Some formulas for families of curves and surfaces and their applications

A.G. Megrabov

Abstract

A unit vector field $\boldsymbol{\tau}$ in the Euclidean space E^{3} is considered. Let \boldsymbol{P} be the vector field from the first Aminov divergent representation $K=\operatorname{div}[(\boldsymbol{r} \cdot \boldsymbol{\tau}) \boldsymbol{P}]$ for the total curvature of the second kind K of the field $\boldsymbol{\tau}$. For the field \boldsymbol{P}, an invariant representation of the form $\boldsymbol{P}=-\operatorname{rot} \boldsymbol{R}^{*}$ is obtained, where the field \boldsymbol{R}^{*} is expressed in terms of the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$ and the first curvature k and the second curvature \varkappa of the streamlines L_{τ} of the field $\boldsymbol{\tau}$. Formulas relating to the quantities K (or \boldsymbol{P}), $\boldsymbol{\varkappa}, \boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$ are derived.

Three-dimensional analogs to the conservation law $\operatorname{div} \boldsymbol{S}_{p}^{*}=0$, which is valid for a family of plane curves L_{τ}, are obtained, where \boldsymbol{S}_{p}^{*} is the sum of the curvature vectors of the plane curves L_{τ} and their orthogonal curves L_{ν}. It is shown that if the field $\boldsymbol{\tau}$ is holonomic: 1) the vector field $\boldsymbol{S}(\boldsymbol{\tau})$ from the second Aminov divergent representation $K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ can be interpreted as the sum of three curvature vectors of three curves related to surfaces S_{τ} with the normal $\boldsymbol{\tau} ; 2$) the non-holonomicity values of the fields of the principal directions l_{1} and l_{2} are equal. Applications of the obtained geometric formulas to the equations of mathematical physics are discussed.

Keywords: vector field, total curvature, family of curves, family of surfaces, conservation laws.

1. Introduction

1.1. The vector physical fields described by the equations of mathematical physics have vector lines L_{τ} (e.g., the rays for the eikonal equation or the streamlines for the Euler hydrodynamic equations) which form a family of curves $\left\{L_{\tau}\right\}$ and continuously fill a domain D in the three-dimensional space. The surfaces S_{τ} with the normal $\boldsymbol{\tau}$ which are orthogonal to the curves L_{τ} (if such surfaces S_{τ} exist), e.g., wavefronts for the eikonal equation, also form a family $\left\{S_{\tau}\right\}$. It is therefore of interest to study not only the properties of a fixed curve L_{τ} or a fixed surface S_{τ} but also the properties of a family of curves $\left\{L_{\tau}\right\}$ or a family of surfaces $\left\{S_{\tau}\right\}$ which continuously fill a domain D.

In this paper, we consider the three-dimensional case where we have a unit vector field $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$, a family of spatial curves L_{τ} with the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})[1]$ ($\boldsymbol{\tau}$ is the unit tangent vector, $\boldsymbol{\nu}$ is the unit principal normal vector, $\boldsymbol{\beta}$ is the unit binormal vector), the first curvature k and the second curvature \varkappa, and the family $\left\{S_{\tau}\right\}$ of the surfaces S_{τ} which are orthogonal
to the curves L_{τ} and have the normal $\boldsymbol{\tau}$, the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2}, the principal curvatures k_{1} and k_{2}, the mean curvature $H \stackrel{\text { def }}{=}\left(k_{1}+k_{2}\right) / 2$ and the Gaisusian curvature $K \stackrel{\text { def }}{=} k_{1} k_{2}[1]$. All the quantities $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k, \varkappa$, and $\boldsymbol{l}_{1}, \boldsymbol{l}_{2}, k_{1}, k_{2}, H, K$ are the vector and the scalar fields in the domain D.
1.2. Assume that D is a domain in the Euclidean space E^{3} with the Cartesian coordinates $x, y, z ; \boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k} are the unit vectors along the coordinate axes x, y, and z, respectively; $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)=\tau_{1} \boldsymbol{i}+\tau_{2} \boldsymbol{j}+\tau_{3} \boldsymbol{k}$ is the unit vector field defined in D, and $\tau_{k}=\tau_{k}(x, y, z)$ are the scalar functions $(k=1,2,3),|\boldsymbol{\tau}|^{2}=1$. The geometry of vector fields (see [2]) considers the case of a holonomic field $\boldsymbol{\tau}$ for which there is a family of surfaces S_{τ} with the normal $\boldsymbol{\tau}$ which are orthogonal to the field $\boldsymbol{\tau}$ and the general case, where the field $\boldsymbol{\tau}$ can be non-holonomic. A necessary and sufficient condition for the holonomicity of the field $\boldsymbol{\tau}[2$, Ch. $1, \S 1]$ is the fulfillment of the identity $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0$ in D. The geometry of vector fields introduces analogs to the classical characteristics of the surfaces S_{τ} for a non-holonomic field $\boldsymbol{\tau}$ [2]. For example, the analog to the Gaussian curvature of the surface S_{τ} is the total curvature of the second kind K [2]. In the case of a holonomic field $\boldsymbol{\tau}$, these analogs coincide with the corresponding classical characteristics of the surfaces S_{τ} with the normal $\boldsymbol{\tau}$; for example, the above-mentioned quantity K coincides with the Gaussian curvature [2]. For the quantity K, Yu.A. Aminov (see [2, Ch. $1, \S 7 ; 3]$) has obtained the first divergent representation:

$$
\begin{equation*}
K=\operatorname{div}[(\boldsymbol{r} \cdot \boldsymbol{\tau}) \boldsymbol{P}] \tag{1}
\end{equation*}
$$

where \boldsymbol{r} is the radius vector of the point (x, y, z), and the vector \boldsymbol{P} called the curvature vector of the field $\boldsymbol{\tau}$ has the invariant form $[2$, Ch. $1, \S 10]$:

$$
\begin{equation*}
\boldsymbol{P}=K \boldsymbol{\tau}-2 \operatorname{div} \boldsymbol{\tau} \boldsymbol{K}_{\tau}+\left(\boldsymbol{K}_{\tau} \cdot \nabla\right) \boldsymbol{\tau} \tag{2}
\end{equation*}
$$

where $\boldsymbol{K}_{\tau}=k \boldsymbol{\nu}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\frac{d \boldsymbol{\tau}}{d s}=\boldsymbol{\tau}_{s}$ is the curvature vector of the curve L_{τ} with the unit tangent vector $\boldsymbol{\tau}$ and the principal normal $\boldsymbol{\nu}$, L_{τ} is a streamline or a vector line of the field $\boldsymbol{\tau}, k$ is its curvature, $(\boldsymbol{v} \cdot \nabla) \boldsymbol{a}$ is the derivative of the vector \boldsymbol{a} in the direction of the vector $\boldsymbol{v}, d / d s$ is the differentiation operator in the direction $\boldsymbol{\tau}$ along the curve L_{τ} with respect to the natural parameter $s ; d \varphi / d s=\varphi_{s}=\operatorname{grad} \varphi \cdot \boldsymbol{\tau}$ for the scalar function $\varphi(x, y, z)$. The symbols $\boldsymbol{a} \cdot \boldsymbol{b}$ and $\boldsymbol{a} \times \boldsymbol{b}$ denote the scalar and the vector products of the vectors \boldsymbol{a} and \boldsymbol{b}, ∇ is the Hamiltonian operator (nabla).
1.3. Assume that $\left\{L_{\tau}\right\}$ is a family of curves L_{τ} which continuously fill the domain D and:
(A) one and only one curve $L_{\tau} \in\left\{L_{\tau}\right\}$ passes through each point $(x, y, z) \in D ;$
(B) at each point (x, y, z) of any curve $L_{\tau} \in\left\{L_{\tau}\right\}$ there is a right-hand Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})(\boldsymbol{\beta}$ is the binormal), so that the three mutually orthogonal vector fields $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$ are defined in $D ; \boldsymbol{\tau}=\boldsymbol{\nu} \times \boldsymbol{\beta}$, $\boldsymbol{\nu}=\boldsymbol{\beta} \times \boldsymbol{\tau}$, and $\boldsymbol{\beta}=\boldsymbol{\tau} \times \boldsymbol{\nu} ;$
(C) $\boldsymbol{\tau}(x, y, z) \in C^{2}(D)$.

It this paper (Section 2, Theorem 3), we will show that under conditions (A)-(C), the field \boldsymbol{P} of the form (2) from formula (1) can be represented as

$$
\begin{equation*}
\boldsymbol{P}=-\operatorname{rot} \boldsymbol{R}^{*} \tag{3}
\end{equation*}
$$

where the vector field \boldsymbol{R}^{*} can be given by any of the following invariant representations:

$$
\begin{gather*}
\boldsymbol{R}^{*} \stackrel{\text { def }}{=} \varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\nu}-\boldsymbol{\nu} \operatorname{div} \boldsymbol{\beta} \tag{4}\\
\boldsymbol{R}^{*}=(\varkappa-\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) \boldsymbol{\tau}+\nabla(\boldsymbol{\nu}, \boldsymbol{\beta})=\mathbf{\Phi}+\boldsymbol{S}^{*} \times \boldsymbol{\tau} \tag{5}\\
\boldsymbol{R}^{*}=\varkappa \boldsymbol{\tau}+(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\nu}) \boldsymbol{\nu}+(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta}) \boldsymbol{\beta} \tag{6}
\end{gather*}
$$

Here \varkappa is the second curvature of the curve $L_{\tau}, \boldsymbol{\Phi} \stackrel{\text { def }}{=} \varkappa \boldsymbol{\tau}+k \boldsymbol{\beta}$ is the Darboux vector $[1], \nabla(\boldsymbol{\nu}, \boldsymbol{\beta}) \stackrel{\text { def }}{=}(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\nu}-(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\beta}$ is the Poisson bracket [2] for $\boldsymbol{\nu}$ and $\boldsymbol{\beta}, \boldsymbol{S}^{*}$ is the sum of three curvature vectors of vector lines L_{τ}, L_{ν}, and L_{β} of the fields $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$, respectively. The formulas for the quantities K (or $\boldsymbol{P}), \varkappa, \boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$ will be derived in Section 2.3.
1.4. Let us introduce the vector field

$$
\begin{equation*}
\boldsymbol{S}(\boldsymbol{\tau}) \stackrel{\text { def }}{=} \operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}=\boldsymbol{K}_{\tau}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau} \tag{7}
\end{equation*}
$$

In the plane case $\left(\boldsymbol{\tau}=\boldsymbol{\tau}(x, y)=\tau_{1} \boldsymbol{i}+\tau_{2} \boldsymbol{j}, \tau_{3} \equiv 0, \theta \equiv \pi / 2, \boldsymbol{\beta}=\boldsymbol{k}\right.$, $\varkappa=0$), as shown in [4], we have $\boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{S}_{p}^{*}$, where $\boldsymbol{S}_{p}^{*}=\boldsymbol{K}_{\tau}+\boldsymbol{K}_{\nu}$ is the sum of the curvature vectors $\boldsymbol{K}_{\tau}=k \boldsymbol{\nu}$ and $\boldsymbol{K}_{\nu}=k_{\nu} \boldsymbol{\eta}=-k_{\nu} \boldsymbol{\tau}$ of the two plane curves L_{τ} and L_{ν} from the mutually orthogonal families $\left\{L_{\tau}\right\},\left\{L_{\nu}\right\}(k, \boldsymbol{\tau}$, and $\boldsymbol{\nu}$ are the curvature, the unit tangent vector, and the unit normal of the curve L_{τ}, and $k_{\nu}, \boldsymbol{\nu}, \boldsymbol{\eta}=-\boldsymbol{\tau}$ are the same quantities for the curve L_{v}). It has been found [4] that $\operatorname{div} \boldsymbol{S}_{p}^{*}=\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0$, i.e., \boldsymbol{S}_{p}^{*} is a solenoidal field and $\boldsymbol{S}_{p}^{*}=-\operatorname{rot}[\alpha(x, y) \boldsymbol{k}]$, where $\alpha=\alpha(x, y)$ is the angle that the vector $\boldsymbol{\tau}$ makes with the axis $O x: \boldsymbol{\tau}=\boldsymbol{\tau}(\alpha)=\cos \alpha \boldsymbol{i}+\sin \alpha \boldsymbol{j}$. The identity $\operatorname{div} \boldsymbol{S}_{p}^{*}=0 \Leftrightarrow \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0$ can be regarded as the law of conservation for the family $\left\{L_{\tau}\right\}$ of plane curves [4]. It explains the geometric meaning of the differential conservation laws for the eikonal equation (here S_{p}^{*} is the sum of the curvature vectors of the rays and fronts) and for the Euler's hydrodynamic equations (here \boldsymbol{S}_{p}^{*} is the sum of the curvature vectors of streamlines and the curves orthogonal to them) in the two-dimensional case obtained in $[5,6]$.

As stated in [5], any vector field $\boldsymbol{v}=\boldsymbol{v}(x, y, z)=|\boldsymbol{v}| \boldsymbol{\tau}$ with the direction $\boldsymbol{\tau}(|\boldsymbol{\tau}| \equiv 1)$ and modulus $|\boldsymbol{v}| \neq 0$ in $D\left(\boldsymbol{v} \in C^{1}(D)\right)$ satisfies the identity $\boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{T}(\boldsymbol{v})$, where $\boldsymbol{T}(\boldsymbol{v})=\operatorname{grad} \ln |\boldsymbol{v}|+(\operatorname{rot} \boldsymbol{v} \times \boldsymbol{v}-\boldsymbol{v} \operatorname{div} \boldsymbol{v}) /|\boldsymbol{v}|^{2}$. Therefore, in the plane case, the identity $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0$ is equivalent to the identity $\operatorname{div} \boldsymbol{T}(\boldsymbol{v})=0$. In the case $\boldsymbol{v}=\operatorname{grad} u(x, y)$, the latter was obtained (see the references in [4-6]) as vector representation of the formula relating to the differential invariants of the Lie group G. (The group G is an equivalence group of the eikonal equation $u_{x}^{2}+u_{y}^{2}=n^{2}(x, y)$ and other equations of mathematical physics, as well as an extension of the group of conformal transformations of the plane x, y to the space $x, y, t, u^{1}=u, u^{2}=n^{2}$.) This formula expresses the Gaussian curvature $K=-\Delta \ln n^{2} /\left(2 n^{2}\right)$ of the surface with the linear element $d s^{2}=n^{2}(x, y)\left(d x^{2}+d y^{2}\right)$ in terms of the other differential invariants of the group G. The search for the three-dimensional analogs to the conservation law $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0$ for the plane case, the geometric meaning of the field $\boldsymbol{S}(\boldsymbol{\tau})$, and their applications in mathematical physics has led to the results described in [4-6] and in the present paper.

In the three-dimensional case, the analog to the field \boldsymbol{S}_{p}^{*} is naturally defined as the sum $\boldsymbol{S}^{*}=\boldsymbol{K}_{\tau}+\boldsymbol{K}_{\nu}+\boldsymbol{K}_{\beta}$ of the three curvature vectors of the vector lines of the Frenet unit vector fields $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$ of the curves L_{τ}, and $\boldsymbol{S}(\boldsymbol{\tau}) \neq \boldsymbol{S}^{*}$. The relationship between the fields $\boldsymbol{S}(\boldsymbol{\tau})$ and \boldsymbol{S}^{*} is given in Lemma 3; the measure of a difference between $\boldsymbol{S}(\boldsymbol{\tau})$ and \boldsymbol{S}^{*} is in a sense the field \boldsymbol{R}^{*}. Generally, in the three-dimensional case, $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau}) \neq 0$ and $\operatorname{div} \boldsymbol{S}^{*}(\boldsymbol{\tau}) \neq 0$. The three-dimensional scalar and vector analogs to the conservation law $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0 \Leftrightarrow \operatorname{div} \boldsymbol{S}_{p}^{*}=0$ for the plane case is obtained in Section 2.3. Note that the vector field $\boldsymbol{S}(\boldsymbol{\tau})$ enters the second Aminov divergent representation $[2, \mathrm{Ch} .1, \S 8]$ for the total curvature K of the second kind of the vector field $\boldsymbol{\tau}: K=-\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau}) / 2$ (in this case, $-\operatorname{div} \boldsymbol{\tau}=2 H$, where H is the mean curvature).
1.5. In Sections 3.2 and 3.3 , it is shown that in the case of a holonomic field $\boldsymbol{\tau}$:

- the vector field $\boldsymbol{S}(\boldsymbol{\tau})$, as well as the field \boldsymbol{S}^{*}, can be geometrically interpreted as the sum of three curvature vectors of three curves (related to the surfaces S_{τ} with the normal $\boldsymbol{\tau}$);
- the non-holonomicity values [2, Ch. $1, \S 1]$ the principal direction fields on S_{τ} are equal.
1.6. Section 4 contains applications of the geometric formulas obtained in Sections 2 and 3 for the equations of mathematical physics.

2. Representation of the field P in the form of $P=-\operatorname{rot} \boldsymbol{R}^{*}$

2.1. The vector fields $\boldsymbol{S}(\boldsymbol{\tau}), S^{*}$, and \boldsymbol{R}^{*}. We represent the field $\boldsymbol{\tau}$ as

$$
\begin{equation*}
\boldsymbol{\tau}=\boldsymbol{\tau}(\alpha, \theta) \stackrel{\text { def }}{=} \cos \alpha \sin \theta \boldsymbol{i}+\sin \alpha \sin \theta \boldsymbol{j}+\cos \theta \boldsymbol{k} \tag{8}
\end{equation*}
$$

where $\alpha=\alpha(x, y, z)$ is the angle that the vector $\left(\tau_{1} \boldsymbol{i}+\tau_{2} \boldsymbol{j}\right)$ makes with the axis $O x$, so that $\cos \alpha=\tau_{1} / \sqrt{g}, \sin \alpha=\tau_{2} / \sqrt{g}$, where $g=\tau_{1}^{2}+\tau_{2}^{2}$, i.e., $\alpha(x, y, z)$ is the polar angle of the point $\left(\xi=\tau_{1}, \eta=\tau_{2}\right)$ in the plane ξ, η : $\alpha \stackrel{\text { def }}{=} \operatorname{arctg}\left(\tau_{2} / \tau_{1}\right)+(2 k+\delta) \pi, k \in \mathbb{Z}, \delta=0$, and $\delta=1$, respectively, in quadrants I, IV and II, III of the plane $\xi, \eta ; \theta=\theta(x, y, z)$ is the angle between the vector $\boldsymbol{\tau}$ and the axis $O z: \theta \stackrel{\text { def }}{=} \arccos \left(\tau_{3} /|\boldsymbol{v}|\right)$, so that $0 \leq$ $\theta \leq \pi, \cos \theta=\tau_{3}$, and $\sin \theta=\sqrt{g}$. This means that α and θ are spherical coordinates in the space $\xi=\tau_{1}, \eta=\tau_{2}, \zeta=\tau_{3}$.

Lemma 1. Let conditions (A)-(C) be satisfied. Then the field $\boldsymbol{S}(\boldsymbol{\tau})$ of the form (7) can be represented in D as $\boldsymbol{S}(\boldsymbol{\tau})=\sin \theta \operatorname{grad} \alpha \times \boldsymbol{\nu}_{1}-\operatorname{grad} \theta \times$ $\boldsymbol{\nu}_{2}$, div $\boldsymbol{S}(\boldsymbol{\tau})=2(\boldsymbol{\tau} \cdot \sin \theta \boldsymbol{A})$, where $\sin \theta \boldsymbol{A}=-\operatorname{grad} \alpha \times \operatorname{grad} \cos \theta=$ $\operatorname{rot}(\cos \theta \operatorname{grad} \alpha)=-\operatorname{rot}(\alpha \operatorname{grad} \cos \theta), \boldsymbol{A} \stackrel{\text { def }}{=} \operatorname{grad} \alpha \times \operatorname{grad} \theta$; the principal normal $\boldsymbol{\nu}$ and the binormal $\boldsymbol{\beta}$ of the curve $L_{\tau} \in\left\{L_{\tau}\right\}$, and the field $\boldsymbol{S}(\boldsymbol{\tau})$ can be represented as $(k \neq 0) \boldsymbol{\nu}=\left(\alpha_{s} \sin \theta \boldsymbol{\nu}_{2}+\theta_{s} \boldsymbol{\nu}_{1}\right) / k, \boldsymbol{\beta}=\left(-\alpha_{s} \sin \theta \boldsymbol{\nu}_{1}+\right.$ $\left.\theta_{s} \boldsymbol{\nu}_{2}\right) / k$, where $\boldsymbol{\nu}_{1} \stackrel{\text { def }}{=} \cos \alpha \cos \theta \boldsymbol{i}+\sin \alpha \cos \theta \boldsymbol{j}-\sin \theta \boldsymbol{k}\left(\sin \theta \boldsymbol{\nu}_{1}=\cos \theta \boldsymbol{\tau}-\right.$ $\boldsymbol{k}), \boldsymbol{\nu}_{2}=-\sin \alpha \boldsymbol{i}+\cos \alpha \boldsymbol{j}, \alpha_{s}=d \alpha / d s=\operatorname{grad} \alpha \cdot \boldsymbol{\tau}, \theta_{s}=d \theta / d s=\operatorname{grad} \theta \cdot \boldsymbol{\tau} ;$ $\boldsymbol{S}(\boldsymbol{\tau})=\left(\boldsymbol{A}_{1} \times \boldsymbol{\nu}-\boldsymbol{A}_{2} \times \boldsymbol{\beta}\right) / k$, where $\boldsymbol{A}_{1} \stackrel{\text { def }}{=} \sin \theta\left(\theta_{s} \operatorname{grad} \alpha-\alpha_{s} \operatorname{grad} \theta\right)$, $\boldsymbol{A}_{2} \stackrel{\text { def }}{=} \alpha_{s} \sin ^{2} \theta \operatorname{grad} \alpha+\theta_{s} \operatorname{grad} \theta$. The unit vectors $\left(\boldsymbol{\tau}, \boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}\right)$ form the right-hand system, i.e., $\boldsymbol{\nu}_{1} \times \boldsymbol{\nu}_{2}=\boldsymbol{\tau}, \boldsymbol{\tau} \times \boldsymbol{\nu}_{1}=\boldsymbol{\nu}_{2}, \boldsymbol{\nu}_{2} \times \boldsymbol{\tau}=\boldsymbol{\nu}_{1}$.

Proof. From formula (8) we have $\boldsymbol{\tau}_{s}=\alpha_{s} \sin \theta \boldsymbol{\nu}_{2}+\theta_{s} \boldsymbol{\nu}_{1}$ and $\operatorname{div} \boldsymbol{\tau}=$ $\sin \theta\left(\operatorname{grad} \alpha \cdot \boldsymbol{\nu}_{2}\right)+\operatorname{grad} \theta \cdot \boldsymbol{\nu}_{1}$, whence using the well-known formulas [7] $\boldsymbol{\nu}=\boldsymbol{\tau}_{s} / k$ and $\boldsymbol{\beta}=\boldsymbol{\tau} \times \boldsymbol{\nu}$ and expressing $\boldsymbol{\nu}_{1}$ and $\boldsymbol{\nu}_{2}$ in terms of $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$, we obtain the formulas of the lemma for $\boldsymbol{\nu}, \boldsymbol{\beta}$, and $\boldsymbol{S}(\boldsymbol{\tau})$. The formula for $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ can be obtained, for example, by rewriting $\boldsymbol{S}(\boldsymbol{\tau})$ in the form $\boldsymbol{S}(\boldsymbol{\tau})=-\sin ^{2} \theta \operatorname{rot}(\alpha \boldsymbol{k})-\sin \theta \cos \theta \operatorname{rot} \boldsymbol{\nu}_{2}-\cos \alpha \operatorname{rot}(\theta \boldsymbol{j})+\sin \alpha \operatorname{rot}(\theta \boldsymbol{i})$ and using the well-known formula [7] $\operatorname{div}(\varphi \operatorname{rot} \boldsymbol{a})=\operatorname{grad} \varphi \cdot \operatorname{rot} \boldsymbol{a}$.

Lemma 2. Let conditions (A)-(C) be satisfied. Then for the first curvature k and the second curvature \varkappa of the curve $L_{\tau} \in\left\{L_{\tau}\right\}$ in the domain D, the following formulas hold $(k \neq 0): k^{2}=\alpha_{s}^{2} \sin ^{2} \theta+\theta_{s}^{2}, \varkappa=\varphi_{s}+\alpha_{s} \cos \theta$, and $\varphi_{s}=\operatorname{grad} \varphi \cdot \boldsymbol{\tau}=\left[\left(\theta_{s} \alpha_{s s}-\alpha_{s} \theta_{s s}\right) \sin \theta+\alpha_{s} \theta_{s}^{2} \cos \theta\right] / k^{2}$, where $\varphi \stackrel{\text { def }}{=}$ $\operatorname{arctg} \frac{\alpha_{s} \sin \theta}{\theta_{s}}, \alpha_{s s}=\frac{d^{2} \alpha}{d s^{2}}=\operatorname{grad} \alpha_{s} \cdot \boldsymbol{\tau}$, and $\theta_{s s}=\frac{d^{2} \theta}{d s^{2}}=\operatorname{grad} \theta_{s} \cdot \boldsymbol{\tau}$.

Proof. The lemma follows from the well-known formulas [7] $k^{2}=\left|\boldsymbol{\tau}_{s}\right|^{2}$, $\varkappa=\left(\left[\boldsymbol{\tau} \times \boldsymbol{\tau}_{s}\right] \cdot \boldsymbol{\tau}_{s s}\right) / k^{2}=\left(\boldsymbol{\tau}_{s s} \cdot k \boldsymbol{\beta}\right) / k^{2}$ (we have $\left.k \boldsymbol{\beta}=\boldsymbol{\tau} \times k \boldsymbol{\nu}=\boldsymbol{\tau} \times \boldsymbol{\tau}_{s}\right)$, and $\boldsymbol{\tau}_{s s}=\left(\boldsymbol{\tau}_{s}\right)_{s}$, the expression $\boldsymbol{\tau}_{s}=\alpha_{s} \sin \theta \boldsymbol{\nu}_{2}+\theta_{s} \boldsymbol{\nu}_{1}$, and the formulas of Lemma 1 for $\boldsymbol{\beta}, \boldsymbol{\nu}_{1}$, and $\boldsymbol{\nu}_{2}$ using simple calculations.

The field \boldsymbol{R}^{*} included in formula (3) appears in the following

Lemma 3. Let the family $\left\{L_{\tau}\right\}$ of the curves L_{τ} with the Frenet unit vectors $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$, the first curvature k, and the second curvature \varkappa in the domain D satisfy conditions (A)-(C). Let the field \boldsymbol{S}^{*} be the sum of the three curvature vectors:

$$
\begin{aligned}
\boldsymbol{S}^{*} & \stackrel{\text { def }}{=} \boldsymbol{K}_{\tau}+\boldsymbol{K}_{\nu}+\boldsymbol{K}_{\beta}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}+(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}+(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\beta} \\
& =\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}+\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta} \\
& =-(\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{\nu} \operatorname{div} \boldsymbol{\nu}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\beta})=[\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{S}(\boldsymbol{\nu})+\boldsymbol{S}(\boldsymbol{\beta})] / 2 .
\end{aligned}
$$

Here $\boldsymbol{K}_{\tau}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}=k \boldsymbol{\nu}, \boldsymbol{K}_{\nu}=(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\nu}=\operatorname{rot} \boldsymbol{\nu} \times \boldsymbol{\nu}$, and $\boldsymbol{K}_{\beta}=(\boldsymbol{\beta} \cdot \nabla) \boldsymbol{\beta}=\operatorname{rot} \boldsymbol{\beta} \times \boldsymbol{\beta}$ are the curvature vectors of the vector lines L_{τ}, L_{ν}, and L_{β} of the fields $\boldsymbol{\tau}$, $\boldsymbol{\nu}$, and $\boldsymbol{\beta}$, respectively. Then, in D, $\boldsymbol{S}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}^{*}$, where the vector field \boldsymbol{R}^{*} is expressed by any of formulas (4)-(6).

Proof. The expression $\boldsymbol{S}^{*}=-(\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{\nu} \operatorname{div} \boldsymbol{\nu}+\boldsymbol{\beta} \operatorname{div} \boldsymbol{\beta})$ follows from the well-known formulas $\operatorname{div}(\boldsymbol{a} \times \boldsymbol{b})=(\boldsymbol{b} \cdot \operatorname{rot} \boldsymbol{a})-(\boldsymbol{a} \cdot \operatorname{rot} \boldsymbol{b}), \boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=$ $\boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c})-\boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b}), \boldsymbol{\tau}=\boldsymbol{\nu} \times \boldsymbol{\beta}[7], \boldsymbol{\nu}=\boldsymbol{\beta} \times \boldsymbol{\tau}$, and $\boldsymbol{\beta}=\boldsymbol{\tau} \times \boldsymbol{\nu}$. Combining this expression for \boldsymbol{S}^{*} with the original one (in terms of rotors), we obtain $\boldsymbol{S}^{*}=[\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{S}(\boldsymbol{\nu})+\boldsymbol{S}(\boldsymbol{\beta})] / 2$. Substituting the formulas for $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ from Lemma 1, the formula for k^{2} from Lemma 2, the relations between $\boldsymbol{\tau}, \boldsymbol{\nu}_{1}$, and $\boldsymbol{\nu}_{2}$ from Lemma 1 into the expression for \boldsymbol{S}^{*}, after lengthy but simple calculations, we obtain $-\boldsymbol{S}^{*}=\operatorname{grad} \alpha \times \boldsymbol{k}+\operatorname{grad} \theta \times \boldsymbol{\nu}_{2}+\operatorname{grad} \varphi \times \boldsymbol{\tau}$, where the function φ is defined in Lemma 2. Combining the latter equality with the first formula for $\boldsymbol{S}(\boldsymbol{\tau})$ from Lemma 1 and with allowance for $\sin \theta \boldsymbol{\nu}_{1}=$ $\cos \theta \boldsymbol{\tau}-\boldsymbol{k}$, we obtain $\boldsymbol{S}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}^{*}$, where $\boldsymbol{R}^{*}=\operatorname{grad} \varphi+\cos \theta \operatorname{grad} \alpha$.

We will now show that the latter vector \boldsymbol{R}^{*} satisfies the invariant expression (4). Indeed, $\boldsymbol{R}^{*} \cdot \boldsymbol{\tau}=\varphi_{s}+\alpha_{s} \cos \theta=\varkappa$ by virtue of Lemma 2. Multiplying the identity $\boldsymbol{S}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}^{*}$ vectorially by $\boldsymbol{\nu}$ and by $\boldsymbol{\beta}$ and using the well-known formulas $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c})-\boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b}), \boldsymbol{a} \times \boldsymbol{a}=0$, and $\boldsymbol{\tau} \cdot \boldsymbol{\nu}=\boldsymbol{\tau} \cdot \boldsymbol{\beta}=0[7]$, we obtain $\boldsymbol{\nu} \cdot \boldsymbol{R}^{*}=-\operatorname{div} \boldsymbol{\beta}$ and $\boldsymbol{\beta} \cdot \boldsymbol{R}^{*}=k+\operatorname{div} \boldsymbol{\nu}$, respectively. This brings about the desired formula for \boldsymbol{R}^{*}. Using the formulas $k \boldsymbol{\beta}=\boldsymbol{\tau} \times(\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau})=\operatorname{rot} \boldsymbol{\tau}-\boldsymbol{\tau}(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}) \Rightarrow k=\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}, \operatorname{rot} \boldsymbol{\tau}=\operatorname{rot}(\boldsymbol{\nu} \times \boldsymbol{\beta})=$ $\boldsymbol{\nu} \operatorname{div} \boldsymbol{\beta}-\boldsymbol{\beta} \operatorname{div} \boldsymbol{\nu}+\nabla(\boldsymbol{\nu}, \boldsymbol{\beta}), \boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\tau}=0, \operatorname{div} \boldsymbol{\beta}=\operatorname{div}(\boldsymbol{\tau} \times \boldsymbol{\nu})=-\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\nu}$, and $\operatorname{div} \boldsymbol{\nu}=\operatorname{div}(\boldsymbol{\beta} \times \boldsymbol{\tau})=\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta}-k$, we obtain the remaining representations for \boldsymbol{R}^{*} in the lemma.

Remark 1. The formula $\operatorname{div} \boldsymbol{S}^{*}=(\varkappa-\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})^{2}-[\boldsymbol{\tau} \cdot(\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta})+$ $\boldsymbol{\nu} \cdot(\operatorname{rot} \boldsymbol{\beta} \times \operatorname{rot} \boldsymbol{\tau})+\boldsymbol{\beta} \cdot(\operatorname{rot} \boldsymbol{\tau} \times \operatorname{rot} \boldsymbol{\nu})]$ is proved in a similar way.

From formulas $(2), \boldsymbol{R}^{*}=\operatorname{grad} \varphi+\cos \theta \operatorname{grad} \alpha, \boldsymbol{S}^{*}=\boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{\tau} \times \boldsymbol{R}^{*}$, and Lemma 1, we obtain

Corollary 1. Under conditions (A)-(C), in D, we have $\operatorname{rot} \boldsymbol{R}^{*}=\sin \theta \boldsymbol{A}=$ $\sin \theta(\operatorname{grad} \alpha \times \operatorname{grad} \theta), \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=2\left(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{R}^{*}\right)$, and $\operatorname{div} \boldsymbol{S}^{*}=\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+$ $\varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})+k(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta})$.

The latter is derived using the equalities $\operatorname{div} \boldsymbol{S}^{*}=\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+\boldsymbol{R}^{*} \cdot \operatorname{rot} \boldsymbol{\tau}-$ $\operatorname{rot} \boldsymbol{R}^{*} \cdot \boldsymbol{\tau}$ and $\boldsymbol{R}^{*} \cdot \operatorname{rot} \boldsymbol{\tau}=\varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})+k(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta})$ by virtue of $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\tau}=0$, $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}=k$, and $\operatorname{rot} \boldsymbol{R}^{*} \cdot \boldsymbol{\tau}=\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$.

2.2. Invariant forms of the vector $\operatorname{rot} R^{*}$

Theorem 1. Let conditions (A)-(C) be satisfied. Then, the quantity rot \boldsymbol{R}^{*} with the vector field \boldsymbol{R}^{*} defined by any one of formulas (4)-(6) has any of the representations

$$
\begin{align*}
\operatorname{rot} \boldsymbol{R}^{*} & =\frac{1}{2} \boldsymbol{\tau} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})-k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})-k \boldsymbol{\beta}(\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}) \tag{9}\\
& =\boldsymbol{\tau}\left[\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+k(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta})\right]-k \operatorname{rot} \boldsymbol{\beta}-\varkappa k \boldsymbol{\beta} \\
& =\boldsymbol{\tau} \operatorname{div} \boldsymbol{S}^{*}-\varkappa \operatorname{rot} \boldsymbol{\tau}-k \operatorname{rot} \boldsymbol{\beta} \tag{10}
\end{align*}
$$

where the vector fields $\boldsymbol{S}(\boldsymbol{\tau})$ and \boldsymbol{S}^{*} are defined in (7) and in Lemma 3.
Proof. We calculate the quantity $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}$ using the formulas $\boldsymbol{\beta}=\left(-\alpha_{s} \sin \theta \boldsymbol{\nu}_{1}+\theta_{s} \boldsymbol{\nu}_{2}\right) / k($ from Lemma 1$), \operatorname{rot} \boldsymbol{\nu}_{1}=\cos \theta\left(\operatorname{grad} \alpha \times \boldsymbol{\nu}_{2}\right)-$ $\operatorname{grad} \theta \times \boldsymbol{\tau}$, and $\operatorname{rot} \boldsymbol{\nu}_{2}=-\operatorname{grad} \alpha \times(\cos \alpha \boldsymbol{i}+\sin \alpha \boldsymbol{j})$, the relations $\boldsymbol{\tau}=\boldsymbol{\nu}_{1} \times \boldsymbol{\nu}_{2}$, $\boldsymbol{\nu}_{1}=\boldsymbol{\nu}_{2} \times \boldsymbol{\tau}$, and $\boldsymbol{\nu}_{2}=\boldsymbol{\tau} \times \boldsymbol{\nu}_{1}$, and the formulas of Lemma 2 for k^{2} and \varkappa. Then we obtain $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}=-\varkappa+\sin \theta\left[\theta_{s}(\operatorname{grad} \alpha \cdot \boldsymbol{\nu})-\alpha_{s}(\operatorname{grad} \theta \cdot \boldsymbol{\nu})\right] / k$. Here, substituting $\alpha_{s}=\operatorname{grad} \alpha \cdot \boldsymbol{\tau}, \theta_{s}=\operatorname{grad} \theta \cdot \boldsymbol{\tau}$ and using the well-known formula $(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})-(\boldsymbol{b} \cdot \boldsymbol{c})(\boldsymbol{a} \cdot \boldsymbol{d})=[\boldsymbol{a} \times \boldsymbol{b}] \cdot[\boldsymbol{c} \times \boldsymbol{d}][7, \S 7]$ for $\boldsymbol{a}=\operatorname{grad} \theta$, $\boldsymbol{b}=\operatorname{grad} \alpha, \boldsymbol{c}=\boldsymbol{\tau}$, and $\boldsymbol{d}=\boldsymbol{\nu}$, we obtain $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}=-\varkappa-\sin \theta[(\boldsymbol{\tau} \times$ $\boldsymbol{\nu}) \cdot(\operatorname{grad} \alpha \times \operatorname{grad} \theta)]=-\varkappa-(\boldsymbol{\beta} \cdot \sin \theta \boldsymbol{A}) / k=-\varkappa-\left(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{R}^{*}\right) / k$. This results in $\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{R}^{*}=-k[\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}]$. Similarly we obtain $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta}=$ $-\sin \theta\left[\theta_{s}(\operatorname{grad} \alpha \cdot \boldsymbol{\beta})-\alpha_{s}(\operatorname{grad} \theta \cdot \boldsymbol{\beta})\right]=-(\boldsymbol{\nu} \cdot \sin \theta \boldsymbol{A}) / k=-\left(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{R}^{*}\right) / k$, whence $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{R}^{*}=-k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})$. From Corollary 1 we have $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{R}^{*}=$ $\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$, which leads to formula (9). From this formula, by virtue of Corollary 1, we obtain identity (10).

In the similar way we prove the following

Lemma 4. Let conditions (A)-(C) be satisfied. Then the vector fields \boldsymbol{A}_{1} and \boldsymbol{A}_{2} defined in Lemma 1 are expressed in the domain D in terms of the characteristics $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k$, and \varkappa of the curves $L_{\tau} \in\left\{L_{\tau}\right\}$ by the formulas $\boldsymbol{A}_{1}=k \boldsymbol{\nu}(\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})-k \boldsymbol{\beta}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})$ and $\boldsymbol{A}_{2}=k[k \boldsymbol{\tau}+\boldsymbol{\nu}(\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\nu})-\boldsymbol{\beta}(\varkappa+$ $\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu})]$.
2.3. The relationship between the quantities $\operatorname{div} S(\tau)=-2 K, \varkappa$, τ, ν, and β. On the conservation laws for the family of curves L_{τ}

Theorem 2. Let conditions (A)-(C) be satisfied. Then, in the domain D, we have $\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=\varkappa(\varkappa-\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})-\boldsymbol{\tau} \cdot(\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}) \Leftrightarrow \varkappa^{2}=\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})+$ $\varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})+\boldsymbol{\tau} \cdot(\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta})=\boldsymbol{\tau} \cdot\left(\operatorname{rot} \boldsymbol{R}^{*}+\varkappa \operatorname{rot} \boldsymbol{\tau}+\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta}\right)$.

Proof. From the definition of the quantities \boldsymbol{A}_{1} and \boldsymbol{A}_{2} in Lemma 1 we obtain $\sin \theta \operatorname{grad} \alpha=\left(\theta_{s} \boldsymbol{A}_{1}+\alpha_{s} \sin \theta \boldsymbol{A}_{2}\right) / k^{2}$ and $\operatorname{grad} \theta=\left(-\alpha_{s} \sin \theta \boldsymbol{A}_{1}+\right.$ $\left.\theta_{s} \boldsymbol{A}_{2}\right) / k^{2} \Rightarrow \sin \theta \boldsymbol{A}=\sin \theta \operatorname{grad} \alpha \times \operatorname{grad} \theta=\operatorname{rot} \boldsymbol{R}^{*}=\left(\boldsymbol{A}_{1} \times \boldsymbol{A}_{2}\right) / k^{2}$, whence, using the formulas from Lemma 4, we have

$$
\begin{align*}
\operatorname{rot} \boldsymbol{R}^{*}= & \boldsymbol{\tau}\left[\varkappa^{2}-\varkappa(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})-\boldsymbol{\tau} \cdot(\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta})\right]- \\
& k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})-k \boldsymbol{\beta}(\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}) . \tag{11}
\end{align*}
$$

The theorem is proved by multiplying the latter equation by $\boldsymbol{\tau}$ and using formula (9).

Remark 2. The formulas in Corollary 1 and Theorem 2 containing the expressions $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ and the formulas in Theorem 1 are respectively the scalar and vector analogs to the conservation law $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})=0 \Leftrightarrow \operatorname{div} \boldsymbol{S}_{p}^{*}=0$ of the plane case for the family of plane curves $\left\{L_{\tau}\right\}$. In the plane case, we have $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y), \boldsymbol{\beta} \equiv \boldsymbol{k}, \varkappa=0 \Rightarrow \boldsymbol{R}^{*}=0, \boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{S}_{p}^{*}$, and $\operatorname{rot} \boldsymbol{R}^{*}=0$, and these formulas imply this conservation law. In the three-dimensional case, Theorem 1 leads to a higher-order conservation law $\operatorname{div} \boldsymbol{F}=0$ for the family $\left\{L_{\tau}\right\}$ of curves L_{τ}. Here the vector solenoidal field \boldsymbol{F} is expressed in terms of the characteristics $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k$, and \varkappa of the curves L_{τ} and is the right-hand side of any of formulas (9)-(11). For example,

$$
\begin{gather*}
\operatorname{div}\left[\frac{1}{2} \boldsymbol{\tau} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})-k \boldsymbol{\nu}(\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\beta})-k \boldsymbol{\beta}(\varkappa+\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta})\right]=0 \tag{12}\\
\operatorname{div}\left[\boldsymbol{\tau} \operatorname{div} \boldsymbol{S}^{*}-\varkappa \operatorname{rot} \boldsymbol{\tau}-k \operatorname{rot} \boldsymbol{\beta}\right]=0 \tag{13}
\end{gather*}
$$

where the fields $\boldsymbol{S}(\boldsymbol{\tau}), \boldsymbol{S}^{*}$ are expressed using formulas (7) and Lemma 3.

2.4. Solenoidal representation of the vector P in terms of the field R^{*}

Theorem 3. Assume that for the family $\left\{L_{\tau}\right\}$ of streamlines L_{τ} of the unit vector field $\boldsymbol{\tau}$ in the domain D conditions (A)-(C) are satisfied and $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}), k$, and \varkappa are the Frenet basis, the first curvature, and the second curvature of the curves L_{τ}. Then the field \boldsymbol{P} in formula (1) can be represented as (3), where the field \boldsymbol{R}^{*} is expressed by any of the invariant forms (4)-(6). Furthermore, in addition to formula (2), anyone of the expressions in terms of the quantities $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}, k$, and \varkappa contained in the right-hand sides of formulas (9)-(11) is valid for the field $(-\boldsymbol{P})$.

Proof. We show that the right-hand sides of (2) and (9) differ only in their signs. From the second Frenet equation $d \boldsymbol{\nu} / d s=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\nu}=-k \boldsymbol{\tau}+\varkappa \boldsymbol{\beta}$ and the formulas $\operatorname{rot} \boldsymbol{\beta}=\operatorname{rot}(\boldsymbol{\tau} \times \boldsymbol{\nu})=(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\tau}-(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\nu}+\boldsymbol{\tau} \operatorname{div} \boldsymbol{\nu}-\boldsymbol{\nu} \operatorname{div} \boldsymbol{\tau}$, $\operatorname{div} \boldsymbol{\nu}=\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta}-\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}$, and $k=\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\tau}$, we obtain $(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\tau}=$ $\operatorname{rot} \boldsymbol{\beta}+\varkappa \boldsymbol{\beta}-\boldsymbol{\tau}(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\beta})+\boldsymbol{\nu} \operatorname{div} \boldsymbol{\tau}$. Next we use $K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ [2, Ch. 1, $\S 8],\left(\boldsymbol{K}_{\tau} \cdot \nabla\right) \boldsymbol{\tau}=k(\boldsymbol{\nu} \cdot \nabla) \boldsymbol{\tau}$, and the theorem is proved.

Corollary 2. Representation (1) is equivalent to the formula

$$
K=-\operatorname{grad}(\boldsymbol{r} \cdot \boldsymbol{\tau}) \cdot \operatorname{rot} \boldsymbol{R}^{*} \quad \Leftrightarrow \quad K=\operatorname{div}\left[\operatorname{grad}(\boldsymbol{r} \cdot \boldsymbol{\tau}) \times \boldsymbol{R}^{*}\right]
$$

Remark 3. The Frenet unit vectors $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ and the first curvature k of the curves L_{τ} can be expressed in terms of $\boldsymbol{\tau}$:

$$
\begin{equation*}
\boldsymbol{\nu}=(\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}) / k, \quad \boldsymbol{\beta}=\boldsymbol{\tau} \times \boldsymbol{\nu}, \quad k=|\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}| \tag{14}
\end{equation*}
$$

Substituting the latter for $\boldsymbol{\nu}$ and $\boldsymbol{\beta}$ into the formula $[2$, Ch. $1, \S 15]$:

$$
\begin{equation*}
\varkappa=\frac{1}{2}(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}-\boldsymbol{\nu} \cdot \operatorname{rot} \boldsymbol{\nu}-\boldsymbol{\beta} \cdot \operatorname{rot} \boldsymbol{\beta}) \tag{15}
\end{equation*}
$$

we also express the second curvature \varkappa in terms of the single quantity $\boldsymbol{\tau}$.

As, by virtue of formulas (4)-(7), Lemmas 3 and 4, and Theorems 1-3, the quantities $\boldsymbol{S}(\boldsymbol{\tau}), \boldsymbol{S}^{*}, \boldsymbol{R}^{*}$, div $\boldsymbol{S}(\boldsymbol{\tau})$, $\operatorname{div} \boldsymbol{S}^{*}$, $\operatorname{rot} \boldsymbol{R}^{*}$, and K are expressed in terms of the unit vectors $\boldsymbol{\tau}, \boldsymbol{\nu}$, and $\boldsymbol{\beta}$, the first curvature k and the second curvature \varkappa of the curves L_{τ}, it follows that all these quantities can ultimately be expressed only in terms of the field $\boldsymbol{\tau}$. Therefore, all the formulas in Theorems 1-3 and Lemmas 3 and 4 can be expressed only in terms of the field τ, i.e. the unit tangent vectors of the curves L_{τ}.

3. Properties of the family $\left\{S_{\tau}\right\}$ of surfaces S_{τ}

3.1. Conditions on the family $\left\{\boldsymbol{S}_{\tau}\right\}$. Let us assume that for the field $\boldsymbol{\tau}$ in D, there exists a family of surfaces S_{τ} orthogonal to the field $\boldsymbol{\tau}$. According to the Jacobi theorem $[2$, Ch. 1, §1], this is equivalent to the identity $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0$ in D. Let $\left\{S_{\tau}\right\}$ be the family of surfaces S_{τ} with a unit normal $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ which continuously fill the domain D in the space x, y, z. The principal direction will be represented by the unit vector $\boldsymbol{l}_{i}(i=1,2)$ with the corresponding direction; the vector \boldsymbol{l}_{i} is the unit tangent vector of the curvature line L_{i} on S_{τ}, and at a point $(x, y, z) \in S_{\tau}$ it is equal to the derivative of the radius vector $\boldsymbol{r}=\boldsymbol{r}(x, y, z)$ of the point of the surface S_{τ} with respect to the principal direction at the point (x, y, z). Suppose that:
(D) one and only one surface $S_{\tau} \in\left\{S_{\tau}\right\}$ passes through each point $(x, y, z) \in D ;$
(E) at each point $(x, y, z) \in D$, there exists a right-hand system of mutually orthogonal unit vectors $\boldsymbol{\tau}, \boldsymbol{l}_{1}$, and \boldsymbol{l}_{2}, where $\boldsymbol{\tau}$ is the unit normal and \boldsymbol{l}_{1} and \boldsymbol{l}_{2} are the principal directions on the surface S_{τ} passing through this point. For this, it is sufficient that each surface $S_{\tau} \in\left\{S_{\tau}\right\}$ be C^{2}-regular [8]. Thus, in the domain D, we define three mutually orthogonal unit vector fields $\boldsymbol{\tau}(x, y, z), \boldsymbol{l}_{1}(x, y, z)$, and $\boldsymbol{l}_{2}(x, y, z)$; $\boldsymbol{l}_{1}=\boldsymbol{l}_{2} \times \boldsymbol{\tau}, \boldsymbol{l}_{2}=\boldsymbol{\tau} \times \boldsymbol{l}_{1}$, and $\boldsymbol{\tau}=\boldsymbol{l}_{1} \times \boldsymbol{l}_{2} ;$
(F) $\boldsymbol{\tau}, \boldsymbol{l}_{1}, \boldsymbol{l}_{2} \in C^{1}(D)$.

3.2. The equality of non-holonomicity values of the fields l_{1} and l_{2}

Theorem 4. Let a family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}=$ $\boldsymbol{\tau}(x, y, z)$ satisfy conditions $(\mathrm{D})-(\mathrm{F})$ in the domain D. Then the non-holonomicity values of the vector fields of the principal directions \boldsymbol{l}_{1} and \boldsymbol{l}_{2} (unit tangent vectors of the curvature lines L_{i} on S_{τ}) are equal in D :

$$
\begin{equation*}
\boldsymbol{l}_{1} \cdot \operatorname{rot} \boldsymbol{l}_{1}=\boldsymbol{l}_{2} \cdot \operatorname{rot} \boldsymbol{l}_{2} \tag{16}
\end{equation*}
$$

Proof. Writing down the general formulas $[7, \S 17] \operatorname{rot}[\boldsymbol{a} \times \boldsymbol{b}]=(\boldsymbol{b} \cdot \nabla) \boldsymbol{a}-$ $(\boldsymbol{a} \cdot \nabla) \boldsymbol{b}+\boldsymbol{a} \operatorname{div} \boldsymbol{b}-\boldsymbol{b} \operatorname{div} \boldsymbol{a}$, and $\operatorname{grad}(\boldsymbol{a} \cdot \boldsymbol{b})=(\boldsymbol{b} \cdot \nabla) \boldsymbol{a}+(\boldsymbol{a} \cdot \nabla) \boldsymbol{b}+\boldsymbol{b} \times \operatorname{rot} \boldsymbol{a}+$ $\boldsymbol{a} \times \operatorname{rot} \boldsymbol{b}$ for $\boldsymbol{a}=\boldsymbol{l}_{2}$ and $\boldsymbol{b}=\boldsymbol{\tau}$, subtracting and taking into account the Rodrigues formulas [8] written as $\left(\boldsymbol{l}_{1} \cdot \nabla\right) \boldsymbol{\tau}=-k_{1} \boldsymbol{l}_{1}$ and $\left(\boldsymbol{l}_{2} \cdot \nabla\right) \boldsymbol{\tau}=-k_{2} \boldsymbol{l}_{2}$, we obtain $\operatorname{rot} \boldsymbol{l}_{1}=\left(2 k_{2}+\operatorname{div} \boldsymbol{\tau}\right) \boldsymbol{l}_{2}-\boldsymbol{\tau} \operatorname{div} \boldsymbol{l}_{2}+\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{l}_{2}+\operatorname{rot} \boldsymbol{l}_{2} \times \boldsymbol{\tau}$. Multiplying the latter scalarly by \boldsymbol{l}_{1}, we prove the theorem. Another proof follows from the fact that the principal curvatures are stationary values of the normal curvatures [9].

Remark 4. Theorem 2 for $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0, \boldsymbol{\tau} \in C^{2}(D)$ implies the following formula relating to the Gaussian curvature K of the surface $S_{\tau} \in\left\{S_{\tau}\right\}$, the Frenet basis $(\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta})$, and the second curvature \varkappa of the vector lines L_{τ} of the field of normals τ of the surfaces S_{τ} :

$$
\begin{equation*}
K=\boldsymbol{\tau} \cdot(\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta})-\varkappa^{2} \tag{17}
\end{equation*}
$$

Here the second curvature \varkappa of the curves L_{τ} can be expressed in terms of the Frenet unit vectors $\boldsymbol{\tau}, \boldsymbol{\nu}, \boldsymbol{\beta}$ by formula (15), assuming $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0$.

3.3. Geometric meaning of the field $S(\tau)$

Theorem 5. Let $\boldsymbol{\tau}=\boldsymbol{\tau}(x, y, z)$ be a unit vector field in the domain D; the family $\left\{L_{\tau}\right\}$ of vector lines L_{τ} of the field $\boldsymbol{\tau}$ and the family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with normal $\boldsymbol{\tau}$ are mutually orthogonal in D. Let conditions (D)-(F) be satisfied in D. Then the field $\boldsymbol{S}(\boldsymbol{\tau})$ of the form (7) at any point $(x, y, z) \in D$ is the sum of the three curvature vectors: $\boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{K}_{\tau}+\boldsymbol{K}_{g 1}+$ $\boldsymbol{K}_{g 2}=\boldsymbol{K}_{\tau}+2 \boldsymbol{H} \boldsymbol{\tau}(H$ is the mean curvature of the surface $)$. Here $\boldsymbol{K}_{\tau}=$ $(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}$ is the curvature vector of the vector line L_{τ} of the field $\boldsymbol{\tau}$ at the point $(x, y, z) ; \boldsymbol{K}_{g 1}=k_{g 1} \boldsymbol{\tau}$ and $\boldsymbol{K}_{g 2}=k_{g 2} \boldsymbol{\tau}$ are the curvature vectors (at the same point) of two geodesic lines with the curvatures $k_{g 1}$ and $k_{g 2}$ at the surface S_{τ} which pass through the point $(x, y, z) \in S_{\tau}$ in any two mutually orthogonal directions.

Proof. For a geodesic line $\gamma_{i}(i=1,2)$ on the surface S_{τ}, the principal normal coincides with the normal $\boldsymbol{\tau}$ to the surface, and the curvature $k_{g i}$ everywhere is equal to the normal curvature $k_{n i}[1, \S 73]$. Therefore, $\boldsymbol{K}_{g i}=$ $k_{n i} \boldsymbol{\tau} \Rightarrow \boldsymbol{K}_{g 1}+\boldsymbol{K}_{g 2}=\left(k_{1 n}+k_{2 n}\right) \boldsymbol{\tau}=\left(k_{1}+k_{2}\right) \boldsymbol{\tau}=2 H \boldsymbol{\tau}=-\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}$.

4. Application of the obtained geometric formulas to the mathematical physics equations

Suppose that $\boldsymbol{v}=\boldsymbol{v}(x, y, z)=|\boldsymbol{v}| \boldsymbol{\tau}$ is a vector field with direction $\boldsymbol{\tau}(|\boldsymbol{\tau}| \equiv 1)$ and modulus $|\boldsymbol{v}| \neq 0$, defined in a domain D of the three-dimensional Euclidean space E^{3}. The vector lines L_{τ} of the fields \boldsymbol{v} and $\boldsymbol{\tau}$ coincide and $\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v}=|\boldsymbol{v}|^{2}(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau})$. Therefore, a necessary and sufficient condition for the existence of a family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} with the unit normal $\boldsymbol{\tau}$, which are orthogonal to the fields \boldsymbol{v} and $\boldsymbol{\tau}$ (the condition on holonomicity of the field $\boldsymbol{\tau})$ is the identity $\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v}=0 \Leftrightarrow \boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0$.

Remark 5. On the other hand, as stated by the theorem from Problem 136 in $[7, \S 17]$, in order that the variable vector field \boldsymbol{v} can be represented as $\boldsymbol{v}=\psi \operatorname{grad} \varphi$, where φ and ψ are scalar functions, it is also necessary and sufficient that the identity $\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v}=0$ be satisfied. Therefore, for
vector fields of the form $\boldsymbol{v}=\psi \operatorname{grad} \varphi$, and only for them, there exists a family $\left\{S_{\tau}\right\}$ of surfaces S_{τ} orthogonal to the fields \boldsymbol{v} and $\boldsymbol{\tau}$, i.e., the case of the holonomic field of directions $\boldsymbol{\tau}$ reduces to fields of the form $\boldsymbol{v}=\psi \operatorname{grad} \varphi$. Below we will take into account the fact that $\boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{T}(\boldsymbol{v})$, where $\boldsymbol{T}(\boldsymbol{v})=\operatorname{grad} \ln \boldsymbol{v}+(\operatorname{rot} \boldsymbol{v} \times \boldsymbol{v}-\boldsymbol{v} \operatorname{div} \boldsymbol{v}) /|\boldsymbol{v}|^{2}($ see Section 1$)$.
4.1. The eikonal equation. We consider the eikonal equation $|\operatorname{grad} \tau|^{2} \stackrel{\text { def }}{=} \tau_{x}^{2}+\tau_{y}^{2}+\tau_{z}^{2}=n^{2}(x, y, z)$ for a scalar time field $\tau=\tau(x, y, z)$, which is the basic mathematical model of kinematic seismics (geometric optic) in an inhomogeneous isotropic medium with the refractive index $n(x, y, z)$. The function $\tau(x, y, z)$ is the travel time of a signal (wave) of any nature, whose kinematics satisfies the Fermat principle, along the ray (the geodesic line of the metric $\left.d s^{2}=n^{2}(x, y, z)\left(d x^{2}+d y^{2}+d z^{2}\right)\right)$ which connects the point source and the point (x, y, z). In this case, the ray plays the role of a curve L_{τ} and is the vector line of the vector potential (non-force) field $\boldsymbol{v}=\operatorname{grad} \tau$ with tangent unit vector $\boldsymbol{\tau}=\operatorname{grad} \tau / n$ and modulus $|\operatorname{grad} \tau|=n$. Obviously, in this case, the field $\boldsymbol{\tau}$ is holonomic $(\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=\boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{v}=0)$; the role of the surfaces S_{τ} orthogonal to the rays L_{τ} is played by the wavefronts $\tau(x, y, z)=$ const (level surfaces of the scalar field $\tau)$.

From the general geometric formula (17) for $\tau \in C^{3}(D)$ and $n \in C^{2}(D)$, we obtain the following expression for the Gaussian curvature K of the front $S_{\tau}: K=\boldsymbol{\tau} \cdot(\operatorname{rot} \boldsymbol{\nu} \times \operatorname{rot} \boldsymbol{\beta})-\varkappa^{2}$. Here $\boldsymbol{\tau}=\operatorname{grad} \tau / n$; the principal normal $\boldsymbol{\nu}$ and the binormal $\boldsymbol{\beta}$ of the ray are calculated by formulas (14), and the second curvature \varkappa of the ray is calculated by (15). Another formula for K of the form $K=-\frac{1}{2} \operatorname{div} \boldsymbol{T}$, where $\boldsymbol{T}=\boldsymbol{T}(\operatorname{grad} \tau)=\operatorname{grad} \ln n-$ $\frac{\Delta \tau}{n^{2}} \operatorname{grad} \tau$, or $K=-\frac{1}{2}\left[\Delta \ln n-\operatorname{div}\left(\frac{\Delta \tau}{n^{2}} \operatorname{grad} \tau\right)\right]$, follows from the equality $K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})[2$, Ch. $1, \S 8]$ and the identity $\boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{T}(\boldsymbol{v})$. Generally, for the solutions τ of the eikonal equation, all the formulas in Sections 2 and 3 hold, including the formulas for $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ and $\operatorname{div} \boldsymbol{S}^{*}$ from Corollary 1 and Theorem 2, which are analogs to the conservation law $\operatorname{div} \boldsymbol{T}=0$ for the plane case (see [6] and Remark 2) and the conservation law (12), (13), with consideration of the equalities $\boldsymbol{\tau} \cdot \operatorname{rot} \boldsymbol{\tau}=0, \boldsymbol{\tau}=\operatorname{grad} \tau / n$ and Remark 3 .
4.2. The Euler hydrodynamic equations. Let $\boldsymbol{v}=\boldsymbol{v}(x, y, z, t)=v \boldsymbol{\tau}$ be the velocity in the Euler hydrodynamic equations $\boldsymbol{v}_{t}+\operatorname{grad} v^{2} / 2-\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v}=$ $\boldsymbol{F}-\operatorname{grad} p / \rho$, which can be rewritten as $\boldsymbol{G}=-\boldsymbol{T}(\boldsymbol{v})(=-\boldsymbol{S}(\boldsymbol{\tau}))$, where $\boldsymbol{G} \stackrel{\text { def }}{=}\left(\boldsymbol{v}_{t}+\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\operatorname{grad} p / \rho-\boldsymbol{F}\right) / v^{2}$, in domain $D ; v \stackrel{\text { def }}{=}|\boldsymbol{v}|, \boldsymbol{v} \in C^{2}(D)$, the pressure $p \in C^{2}(D)$, the density $\rho \in C^{1}(D)$, and the body force $\boldsymbol{F} \in C^{1}(D)$.

Here the role of the curves L_{τ} is played by the streamlines (the vector lines of the field \boldsymbol{v} or $\boldsymbol{\tau}$ at fixed t). The class of fields \boldsymbol{v} for which there exists a family $\left\{S_{\tau}\right\}$ of the surfaces S_{τ} orthogonal to the field \boldsymbol{v} (curves L_{τ})
is described by the formula $\boldsymbol{v}=\psi \operatorname{grad} \varphi$, where ψ and φ are scalar functions (Remark 5). This class, in particular, includes the potential field $\boldsymbol{v}=\operatorname{grad} \varphi$. To calculate the Gaussian curvature K of the surface S_{τ} orthogonal to the streamlines L_{τ}, we use formula (17) taking into account the equality $\boldsymbol{\tau}=\boldsymbol{v} / v$ and Remark 3. The second formula for K of the form $K=\frac{1}{2} \operatorname{div} \boldsymbol{G}$ follows from the identities $K=-\frac{1}{2} \operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ and $\boldsymbol{G}=-\boldsymbol{T}(\boldsymbol{v})=-\boldsymbol{S}(\boldsymbol{\tau})$. The formulas for $\operatorname{div} \boldsymbol{S}(\boldsymbol{\tau})$ and div \boldsymbol{S}^{*} from Corollary 1 and Theorem 2, which are analogs to the conservation law $\operatorname{div} \boldsymbol{G}=0$ for the plane case ([5] and Remark 2) and conservation laws (12), (13), also hold for the velocity field \boldsymbol{v} with allowance for the equality $\boldsymbol{\tau}=\boldsymbol{v} / v$ and Remark 3 .

References

[1] Vygodskii M.Ya. Differential Geometry. - Moscow, Leningrad: GITTL, 1949 (In Russian).
[2] Aminov Yu.A. The Geometry of Vector Fields.- Moscow: Nauka, 1990; Gordon and Breach Science Publishers, 2000.
[3] Aminov Yu.A. Divergence properties of the curvatures of a vector field and family of surfaces // Matem. Zametki.-1968.- Vol. 3, No. 1.-P. 103-111.
[4] Megrabov A.G. Divergence formulas (conservation laws) in the differential geometry of plane curves and their applications // Dokl. Math.-2011.- Vol. 84, No. 3.-P. 857-861. [Dokl. Acad. Nauk. - 2011.- Vol. 441, No. 3.-P. 313-317].
[5] Megrabov A.G. Differential identities relating the modulus and direction of a vector field, and Euler's hydrodynamic equations // Dokl. Math. - 2010. Vol. 82, No. 1. - P. 625-629. [Dokl. Acad. Nauk. - 2010. - Vol. 433, No. 3.P. 309-313].
[6] Megrabov A.G. Some differential identities and their applications to the eikonal equation // Dokl. Math. - 2010. - Vol. 82, No. 1. - P. 638-642. [Dokl. Acad. Nauk. - 2010. - Vol. 433, No. 4. - P. 461-465].
[7] Kochin N.E. Vectorial Calculus and the Fundamentals of Tensor Calculus.Leningrad: GONTI, 1938 (In Russian).
[8] Poznyak E.G., Shikin E.V. Differential Geometry. The First Acquaintance.Moscow: Moscow State University, 1990 (In Russian).
[9] Finikov S.P. Differential Geometry Course. - Moscow: GITTI, 1952 (In Russian).

