
Bull. Nov. Comp.Center, Comp. Science, 46 (2022), 27–41
c© 2022 NCC Publisher

Architecture of the Cellular Automata
Topologies Library∗

Yu.G. Medvedev

Abstract. The paper presents new software named Cellular Automata Topologies
Library (CATlib). It includes a set of system routines written in the C language,
and can be used by application programmers to programmatically implement CAE
systems that use the necessary cellular automata as solvers. The CATlib soft-
ware contains three subsets of system routines: for implementing a preprocessor, a
simulator, and a postprocessor.

Introduction

Cellular automata models of computation were proposed in the 1940s [1],
and later they began to be used for researches in different physical, biological
and chemical processes [2]. Actually, there is a number of cellular automata
simulation systems that make working with cellular automata much easier.
However, as will be shown below, most of them cannot provide the necessary
functionality for thorough process investigations and do not support large
cellular arrays. As a result, there is a need for a universal environment for
developing software implementations of cellular automata with support of
large-sized models.

This environment should meet the following criteria.

1. Simplicity of constructing cellular automata models and convenience
of using them.

2. Extensibility, i.e. the system should support different kinds of cellular
automata with various transition functions.

3. Platform independence, the ability of system to operate on various
computer architectures and OS.

4. Scalability, i.e. as the size of the cellular array increases, the efficiency
of using computing resources should remain acceptable.

In this paper, we will distinguish three functional levels of specialists
involved in simulation –– user, application programmer, and system pro-
grammer. The user launches a software product and solves the problem

∗This work was carried out under state contract with ICMMG SB RAS (251-2021-
0005).

28 Yu.G. Medvedev

of engineer modeling without modification of any program code. Applica-
tion programmer develops simulation system and creates program code for
this system using software tools, provided to him by the system program-
mer. These tools makes their job much easier. And finally, the system
programmer develops these software tools for the application programmer.

The purpose of this work is to create a software tool having the listed
properties, that is, can be used by the application programmer for developing
cellular automata implementations.

Section 1 provides an overview of software products that are implement-
ing cellular automata, but no single system is suitable for various reasons.
In Section 2 the basic concepts and architecture of the CATlib software are
given. In Section 3, the basic functions of the library are described. In Sec-
tion 4, an example of program cellular automaton implementation obtained
using the library is given.

1. Review of software products that implement cellular
automata

The simulation ALT system (Animating Language Tools) is intended for
experiments with fine-grained parallel algorithms [3]. The system consists of
text and graphic tools combinations for visualizing the fine-grained parallel
calculating. Simulation of processes comes with the parallel substitution
algorithm [4]. For description the constructions of this algorithm in the
ALT high level language is used, the prototype of which is C language. In
the system there are also various tools for text and graphic editing of models
and a number of tools for displaying parameters of calculating process during
simulation. Main advantages of using this simulation system for research
are ability of monitoring the calculating process and simplicity of creating
various models and editing them. However, the ALT does not provide the
opportunity of working with large amounts of data, the parallel launch of
cellular automata using the system is also impossible. These days the ALT
is outdated and not supported by developers, and its launch is only available
on devices that are compatible with the DOS operating system.

The WinALT system for simulation of algorithms with fine-grained
parallelism is continuation of the ALT system ideas [5, 6]. The system has
two versions: console and graphic. Simulation is produced with special lan-
guage that was developed for description of fine-grained parallel calculations
in the system, and it also admits functions usage, created with C and C++
languages.

The WinALT takes over all the advantages the system ALT had. Be-
sides, the system allows choosing the operating mode (synchronous, asyn-
chronous, block synchronous), creating and editing simulating programs.
The maximum sizes of the cellular arrays used have been slightly increased.

Architecture of the Cellular Automata Topologies Library 29

The system does not provide for specifying user topologies, and the set of
topologies implemented in it is very poor. The system includes the ability
of calculating on Windows clusters. Launch of the both of versions, console
and graphic, is able only on devices with the Windows operating system.
Nowadays the system is not supported by developers.

The Mirek’s Cellebration (MCell) program was created for the pur-
pose of studying out the existing models and creating new ones of one- and
two-dimensional cellular automata [7]. The program supports 14 families
of cellular automata. There is a possibility of constructing cellular au-
tomata with different types of neighborhoods: the Moore neighborhood, the
von Neumann neighborhood, the Margolus neighborhood and the hexagonal
neighborhood. In the program, for all of the families of cellular automata
there is a number of built-in transition functions: from well-known and well-
studied to those developed by the author himself. However, user can add
transition functions on one’s own with external libraries in .dll format. The
presence of a graphical interface allows set cell states fast and easy, and also
change these states during an evolution of the cellular automaton. MCell
allows to study out the cellular automata with a cellular array size that is
not exceeding 100000× 2500 cells. There are also tools for collection of var-
ious statistics. The program does not allow calculating on the cluster, and
actually is not supported by developers. It can be launched only on devices
with the Windows operating system.

The Cafun (Cellular Automata Fun) application [8] is a tool for
modeling the complex systems, such as social groups, alive organisms, natu-
ral processes and so on. It was created for searching general laws of complex
systems in order to better understand their evolution, structure and behav-
ior. The ability to make more accurate predictions has been announced as
a practical outcome in economics, biology, physics and other scopes where
the complexity matters. The concept of complex systems is based on three
principles:

• Complex systems consist of many elements with individual properties
and behavior.

• Elements’ properties are the result of their local environment and their
own history. Their behavior determined by a limited and locally avail-
able amount of information without any centralization.

• Interaction between elements happens at the same time. There is no
predetermined sequence in which they occur.

The program uses original concept notation of cellular automata and object-
oriented approach to description of cellular automaton rules. For its work
the Java Runtime Environment is required. The program does not involve
using on the distributed computing systems and actually is not supported
by developers.

30 Yu.G. Medvedev

The Golly application is developed in order of studying out the be-
havior of various one-, two- and three-dimensional cellular automata [9].
Despite of the fact that the developers assert the application as an imple-
mentation of Conway’s game of Life [10], Golly is such a strong tool for
building other models. The application has the ability to implement vari-
ous classes of cellular automata using both built-in software modules and
scripts in Python and Lua. The application allows to set various topologies
of cellular arrays. Effective using of memory ensures work on cell spaces of
virtually unlimited size, provided that most cells are still empty, because
of only cells that are not currently empty are processed. The Golly can be
launched on the following operating systems: IOS, Android, Windows, Mac
and Linux. For August of 2022 the system was supported by developers. It
is not possible to perform calculations on a cluster using the application.

The Tiled CA program was developed for simulating using one- and
two-dimensional cellular automata [11]. The program allows to split simu-
lating area in different ways, but does not allow user to define a topology.
The construction of cellular automata models is carried out using a graph-
ical editor, which allows you to quickly and easily edit the shape and state
of cells. The program has few possibilities for constructing new transition
functions, since Tiled CA only supports the family of cellular automata
of the Game of Life [10]. The program allows the user to set array sizes,
but they ca not exceed some fixed value. Tools for expanding the abilities
of building the cellular automata are not provided. There is no option to
launch the program on a cluster. Actually the Tiled CA is not supporting
by developers. Launching is only available on devices with the Windows
operating system.

The CelLab web application was developed for studying out dif-
ferent processes using two-dimensional cellular automata [12]. Application
allows to create cellular automata models by writing programs on Java and
JavaScript languages, and also to display their evolution process. The pro-
gram allows to set the transition function, the colors of cells depending on
their states, to manage the process of displaying and to modify the tran-
sition function. Also the developers provide the CelLab Development Kit
including an archive with a wide range of ready-to-run transition functions,
that is, can simulate different physical, chemical and biological processes.
However, there is no option to launch this application on a cluster and to
collect statistics.

Considering each of these systems in the light of the criteria given in
Introduction, you can see that only the first criterion is satisfied by all
systems, most of them satisfy two or three criteria, and none of them satisfy
all four. We conclude that these systems are convenient for implementing
cellular automata, at least those that have simple topologies, but either
produce inefficient code, are limited by the small size of the cellular array,

Architecture of the Cellular Automata Topologies Library 31

or are unsuitable for running on distributed computing systems.

2. The library architecture

Computer-aided engineering (CAE) systems are usually implemented as the
next three functional modules: preprocessor, solver and postprocessor. Us-
ing the preprocessor user sets initial and boundary conditions of the problem,
including geometry, material parameters and media. The solver finds the
solution to the problem and has almost no interaction with the user. In
cellular automata methods, the solver is a simulator of the process under
study. The postprocessor usually includes a viewer and various converters to
present the modeling result to the user in understandable way. If application
programmer follows this conventional architectural pattern due to develop-
ing CAE, the system programmer needs to provide three sets of system
routines: for the preprocessor, for the simulator and for the postprocessor.

Cellular automata are functioning iteratively. The operating mode will
be called the order of changing states of the array cells during one itera-
tion [13]. In synchronous mode all of the array cells change their states
simultaneously in accordance with the transition function. To implement
synchronous mode on a serial computer, you need to select a duplicate cel-
lular array, in which new states of cells will be recorded as they are sequen-
tially traversed. In asynchronous mode, cells change their states randomly,
which is realized when going through them sequentially in a random order.
The simulator’s system procedures ensure the application of the cellular au-
tomaton transition function, implemented by the application programmer
as a software component, to each cell of the array repeatedly, in accordance
with the number of iterations. Also they provide interaction between the
cells with each other without the participation of the application software
components. The simulator procedures turn out to be quite heavy due to
the large number of repetitions, especially when processing the large-sized
cellular arrays. Reducing the execution time of these procedures can be
achieved by their parallel execution in systems with distributed memory.

The Cellular Automata Topologies Library (CATlib) represents
as set of system routines created in C language, that can be used by the
application programmer for program implementation of a CAE system that
is embodying the required cellular automaton as a solver [14]. Following
the conventional architectural pattern described above, the CATlib software
contains three subsets of system routines: for preprocessor implementation,
for simulator implementation and for postprocessor implementation.

The preprocessor transforms the initial conditions in the physical for-
mulation into cell states, and also initializes a service structure that includes
the cell array sizes and its topology, the memory size required to store the
state of the cell, the operating mode of the cellular automaton and so on.

32 Yu.G. Medvedev

The following system routines for implementing the preprocessor are
available for the application programmer.

CAT_InitPreprocessor receives information about topology, a type of
model, a size of additional information, a cell size in bytes, a number of cells
per meter and cell array’s sizes; initializes the preprocessor neighborhood in
the computer memory.

CAT_PutCell receives new state of a cell and its indices in the cellular
array; records achieved state to the memory area corresponding to this cell.

CAT_FinalizePreprocessor receives an output file name; saves the user-
specified parameters of the cellular automaton and the user-initialized state
of the cellular array to the file in a special format defined by the library,
frees the allocated memory.

The simulator iteratively applies transition function of the cellular au-
tomaton to all the array cells taking into account a given operating mode
while ensuring interaction between neighboring cells according to the topol-
ogy given.

The following system routines for implementing the simulator are avail-
able for the application programmer.

CAT_InitSimulator receives an input file name that is containing the
parameters of a cellular automaton and a state of the cellular array; ini-
tializes the control structure and cellular array with data read from this
file.

CAT_Iterate receives a pointer to the procedure in which the application
programmer implements the cellular automatons transition function; applies
the resulting function to the array cells, taking into account the operating
mode that was specified during initialization, performing one iteration of
the cellular automaton.

CAT_FinalizeSimulator receives an output file name; saves a resulting
state of the cellular array, frees the allocated memory.

The postprocessor converts the states of the array cells obtained as a
result of the operation of the cellular automaton into a format that can be
read and used by the user for the further work.

The following system routines for implementing the postprocessor are
available for the application programmer.

CAT_InitPostprocessor receives an input file name that is containing
parameters of the cellular automaton and a cellular array’s state; initializes
the control structure and the cellular array with data read from this file.

CAT_GetCell receives cell indices in the cellular array; returns its state.

CAT_FinalizePostprocessor saves simulation results in user-readable
formats and frees the allocated memory.

Architecture of the Cellular Automata Topologies Library 33

3. Main routines description

CAT InitPreprocessor
Initialize the preprocessor environment.

Signature

int CAT_InitPreprocessor(int arrayTopology, int modelType,

int cellSize, int globalSize, double cellsPerMeter,

int arraySizeI, ...)

Input Parameters

arrayTopology –– topology of the cellular array;

modelType –– type of the model;

cellSize –– size of value in a cell;

globalSize –– size of extra info;

cellsPerMeter –– the number of cells per meter;

arraySizeI, ... –– sizes of array, number of sizes should be equal to the
dimension.

Returns

0 in case of success;

−1 if error occurred when allocating file;

−2 if arrayTopology is wrong;

−3 if the number of arguments is wrong.

Attention: the number of array size arguments should be equal to the di-
mension; if it exceeds the dimension, extra arguments will be ignored; if it
is less than the dimension, missing arguments will be equal to 1.

CAT InitSimulator
Initialize the simulator environment header and the cellular array with in-
formation from file.

Signature

int CAT_InitSimulator(char *filename)

Input Parameters

filename –– file path.

Returns

34 Yu.G. Medvedev

0 in case of success;

−1 if error occurred while allocating header or cellular array;

−2 if error occurred while opening file;

−3 if error occurred while reading from file;

−4 if file was damaged (control sum is not the same);

−5 if file name was empty.

CAT InitPostprocessor
Initialize the postprocessor environment header and the cellular array with
information from file.

Signature

int CAT_InitPostprocessor(char *filename)

Input Parameters

filename –– file path.

Returns

0 in case of success;

−1 if error occurred while allocating header or cellular array;

−2 if error occurred while opening file;

−3 if error occurred while reading from file;

−4 if file was damaged (control sum is not the same);

−5 if file name was empty.

CAT GetX, CAT GetY, CAT GetZ, CAT GetT

Signature

double CAT_GetX(int i, ...)

double CAT_GetY(int i, ...)

double CAT_GetZ(int i, ...)

double CAT_GetT(int i, ...)

Input Parameters

i, ... –– indices of the cell.

Returns

≥ 0 X, or Y , or Z, or T coordinate of the dot representing the cell;

Architecture of the Cellular Automata Topologies Library 35

−6 if topology is not implemented yet;

−7 if topology is not acceptable for this function;

−8 if environment or array were not initiated;

−9 if indices are out of bounds.

CAT GetI, CAT GetJ, CAT GetK, CAT GetL

Signature

int CAT_GetI(double x, ...)

int CAT_GetJ(double x, ...)

int CAT_GetK(double x, ...)

int CAT_GetL(double x, ...)

Input Parameters

x, ... –– coordinates of the dot.

Returns

≥ 0 i, or j, or k, or l index of the cell representing the dot;

−6 if topology is not implemented yet;

−7 if topology is not acceptable for this function;

−8 if environment or array were not initiated;

−9 if indices are out of bounds.

CAT GetMaxI, CAT GetMaxJ, CAT GetMaxK, CAT GetMaxL

Signature

int CAT_GetMaxI()

int CAT_GetMaxJ()

int CAT_GetMaxK()

int CAT_GetMaxL()

Returns

≥ 0 maximum i, or j, or k, or l index;

−8 if environment or array were not initiated.

CAT PutCell
Puts a value in a cell.

36 Yu.G. Medvedev

Signature

int CAT_PutCell(char *cellValue, int i, ...)

Input Parameters

cellValue –– value to put in the cell;

i, ... –– indices of the cell.

Returns

0 in case of success;

−8 if environment or array were not initiated;

−9 if indices are out of bounds.

Attention: the number of index arguments should be equal to the dimension;
if it exceeds the dimension, extra arguments will be ignored; if it is less than
the dimension, missing arguments will be equal to 0.

CAT GetCell
Gets a value from a cell.

Signature

int CAT_GetCell(char *cellValue, int i, ...)

Input Parameters

cellValue –– output variable to put the value from the cell in;

i, ... –– indices of the cell.

Returns

0 in case of success;

−8 if environment or array were not initiated;

−9 if indices are out of bounds.

Attention: the number of index arguments should be equal to the dimension;
if it exceeds the dimension, extra arguments will be ignored; if it is less than
the dimension, missing arguments will be equal to 0.

CAT SquareDistance
Calculates a square distance between dots representing two cells.

Architecture of the Cellular Automata Topologies Library 37

Signature

double CAT_SquareDistance(int i1, ..., int i2, ...)

Input Parameters

i1, ... –– indices of the first cell;

i2, ... –– indices of the second cell.

Returns

≥ 0 the square distance;

−6 if topology is not implemented yet;

−7 if topology is not acceptable for this function;

−8 if environment or array were not initiated;

−9 if indices are out of bounds.

CAT Iterate
Applies one iteration on the cellular array.

Signature

int CAT_Iterate(int (* cellTransition)(char*))

Input Parameters

cellTransition –– a function applied on the cellular array. It should re-
turn 0 in case of success.

Returns

0 in case of success;

6= 0 error code returned from cellTransition function.

CAT IsArrayChanged

Signature

uint64_t CAT_IsArrayChanged()

Returns the number of changes (in bytes) made in the last iteration.

CAT GetNumThreads

38 Yu.G. Medvedev

Signature

int CAT_GetNumThreads()

Returns the actual number of threads used in a parallel region or the default
number of threads to be used for subsequent parallel regions.

CAT SetNumThreads
Sets the default number of threads to be used for subsequent parallel regions.

Signature

int CAT_SetNumThreads(int numThreads)

Input Parameters

numThreads –– the number of threads to set.

Returns

0 in case of success;

−1 if number of threads is out of bounds.

CAT FinalizePreprocessor, CAT FinalizeSimulator,
CAT FinalizePostprocessor
Saves environment header and cellular array into file and clears the memory.

Signature

int CAT_FinalizePreprocessor(char *filename)

int CAT_FinalizeSimulator(char *filename)

int CAT_FinalizePostprocessor(char *filename)

Input Parameters

filename –– file path.

Returns

0 in case of success;

1 if error occurred during opening file;

2 if error occurred during writing to the file.

Architecture of the Cellular Automata Topologies Library 39

4. Example of program implementation

As an example of using the library, we give a program implementation of
the simulator of the cellular automaton Game of Life. This automaton
uses a two-dimensional cellular array. The topology is a square with eight
neighbors (the Moore neighborhood). Every cell can be in one of the two
states: s = 0–– dead cell and s = 1–– alive cell. The transition function takes
the value of 1 in two cases:

• the cell is alive and has 2 or 3 alive neighbors;

• the cell is dead and has 3 alive neighbors.

In other cases, the cell state takes the value of 0.

#include <stdio.h>

#include "catlib.h"

const int neighborsNumber = 8;

const int iterationsNumber = 100;

int gameOfLife(void *n)

{

int *cell = n;

int sum = 0;

for(int i = 1; i <= neighborsNumber; i++)

sum += cell[i];

if (cell[0] == 0 && sum == 3)

cell[0] = 1;

if (cell[0] == 1 && (sum < 2 || sum > 3))

cell[0] = 0;

return 0;

}

void main(int argc, char *argv[])

{

CAT_InitSimulator("inputFileName", CAT_SYNC);

for(int i = 0; i < iterationsNumber; i++)

CAT_Iterate(gameOfLife);

CAT_FinalizeSimulator("outputFileName");

}

As we can see from the listing, the application programmer needs to
implement transition function of the right cellular automaton to create a
fully functional simulator, in this case gameOfLife().

40 Yu.G. Medvedev

The routine CAT_InitSimulator() allocates memory for a cellular ar-
ray, loads the cellular array and all necessary data from the file named
"inputFileName", including the topology selected and prepared by the pre-
processor.

The routine CAT_Iterate() searches for the values of the neighboring
cells and applies the transition function of cellular automaton gameOfLife()

to each cell in the synchronous mode. This procedure hides all the interac-
tions between the cells from the application programmer.

The routine CAT_FinalizeSimulator() saves a result of the simulator
into a file named "outputFileName" as a new cellular array. This file has the
same format as the "inputFileName" and it can be used as for processing by
the postprocessor and to continue the simulation by restarting the simulator.

Conclusion

The work formulates the criteria for software intended for the implementa-
tion of cellular automata. A review of such software was carried out and it
was concluded that none of them satisfies all four criteria. The architecture
of the CATlib software that meets these requirements and a list of its main
routines are presented, and an example of the simulator using this library is
given.

References

[1] Von Neumann J. The General and logical Theory of Automata // Cerebral
mechanisms in behavior; the Hixon Symposium / L.A. Jeffress ed. –– Wiley,
1951. –– P. 1–41.

[2] Vanag V.K. Study of spatially extended dynamical systems using probabilistic
cellular automata // Physics-Uspekhi. –– 1999. –– Vol. 42, No. 5. –– P. 413–434
(In Russian).

[3] Pogudin Y., Bandman O. Simulating cellular computations with ALT. A tu-
torial // LNCS.–– Springer, 1997. –– Vol. 1277. –– P. 424–435.

[4] Achasova S., Bandman O., Markova V., Piskunov S. Parallel Substitution
Algorithm. Theory and Application. –– World Scientific Publ., 1994.

[5] Piskunov S. WinALT–– a simulation system for computations with spatial par-
allelism // Bull. Novosibirsk Comp. Center. Ser. Computer Science.–– Novosi-
birsk: NCC Publisher, 1997. –– Iss. 6. –– P. 71–85.

[6] Beletkov D., Ostapkevich M., Piskunov S., Zhileev I. WinALT, a Software
Tool for Fine-Grain Algorithms and Structures Synthesis and Simulation //
LNCS.–– Springer, 1999. –– Vol. 1662. –– P. 491–496.

Architecture of the Cellular Automata Topologies Library 41

[7] Mirek’s Cellebration, 1-D and 2-D Cellular Automata viewer, explorer and
editor. –– http://www.mirekw.com/ca/index.html (last accessed on August 1,
2022).

[8] Homeyer A. A Brief Introduction to Cafun. –– https://cafun.de (last accessed
on August 1, 2022).

[9] Golly Game of Life Home Page.–– https://golly.sourceforge.io (last accessed on
August 1, 2022).

[10] Gardner M. Mathematical games – the fantastic combinations of John Con-
way’s new solitaire game “life” // Scientific American. –– 1970. –– Vol. 223,
No. 4. –– P. 120–123.

[11] Tiled CA.–– http://linuxenvy.com/bprentice/TiledCA/TiledCA.html (last ac-
cessed on August 1, 2022).

[12] Cellular Automata Laboratory. –– https://www.fourmilab.ch/cellab/manual
(last accessed on August 1, 2022).

[13] Bandman O. Implementation of large-scale cellular automata models on multi-
core computers and clusters // Intern. Conf. on High Performance Computing
and Simulation (HPCS), Helsinki, Finland.–– 2013. –– P. 304–310.

[14] Cellular Automata Topologies Library.–– https://gitlab.ssd.sscc.ru/medvedev/
catlib (last accessed on August 1, 2022).

42

