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Two algorithms for calculation
of theoretical seismograms
for anisotropic media

V.N. Martynov, B.G. Mikhailenko

Two algorithms for the numerical modeling of the elastic wave propagation
in non-homogeneous anisotropic media are proposed. A common feature of both
algorithms is the reduction of the 3D problem of elastic wave propagation to a series
of 1D problems, by means of the finite integral Fourier transform with respect to
the horizontal coordinate = and y.

Algorithm I is based on the explicit finite difference method with the second
order approximation with respect to time and with the fourth order approximation
with respect to the spatial variable. Algorithm II is based on employing the La-
guerre transformation with respect to the time coordinate and the finite difference
approximation with respect to the spatial variable z. Both the proposed algorithms
can be effectively implemented on massively-parallel computer architectures.

1. Introduction

Currently, there are a few algorithms for the numerical solution of the direct
dynamic problem of the elastic wave propagation in an anisotropic medium.
We mean the algorithms based on a combination of the finite integral trans-
forms with the finite difference methods [3, 4]. One of the “bottlenecks”
of the proposed methods is a low (as usual, the second) approximation or-
der, resulting in certain constraints, when calculating elastic waves at large
distances and a considerable difference in elastic parameters of the model.

In works [1, 5], the new algorithm for the numerical simulation of the
elastic wave propagation is proposed. It is based on a combination of the
Laguerre spectral transform with respect to time with a finite difference
scheme. It is shown that the proposed approach has many advantages over
the currently available algorithms. In this paper, an attempt is made to
apply this new approach to the solution of the direct dynamic problem for
an anisotropic medium.

2. Statement of the problem

In the Cartesian coordinate system, the problem is formulated as follows:
it is necessary to find components of the elastic displacements vector which
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would satisfy the following system of equations:
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with the initial conditions
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The coefficients c;j(z) and the density p(z) (parameters of the anisotropic
medium orthotropic type) are arbitrary piecewise continuous positive func-
tions of the variable z, Fy, Fy, F, are components of the force vector, de-
scribing the action of the source localized in time and space

F(t,z,y,2) = zz+F,|,_7+Fk (4)
For example, for the source of the "vertical force” type

F(t,z,y,2) = 6(z)8(y)d(= — ) f(B)F.

Here d is the depth of the source along the vertical axis.
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3. Transformations in horizontal variables

To solve the problem, let us make use of the finite integral transformations
of the form:
u(t,n,m, z) 4 a( Ut z,vy,2)sin(kpz) cos(kny)
o(tinm,2) b = [ [ Vit,2,9,2) cos(kne) sin(kmy) b dody,  (5)
w(t,n,m, 2) o \W(t z,y,z)cos(knz) cos(kmy)

0

where .
Utz 9,%) © oo u(t,n,m, z) sin(k,z) cos(kmy)

{ Vit,z,y,2) } Z ansm{ (t,n,m, 2) cos(knz) sm(kmy)}dz dy. (6)
W(t, z,y,z2) n=0n=0 (t,n,m, 2) cos(k,z) cos(kny)

After the respective transformations of equation (1), boundary condi-
tions (2), and initial conditions (3) we obtain the following problem:
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with the boundary and the initial conditions:
0 0
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4. Algorithm I

After application of the finite integral Fourier transforms, the solution of the
original problem (1)-(3) reduces to the solution of problems (7), (8) with
respect to the coordinate ¢, z.
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For the numerical solution of this problem, we make use of the finite
difference method of the second order approximation with respect to time
and the fourth order accuracy with respect to space.

Here we use the staggered grid scheme [2]. Let us introduce two types
of uniform grid:

w={z=1iA2i=0,...,K; t,;=0,...,J, t; =T},
W' = {zpp = (+1/2)82, i=0,.. K~ 1; tn;=0,...,J, t; =T}.
The values of the components u’ (t,n,m, z), v’ (¢,n,m, z) are grid func-

tions given on the grid w and the values of the components w’ (¢,n,m, z) on
the grid w!. The difference scheme is the following:

pivg = —241_Az (®g+3/2 - 93_3/2) + é'g; (9'2_'_1/2 - 9{_1/2) -
cBkn0 ('wf) ( 12 +¢ ) knkmv"
(kic}l + kfncfs) u + fz (iAz,5At),

Pivg = ‘2413 (‘I’f+3/2 - '1'2?-3/2) + 8% (‘I’g+1/2 - '1’11—1/2) -
cf3kn8 ('wf) - (f:}2 + cfs) kﬂkmuf— (9)

(K2, + K250) o + £, (iAz, jAY)

PilWy = —2412 (Qﬂ-z - Qj ) + 82 (Qz+1 - QJ)
,+1/2k 9( ,+1/2) + C;+1/2k 0( 1+1/2)

(Kactty ) + Kaclhy o) wl + £, (i82,5AY),

where
() = s (o) g D).
@'2-4-1/2 = ,5_; (9 (uf+]/2) - k"wfﬂ/z) !
1I’f+1/2 = c?—fl/ﬂ (9 (“f+1/2) - kﬂwf+1/2) )
= c?30( ) + knel3ul + kme?f,
and

vn = (61 -2 +9i77) /(A1)
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5. Algorithm II

Now, to problem (7), (8) we apply the integral Laguerre transforms with
respect to the temporal variable ¢ of the form [1, 5):

u! (n,m, 2) % ((u(n,m, z,t)
{ «u{(n,m,z)} = f { v(n,m,z,t)} (ht) /212 (ht) d(ht) (10)
w! (n,m, z) 0 \w(n,m,z,t)

with the respective inversion formulas

u(n,m, z,t) o uﬂ'f(n, m, z)

v(n,m, z,t) o = (ht)™*/2 3" S vi(n,m,z) p 1%(ht), (11)
w(n,m,z,t) j=0 w'?(n: m, z)

where I3 (ht) are the orthonormal Laguerre function:

o
m + a)!

/ 12 (ht)I2 (ht) dt = 6mn(—n;.—

0

- The Laguerre function I$(ht) is expressed by the classical Laguerre polyno-
mials L7 (ht). We select the parameter a to be integer and positive, then

ht

17 (ht) = (ht)~2e™ 2 LY(he).

The application of (10), (11) results in the system of equations (7), (8) of
the following form
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After the application of the Fourier and the Laguerre transforms, the
original problem (1)—(3) reduces to solving the boundary value problem for
the system of ordinary differential equations, this system being dependent
on two transformation parameters k, and k. For the numerical solution of
this system at fixed transformation parameters, a difference scheme of the
fourth approximation order is applied. We use basically the same difference
approximation scheme as in the first algorithm. In this case, the finite
difference scheme can be written down in the vector form:

i-1
AA(n,m,iAz)Wj (n,m,iAz) = F (Z W! (n,m,iAz) <p¢) .
1=0

In this formula, Wi (n,m,iAz) stands for the sought for vector of dis-
placement components defined on the difference grid, and Aa(n,m,iAz)
denotes the band matrix of coefficients. As a result, the original problem
reduces to solution of the system of linear algebraic equations. It should
be noted that the band matrix depends on the Fourier transform parame-
ters ky, km and is independent of the Laguerre transformation parameter
j, and the right-hand side of this system of linear equations is defined from
recurrent formulas of the parameter j.

. Hence, at fixed parameters of the Fourier transform it is necessary to
solve a system of linear equations with many right-hand sides. To do this
the LU-decomposition method can be successfully used.

6. Some aspects of numerical implementation

Both algorithms proposed can be parallelized for multi-computers. Obvi-
ously, when implementing these algorithms on the multi-processor systems,
the computation of the problem for the fixed parameters of the Fourier
transform can be carried out on each processor, there being no necessity to
perform the information exchange between the processes.

This is because of the fact that the summation operation by formula
(6) can be done on completion of all the initiated processes of a separate
program.
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In the present work. we do not dwell on studying the stability of the
proposed algorithms. We should only note that for Algorithm I, the stability
criterion proposed in [2], is applicable.

The basic computing peculiarities connected with the numerical imple-
mentation of Algorithm II are considered in good detail in [1, 5].

For the numerical modeling, we have selected the model consisting of the
transversely-isotropic layer with the horizontal axis of symmetry localized
on the elastic half-space. The axis of symmetry is parallel to the axis z.
The parameters of the anisotropic layer are the following:

e in the layer
c11 = 14,82 - 10" din/em?, ¢3 = 2,614 -10'! din/cm?,
c13 = 6,703 - 10! din/cmz, c22 = €11,
co3 = 14,82 - 10* din/cm?, ¢33 = 12,208 - 10'! din/cm?,
cas = 1,305 - 10" din/em?, cs5 = caq;
ces = 6,103 - 10* din/cm?, p =1 g/cm®;

e in the half-space

A+ 2p =6.25-10" din/cm?, p=2.25-10", din/cm®p =1 g/cm?.

A source of the “explosive” type is localized at a depth of d = % from the

Figure 1. Snapshot of the vertical plane (¢ = 0°)
U, displacement vector component

free surface.
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