsymbol{\nu} = \boldsymbol{\tau} \cdot \boldsymbol{\beta} = 0$ [7], we obtain $\boldsymbol{\nu} \cdot \mathbf{R}^* = -\operatorname{div} \boldsymbol{\beta}$ and $\boldsymbol{\beta} \cdot \mathbf{R}^* = k + \operatorname{div} \boldsymbol{\nu}$, respectively. This brings about the desired formula for \mathbf{R}^* . Using the formulas $k\boldsymbol{\beta} = \boldsymbol{\tau} \times (\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}) = \operatorname{rot} \boldsymbol{\tau} - \boldsymbol{\tau}(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) \Rightarrow k = \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}, \operatorname{rot} \boldsymbol{\tau} = \operatorname{rot}(\boldsymbol{\nu} \times \boldsymbol{\beta}) = \boldsymbol{\nu} \operatorname{div} \boldsymbol{\beta} - \boldsymbol{\beta} \operatorname{div} \boldsymbol{\nu} + \nabla(\boldsymbol{\nu}, \boldsymbol{\beta}), \boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\tau} = 0, \operatorname{div} \boldsymbol{\beta} = \operatorname{div}(\boldsymbol{\tau} \times \boldsymbol{\nu}) = -\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\nu}$, and div $\boldsymbol{\nu} = \operatorname{div}(\boldsymbol{\beta} \times \boldsymbol{\tau}) = \boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta} - k$, we obtain the remaining representations for \mathbf{R}^* in the lemma.

Remark 1. The formula div $S^* = (\varkappa - \tau \cdot \operatorname{rot} \tau)^2 - [\tau \cdot (\operatorname{rot} \nu \times \operatorname{rot} \beta) + \nu \cdot (\operatorname{rot} \beta \times \operatorname{rot} \tau) + \beta \cdot (\operatorname{rot} \tau \times \operatorname{rot} \nu)]$ is proved in a similar way.

From formulas (2), $\mathbf{R}^* = \operatorname{grad} \varphi + \cos \theta \operatorname{grad} \alpha$, $\mathbf{S}^* = \mathbf{S}(\tau) + \tau \times \mathbf{R}^*$, and Lemma 1, we obtain

Corollary 1. Under conditions (A)–(C), in D, we have rot $\mathbf{R}^* = \sin \theta \mathbf{A} = \sin \theta (\operatorname{grad} \alpha \times \operatorname{grad} \theta)$, div $\mathbf{S}(\boldsymbol{\tau}) = 2(\boldsymbol{\tau} \cdot \operatorname{rot} \mathbf{R}^*)$, and div $\mathbf{S}^* = \frac{1}{2} \operatorname{div} \mathbf{S}(\boldsymbol{\tau}) + \varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) + k(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta})$.

The latter is derived using the equalities div $S^* = \text{div } S(\tau) + R^* \cdot \text{rot } \tau - \text{rot } R^* \cdot \tau \text{ and } R^* \cdot \text{rot } \tau = \varkappa(\tau \cdot \text{rot } \tau) + k(\tau \cdot \text{rot } \beta)$ by virtue of $\nu \cdot \text{rot } \tau = 0$, $\beta \cdot \text{rot } \tau = k$, and rot $R^* \cdot \tau = \frac{1}{2} \text{div } S(\tau)$.

2.2. Invariant forms of the vector rot R^*

Theorem 1. Let conditions (A)–(C) be satisfied. Then, the quantity $\operatorname{rot} \mathbf{R}^*$ with the vector field \mathbf{R}^* defined by any one of formulas (4)–(6) has any of the representations

$$\operatorname{rot} \mathbf{R}^{*} = \frac{1}{2} \boldsymbol{\tau} \operatorname{div} \mathbf{S}(\boldsymbol{\tau}) - k\boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}) - k\boldsymbol{\beta}(\boldsymbol{\varkappa} + \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}) \qquad (9)$$
$$= \boldsymbol{\tau} \left[\frac{1}{2} \operatorname{div} \mathbf{S}(\boldsymbol{\tau}) + k(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta}) \right] - k \operatorname{rot} \boldsymbol{\beta} - \boldsymbol{\varkappa} k\boldsymbol{\beta}$$
$$= \boldsymbol{\tau} \operatorname{div} \mathbf{S}^{*} - \boldsymbol{\varkappa} \operatorname{rot} \boldsymbol{\tau} - k \operatorname{rot} \boldsymbol{\beta}, \qquad (10)$$

where the vector fields $S(\tau)$ and S^* are defined in (7) and in Lemma 3.

We calculate the quantity $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}$ using the formulas Proof. $\boldsymbol{\beta} = (-\alpha_s \sin \theta \, \boldsymbol{\nu}_1 + \theta_s \boldsymbol{\nu}_2)/k$ (from Lemma 1), rot $\boldsymbol{\nu}_1 = \cos \theta \, (\operatorname{grad} \alpha \times \boldsymbol{\nu}_2) - \boldsymbol{\nu}_2$ grad $\theta \times \tau$, and rot $\nu_2 = -\operatorname{grad} \alpha \times (\cos \alpha i + \sin \alpha j)$, the relations $\tau = \nu_1 \times \nu_2$, $\nu_1 = \nu_2 \times \tau$, and $\nu_2 = \tau \times \nu_1$, and the formulas of Lemma 2 for k^2 and \varkappa . Then we obtain $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta} = -\varkappa + \sin \theta \left[\theta_s (\operatorname{grad} \alpha \cdot \boldsymbol{\nu}) - \alpha_s (\operatorname{grad} \theta \cdot \boldsymbol{\nu}) \right] / k.$ Here, substituting $\alpha_s = \operatorname{grad} \alpha \cdot \boldsymbol{\tau}, \ \theta_s = \operatorname{grad} \theta \cdot \boldsymbol{\tau}$ and using the well-known formula $(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d}) - (\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{a} \cdot \boldsymbol{d}) = [\boldsymbol{a} \times \boldsymbol{b}] \cdot [\boldsymbol{c} \times \boldsymbol{d}] [7, \S 7]$ for $\boldsymbol{a} = \operatorname{grad} \boldsymbol{\theta}$, $\boldsymbol{b} = \operatorname{grad} \alpha, \ \boldsymbol{c} = \boldsymbol{\tau}, \ \operatorname{and} \ \boldsymbol{d} = \boldsymbol{\nu}, \ \operatorname{we obtain} \ \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta} = -\boldsymbol{\varkappa} - \sin \theta \left[(\boldsymbol{\tau} \times \boldsymbol{\lambda}) \right]$ $\boldsymbol{\nu}$) $\cdot (\operatorname{grad} \alpha \times \operatorname{grad} \theta) = -\varkappa - (\boldsymbol{\beta} \cdot \sin \theta \boldsymbol{A})/k = -\varkappa - (\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{R}^*)/k$. This results in $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{R}^* = -k[\boldsymbol{\varkappa} + \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}]$. Similarly we obtain $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta} =$ $-\sin\theta \left[\theta_s(\operatorname{grad}\alpha\cdot\beta) - \alpha_s(\operatorname{grad}\theta\cdot\beta)\right] = -(\boldsymbol{\nu}\cdot\sin\theta\boldsymbol{A})/k = -(\boldsymbol{\nu}\cdot\operatorname{rot}\boldsymbol{R}^*)/k,$ whence $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{R}^* = -k\boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})$. From Corollary 1 we have $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{R}^* =$ $\frac{1}{2}$ div $S(\tau)$, which leads to formula (9). From this formula, by virtue of \tilde{C} orollary 1, we obtain identity (10).

In the similar way we prove the following

Lemma 4. Let conditions (A)–(C) be satisfied. Then the vector fields A_1 and A_2 defined in Lemma 1 are expressed in the domain D in terms of the characteristics $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k$, and $\boldsymbol{\varkappa}$ of the curves $L_{\tau} \in \{L_{\tau}\}$ by the formulas $A_1 = k\boldsymbol{\nu}(\boldsymbol{\varkappa} + \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}) - k\boldsymbol{\beta}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})$ and $A_2 = k[k\boldsymbol{\tau} + \boldsymbol{\nu}(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\nu}) - \boldsymbol{\beta}(\boldsymbol{\varkappa} + \boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu})].$

2.3. The relationship between the quantities div $S(\tau) = -2K$, \varkappa , τ , ν , and β . On the conservation laws for the family of curves L_{τ}

Theorem 2. Let conditions (A)–(C) be satisfied. Then, in the domain D, we have $\frac{1}{2}$ div $\mathbf{S}(\boldsymbol{\tau}) = \varkappa(\varkappa - \boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) - \boldsymbol{\tau} \cdot (\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}) \Leftrightarrow \varkappa^2 = \frac{1}{2} \operatorname{div} \mathbf{S}(\boldsymbol{\tau}) + \varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) + \boldsymbol{\tau} \cdot (\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}) = \boldsymbol{\tau} \cdot (\operatorname{rot} \mathbf{R}^* + \varkappa \operatorname{rot} \boldsymbol{\tau} + \operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}).$

Proof. From the definition of the quantities A_1 and A_2 in Lemma 1 we obtain $\sin\theta \operatorname{grad} \alpha = (\theta_s A_1 + \alpha_s \sin\theta A_2)/k^2$ and $\operatorname{grad} \theta = (-\alpha_s \sin\theta A_1 + \theta_s A_2)/k^2 \Rightarrow \sin\theta A = \sin\theta \operatorname{grad} \alpha \times \operatorname{grad} \theta = \operatorname{rot} \mathbf{R}^* = (\mathbf{A}_1 \times \mathbf{A}_2)/k^2$, whence, using the formulas from Lemma 4, we have

$$\operatorname{rot} \mathbf{R}^{*} = \boldsymbol{\tau} [\varkappa^{2} - \varkappa (\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) - \boldsymbol{\tau} \cdot (\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta})] - k\boldsymbol{\nu} (\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}) - k\boldsymbol{\beta} (\varkappa + \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}).$$
(11)

The theorem is proved by multiplying the latter equation by τ and using formula (9).

Remark 2. The formulas in Corollary 1 and Theorem 2 containing the expressions div $S(\tau)$ and the formulas in Theorem 1 are respectively the scalar and vector analogs to the conservation law div $S(\tau) = 0 \Leftrightarrow \operatorname{div} S_p^* = 0$ of the plane case for the family of plane curves $\{L_{\tau}\}$. In the plane case, we have $\tau = \tau(x, y), \beta \equiv k, \varkappa = 0 \Rightarrow R^* = 0, S(\tau) = S_p^*$, and rot $R^* = 0$, and these formulas imply this conservation law. In the three-dimensional case, Theorem 1 leads to a higher-order conservation law div F = 0 for the family $\{L_{\tau}\}$ of curves L_{τ} . Here the vector solenoidal field F is expressed in terms of the characteristics τ, ν, β, k , and \varkappa of the curves L_{τ} and is the right-hand side of any of formulas (9)–(11). For example,

div
$$\left[\frac{1}{2}\boldsymbol{\tau}\operatorname{div}\boldsymbol{S}(\boldsymbol{\tau}) - k\boldsymbol{\nu}(\boldsymbol{\nu}\cdot\operatorname{rot}\boldsymbol{\beta}) - k\boldsymbol{\beta}(\boldsymbol{\varkappa} + \boldsymbol{\beta}\cdot\operatorname{rot}\boldsymbol{\beta})\right] = 0,$$
 (12)

$$\operatorname{div}[\boldsymbol{\tau}\operatorname{div}\boldsymbol{S}^* - \boldsymbol{\varkappa}\operatorname{rot}\boldsymbol{\tau} - k\operatorname{rot}\boldsymbol{\beta}] = 0, \tag{13}$$

where the fields $S(\tau)$, S^* are expressed using formulas (7) and Lemma 3.

2.4. Solenoidal representation of the vector P in terms of the field R^*

Theorem 3. Assume that for the family $\{L_{\tau}\}$ of streamlines L_{τ} of the unit vector field τ in the domain D conditions (A)–(C) are satisfied and (τ, ν, β) , k, and \varkappa are the Frenet basis, the first curvature, and the second curvature of the curves L_{τ} . Then the field P in formula (1) can be represented as (3), where the field \mathbf{R}^* is expressed by any of the invariant forms (4)–(6). Furthermore, in addition to formula (2), anyone of the expressions in terms of the quantities τ, ν, β, k , and \varkappa contained in the right-hand sides of formulas (9)–(11) is valid for the field (-P).

Proof. We show that the right-hand sides of (2) and (9) differ only in their signs. From the second Frenet equation $d\boldsymbol{\nu}/ds = (\boldsymbol{\tau}\cdot\nabla)\boldsymbol{\nu} = -k\boldsymbol{\tau} + \boldsymbol{\varkappa}\boldsymbol{\beta}$ and the formulas $\operatorname{rot}\boldsymbol{\beta} = \operatorname{rot}(\boldsymbol{\tau}\times\boldsymbol{\nu}) = (\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\tau} - (\boldsymbol{\tau}\cdot\nabla)\boldsymbol{\nu} + \boldsymbol{\tau}\operatorname{div}\boldsymbol{\nu} - \boldsymbol{\nu}\operatorname{div}\boldsymbol{\tau},$ $\operatorname{div}\boldsymbol{\nu} = \boldsymbol{\tau}\cdot\operatorname{rot}\boldsymbol{\beta} - \boldsymbol{\beta}\cdot\operatorname{rot}\boldsymbol{\tau},$ and $k = \boldsymbol{\beta}\cdot\operatorname{rot}\boldsymbol{\tau},$ we obtain $(\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\tau} = \operatorname{rot}\boldsymbol{\beta} + \boldsymbol{\varkappa}\boldsymbol{\beta} - \boldsymbol{\tau}(\boldsymbol{\tau}\cdot\operatorname{rot}\boldsymbol{\beta}) + \boldsymbol{\nu}\operatorname{div}\boldsymbol{\tau}.$ Next we use $K = -\frac{1}{2}\operatorname{div}\boldsymbol{S}(\boldsymbol{\tau})$ [2, Ch. 1, §8], $(\boldsymbol{K}_{\tau}\cdot\nabla)\boldsymbol{\tau} = k(\boldsymbol{\nu}\cdot\nabla)\boldsymbol{\tau},$ and the theorem is proved.

Corollary 2. Representation (1) is equivalent to the formula

$$K = -\operatorname{grad}(\boldsymbol{r}\cdot\boldsymbol{\tau})\cdot\operatorname{rot}\boldsymbol{R}^* \quad \Leftrightarrow \quad K = \operatorname{div}[\operatorname{grad}(\boldsymbol{r}\cdot\boldsymbol{\tau})\times\boldsymbol{R}^*].$$

Remark 3. The Frenet unit vectors $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ and the first curvature k of the curves L_{τ} can be expressed in terms of $\boldsymbol{\tau}$:

$$\boldsymbol{\nu} = (\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau})/k, \quad \boldsymbol{\beta} = \boldsymbol{\tau} \times \boldsymbol{\nu}, \quad k = |\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}|.$$
 (14)

Substituting the latter for $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ into the formula [2, Ch. 1, §15]:

$$\varkappa = \frac{1}{2} (\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau} - \boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu} - \boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})$$
(15)

we also express the second curvature \varkappa in terms of the single quantity τ .

As, by virtue of formulas (4)–(7), Lemmas 3 and 4, and Theorems 1–3, the quantities $S(\tau)$, S^* , R^* , div $S(\tau)$, div S^* , rot R^* , and K are expressed in terms of the unit vectors τ , ν , and β , the first curvature k and the second curvature \varkappa of the curves L_{τ} , it follows that all these quantities can ultimately be expressed only in terms of the field τ . Therefore, all the formulas in Theorems 1–3 and Lemmas 3 and 4 can be expressed only in terms of the field τ , i.e. the unit tangent vectors of the curves L_{τ} .

3. Properties of the family $\{S_{\tau}\}$ of surfaces S_{τ}

3.1. Conditions on the family $\{S_{\tau}\}$ **.** Let us assume that for the field τ in D, there exists a family of surfaces S_{τ} orthogonal to the field τ . According to the Jacobi theorem [2, Ch. 1, § 1], this is equivalent to the identity $\tau \cdot \operatorname{rot} \tau = 0$ in D. Let $\{S_{\tau}\}$ be the family of surfaces S_{τ} with a unit normal $\tau = \tau(x, y, z)$ which continuously fill the domain D in the space x, y, z. The principal direction will be represented by the unit vector l_i (i = 1, 2) with the corresponding direction; the vector l_i is the unit tangent vector of the curvature line L_i on S_{τ} , and at a point $(x, y, z) \in S_{\tau}$ it is equal to the derivative of the radius vector $\mathbf{r} = \mathbf{r}(x, y, z)$ of the point of the surface S_{τ} with respect to the principal direction at the point (x, y, z). Suppose that:

- (D) one and only one surface $S_{\tau} \in \{S_{\tau}\}$ passes through each point $(x, y, z) \in D;$
- (E) at each point $(x, y, z) \in D$, there exists a right-hand system of mutually orthogonal unit vectors $\boldsymbol{\tau}$, \boldsymbol{l}_1 , and \boldsymbol{l}_2 , where $\boldsymbol{\tau}$ is the unit normal and \boldsymbol{l}_1 and \boldsymbol{l}_2 are the principal directions on the surface S_{τ} passing through this point. For this, it is sufficient that each surface $S_{\tau} \in \{S_{\tau}\}$ be C^2 -regular [8]. Thus, in the domain D, we define three mutually orthogonal unit vector fields $\boldsymbol{\tau}(x, y, z)$, $\boldsymbol{l}_1(x, y, z)$, and $\boldsymbol{l}_2(x, y, z)$; $\boldsymbol{l}_1 = \boldsymbol{l}_2 \times \boldsymbol{\tau}$, $\boldsymbol{l}_2 = \boldsymbol{\tau} \times \boldsymbol{l}_1$, and $\boldsymbol{\tau} = \boldsymbol{l}_1 \times \boldsymbol{l}_2$;
- (F) $\tau, l_1, l_2 \in C^1(D).$

3.2. The equality of non-holonomicity values of the fields l_1 and l_2

Theorem 4. Let a family $\{S_{\tau}\}$ of surfaces S_{τ} with the unit normal $\tau = \tau(x, y, z)$ satisfy conditions (D)–(F) in the domain D. Then the non-holonomicity values of the vector fields of the principal directions l_1 and l_2 (unit tangent vectors of the curvature lines L_i on S_{τ}) are equal in D:

$$\boldsymbol{l}_1 \cdot \operatorname{rot} \boldsymbol{l}_1 = \boldsymbol{l}_2 \cdot \operatorname{rot} \boldsymbol{l}_2. \tag{16}$$

Proof. Writing down the general formulas $[7, \S 17] \operatorname{rot}[\boldsymbol{a} \times \boldsymbol{b}] = (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} - (\boldsymbol{a} \cdot \nabla)\boldsymbol{b} + \boldsymbol{a} \operatorname{div} \boldsymbol{b} - \boldsymbol{b} \operatorname{div} \boldsymbol{a}$, and $\operatorname{grad}(\boldsymbol{a} \cdot \boldsymbol{b}) = (\boldsymbol{b} \cdot \nabla)\boldsymbol{a} + (\boldsymbol{a} \cdot \nabla)\boldsymbol{b} + \boldsymbol{b} \times \operatorname{rot} \boldsymbol{a} + \boldsymbol{a} \times \operatorname{rot} \boldsymbol{b}$ for $\boldsymbol{a} = \boldsymbol{l}_2$ and $\boldsymbol{b} = \boldsymbol{\tau}$, subtracting and taking into account the Rodrigues formulas [8] written as $(\boldsymbol{l}_1 \cdot \nabla)\boldsymbol{\tau} = -k_1\boldsymbol{l}_1$ and $(\boldsymbol{l}_2 \cdot \nabla)\boldsymbol{\tau} = -k_2\boldsymbol{l}_2$, we obtain $\operatorname{rot} \boldsymbol{l}_1 = (2k_2 + \operatorname{div} \boldsymbol{\tau})\boldsymbol{l}_2 - \boldsymbol{\tau} \operatorname{div} \boldsymbol{l}_2 + \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{l}_2 + \operatorname{rot} \boldsymbol{l}_2 \times \boldsymbol{\tau}$. Multiplying the latter scalarly by \boldsymbol{l}_1 , we prove the theorem. Another proof follows from the fact that the principal curvatures are stationary values of the normal curvatures [9].

Remark 4. Theorem 2 for $\tau \cdot \operatorname{rot} \tau = 0$, $\tau \in C^2(D)$ implies the following formula relating to the Gaussian curvature K of the surface $S_{\tau} \in \{S_{\tau}\}$, the Frenet basis (τ, ν, β) , and the second curvature \varkappa of the vector lines L_{τ} of the field of normals τ of the surfaces S_{τ} :

$$K = \boldsymbol{\tau} \cdot (\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}) - \boldsymbol{\varkappa}^2.$$
(17)

Here the second curvature \varkappa of the curves L_{τ} can be expressed in terms of the Frenet unit vectors τ , ν , β by formula (15), assuming $\tau \cdot \operatorname{rot} \tau = 0$.

3.3. Geometric meaning of the field $S(\tau)$

Theorem 5. Let $\boldsymbol{\tau} = \boldsymbol{\tau}(x, y, z)$ be a unit vector field in the domain D; the family $\{L_{\tau}\}$ of vector lines L_{τ} of the field $\boldsymbol{\tau}$ and the family $\{S_{\tau}\}$ of surfaces S_{τ} with normal $\boldsymbol{\tau}$ are mutually orthogonal in D. Let conditions (D)-(F) be satisfied in D. Then the field $\boldsymbol{S}(\boldsymbol{\tau})$ of the form (7) at any point $(x, y, z) \in D$ is the sum of the three curvature vectors: $\boldsymbol{S}(\boldsymbol{\tau}) = \boldsymbol{K}_{\tau} + \boldsymbol{K}_{g1} + \boldsymbol{K}_{g2} = \boldsymbol{K}_{\tau} + 2H\boldsymbol{\tau}$ (H is the mean curvature of the surface). Here $\boldsymbol{K}_{\tau} =$ $(\boldsymbol{\tau} \cdot \nabla)\boldsymbol{\tau} = \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}$ is the curvature vector of the vector line L_{τ} of the field $\boldsymbol{\tau}$ at the point (x, y, z); $\boldsymbol{K}_{g1} = k_{g1}\boldsymbol{\tau}$ and $\boldsymbol{K}_{g2} = k_{g2}\boldsymbol{\tau}$ are the curvature vectors (at the same point) of two geodesic lines with the curvatures k_{g1} and k_{g2} at the surface S_{τ} which pass through the point $(x, y, z) \in S_{\tau}$ in any two mutually orthogonal directions.

Proof. For a geodesic line γ_i (i = 1, 2) on the surface S_{τ} , the principal normal coincides with the normal τ to the surface, and the curvature k_{gi} everywhere is equal to the normal curvature k_{ni} [1, §73]. Therefore, $\mathbf{K}_{gi} = k_{ni}\tau \Rightarrow \mathbf{K}_{g1} + \mathbf{K}_{g2} = (k_{1n} + k_{2n})\tau = (k_1 + k_2)\tau = 2H\tau = -\tau \operatorname{div} \tau$. \Box

4. Application of the obtained geometric formulas to the mathematical physics equations

Suppose that $\boldsymbol{v} = \boldsymbol{v}(x, y, z) = |\boldsymbol{v}|\boldsymbol{\tau}$ is a vector field with direction $\boldsymbol{\tau} (|\boldsymbol{\tau}| \equiv 1)$ and modulus $|\boldsymbol{v}| \neq 0$, defined in a domain D of the three-dimensional Euclidean space E^3 . The vector lines L_{τ} of the fields \boldsymbol{v} and $\boldsymbol{\tau}$ coincide and $\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v} = |\boldsymbol{v}|^2 (\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})$. Therefore, a necessary and sufficient condition for the existence of a family $\{S_{\tau}\}$ of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}$, which are orthogonal to the fields \boldsymbol{v} and $\boldsymbol{\tau}$ (the condition on holonomicity of the field $\boldsymbol{\tau}$) is the identity $\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v} = 0 \Leftrightarrow \boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau} = 0$.

Remark 5. On the other hand, as stated by the theorem from Problem 136 in [7, §17], in order that the variable vector field \boldsymbol{v} can be represented as $\boldsymbol{v} = \boldsymbol{\psi} \operatorname{grad} \boldsymbol{\varphi}$, where $\boldsymbol{\varphi}$ and $\boldsymbol{\psi}$ are scalar functions, it is also necessary and sufficient that the identity $\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v} = 0$ be satisfied. Therefore, for

vector fields of the form $\boldsymbol{v} = \psi \operatorname{grad} \varphi$, and only for them, there exists a family $\{S_{\tau}\}$ of surfaces S_{τ} orthogonal to the fields \boldsymbol{v} and $\boldsymbol{\tau}$, i.e., the case of the holonomic field of directions $\boldsymbol{\tau}$ reduces to fields of the form $\boldsymbol{v} = \psi \operatorname{grad} \varphi$. Below we will take into account the fact that $\boldsymbol{S}(\boldsymbol{\tau}) = \boldsymbol{T}(\boldsymbol{v})$, where $\boldsymbol{T}(\boldsymbol{v}) = \operatorname{grad} \ln \boldsymbol{v} + (\operatorname{rot} \boldsymbol{v} \times \boldsymbol{v} - \boldsymbol{v} \operatorname{div} \boldsymbol{v})/|\boldsymbol{v}|^2$ (see Section 1).

4.1. The eikonal equation. We consider the eikonal equation $|\operatorname{grad} \tau|^2 \stackrel{\text{def}}{=} \tau_x^2 + \tau_y^2 + \tau_z^2 = n^2(x, y, z)$ for a scalar time field $\tau = \tau(x, y, z)$, which is the basic mathematical model of kinematic seismics (geometric optic) in an inhomogeneous isotropic medium with the refractive index n(x, y, z). The function $\tau(x, y, z)$ is the travel time of a signal (wave) of any nature, whose kinematics satisfies the Fermat principle, along the ray (the geodesic line of the metric $ds^2 = n^2(x, y, z)(dx^2 + dy^2 + dz^2))$ which connects the point source and the point (x, y, z). In this case, the ray plays the role of a curve L_{τ} and is the vector line of the vector potential (non-force) field $\boldsymbol{v} = \operatorname{grad} \tau$ with tangent unit vector $\boldsymbol{\tau} = \operatorname{grad} \tau/n$ and modulus $|\operatorname{grad} \tau| = n$. Obviously, in this case, the field $\boldsymbol{\tau}$ is holonomic ($\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau} = \boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v} = 0$); the role of the surfaces S_{τ} orthogonal to the rays L_{τ} is played by the wavefronts $\tau(x, y, z) = \operatorname{const}$ (level surfaces of the scalar field τ).

From the general geometric formula (17) for $\tau \in C^3(D)$ and $n \in C^2(D)$, we obtain the following expression for the Gaussian curvature K of the front S_{τ} : $K = \boldsymbol{\tau} \cdot (\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}) - \varkappa^2$. Here $\boldsymbol{\tau} = \operatorname{grad} \tau/n$; the principal normal $\boldsymbol{\nu}$ and the binormal $\boldsymbol{\beta}$ of the ray are calculated by formulas (14), and the second curvature \varkappa of the ray is calculated by (15). Another formula for K of the form $K = -\frac{1}{2}\operatorname{div} \boldsymbol{T}$, where $\boldsymbol{T} = \boldsymbol{T}(\operatorname{grad} \tau) = \operatorname{grad} \ln n - \frac{\Delta \tau}{n^2} \operatorname{grad} \tau$, or $K = -\frac{1}{2} \left[\Delta \ln n - \operatorname{div} \left(\frac{\Delta \tau}{n^2} \operatorname{grad} \tau \right) \right]$, follows from the equality $K = -\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ [2, Ch. 1, §8] and the identity $\boldsymbol{S}(\boldsymbol{\tau}) = \boldsymbol{T}(\boldsymbol{v})$. Generally, for the solutions τ of the eikonal equation, all the formulas in Sections 2 and 3 hold, including the formulas for div $\boldsymbol{S}(\boldsymbol{\tau})$ and div \boldsymbol{S}^* from Corollary 1 and Theorem 2, which are analogs to the conservation law div $\boldsymbol{T} = 0$ for the plane case (see [6] and Remark 2) and the conservation law (12), (13), with consideration of the equalities $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau} = 0$, $\boldsymbol{\tau} = \operatorname{grad} \tau/n$ and Remark 3.

4.2. The Euler hydrodynamic equations. Let $\boldsymbol{v} = \boldsymbol{v}(x, y, z, t) = v\boldsymbol{\tau}$ be the velocity in the Euler hydrodynamic equations $\boldsymbol{v}_t + \operatorname{grad} v^2/2 - \boldsymbol{v} \times \operatorname{rot} \boldsymbol{v} =$ $\boldsymbol{F} - \operatorname{grad} p/\rho$, which can be rewritten as $\boldsymbol{G} = -\boldsymbol{T}(\boldsymbol{v}) \ (= -\boldsymbol{S}(\boldsymbol{\tau}))$, where $\boldsymbol{G} \stackrel{\text{def}}{=} (\boldsymbol{v}_t + \boldsymbol{v} \operatorname{div} \boldsymbol{v} + \operatorname{grad} p/\rho - \boldsymbol{F})/v^2$, in domain $D; v \stackrel{\text{def}}{=} |\boldsymbol{v}|, \boldsymbol{v} \in C^2(D)$, the pressure $p \in C^2(D)$, the density $\rho \in C^1(D)$, and the body force $\boldsymbol{F} \in C^1(D)$.

Here the role of the curves L_{τ} is played by the streamlines (the vector lines of the field \boldsymbol{v} or $\boldsymbol{\tau}$ at fixed t). The class of fields \boldsymbol{v} for which there exists a family $\{S_{\tau}\}$ of the surfaces S_{τ} orthogonal to the field \boldsymbol{v} (curves L_{τ}) is described by the formula $\mathbf{v} = \psi \operatorname{grad} \varphi$, where ψ and φ are scalar functions (Remark 5). This class, in particular, includes the potential field $\mathbf{v} = \operatorname{grad} \varphi$. To calculate the Gaussian curvature K of the surface S_{τ} orthogonal to the streamlines L_{τ} , we use formula (17) taking into account the equality $\boldsymbol{\tau} = \mathbf{v}/v$ and Remark 3. The second formula for K of the form $K = \frac{1}{2} \operatorname{div} \mathbf{G}$ follows from the identities $K = -\frac{1}{2} \operatorname{div} \mathbf{S}(\boldsymbol{\tau})$ and $\mathbf{G} = -\mathbf{T}(\mathbf{v}) = -\mathbf{S}(\boldsymbol{\tau})$. The formulas for $\operatorname{div} \mathbf{S}(\boldsymbol{\tau})$ and $\operatorname{div} \mathbf{S}^*$ from Corollary 1 and Theorem 2, which are analogs to the conservation law $\operatorname{div} \mathbf{G} = 0$ for the plane case ([5] and Remark 2) and conservation laws (12), (13), also hold for the velocity field \mathbf{v} with allowance for the equality $\boldsymbol{\tau} = \mathbf{v}/v$ and Remark 3.

References

- Vygodskii M.Ya. Differential Geometry. Moscow, Leningrad: GITTL, 1949 (In Russian).
- [2] Aminov Yu.A. The Geometry of Vector Fields. Moscow: Nauka, 1990; Gordon and Breach Science Publishers, 2000.
- [3] Aminov Yu.A. Divergence properties of the curvatures of a vector field and family of surfaces // Matem. Zametki. - 1968. - Vol. 3, No. 1. - P. 103-111.
- [4] Megrabov A.G. Divergence formulas (conservation laws) in the differential geometry of plane curves and their applications // Dokl. Math. - 2011. - Vol. 84, No. 3. - P. 857-861. [Dokl. Acad. Nauk. - 2011. - Vol. 441, No. 3. - P. 313-317].
- [5] Megrabov A.G. Differential identities relating the modulus and direction of a vector field, and Euler's hydrodynamic equations // Dokl. Math. - 2010. --Vol. 82, No. 1. - P. 625-629. [Dokl. Acad. Nauk. - 2010. -- Vol. 433, No. 3. --P. 309-313].
- [6] Megrabov A.G. Some differential identities and their applications to the eikonal equation // Dokl. Math. - 2010. - Vol. 82, No. 1. - P. 638-642. [Dokl. Acad. Nauk. - 2010. - Vol. 433, No. 4. - P. 461-465].
- [7] Kochin N.E. Vectorial Calculus and the Fundamentals of Tensor Calculus.— Leningrad: GONTI, 1938 (In Russian).
- [8] Poznyak E.G., Shikin E.V. Differential Geometry. The First Acquaintance. Moscow: Moscow State University, 1990 (In Russian).
- [9] Finikov S.P. Differential Geometry Course. Moscow: GITTI, 1952 (In Russian).