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Cellular algorithm architecture
for long integers multiplication
in arrays of restricted size

V. Markova

A new cellular algorithm architecture for multiplication of two long binary inte-
gers in arrays of restricted size is presented. The new algorithm is based on “divide
and conquer” technique and performed in terms of a model of fine-grained paral-
lelism — Parallel Substitution Algorithm. Time complexity of the new algorithm
for multiplication of n-bit binary integers product is (1.25n + logy n + 14) steps,
which is less to that of the parallel version of the Karatzuba algorithm constructed
on the same techniques.

Introduction

In the design of high-speed algorithms it occurs rather frequently that the
size of a task (the operand length) is larger than the size of a computing
array (the number of processor elements). In this case, designing algorithms
becomes more complicated because of an additional problem of the coordi-
nation of the task size and the array size.

To solve a task of “big” size, we use the well-known “divide and conquer”
technique [1]. It consists in the following. The task of “big” size is broken
into tasks of “smaller” size, formulated in a similar way. At first, tasks of
“smaller” size are solved and then the solution to the “big” task is found
as a composition of the obtained solutions. Moreover, for solving tasks of
“smaller” size this technique can be applied recursively. It is known that
“divide and conquer” technique allows one to reduce the time complexity of
the algorithm. For example, due to this technique the time complexity of
integer multiplication was reduced from the traditional estimation O(n?) to
O(n'°83) in the Karatzuba algorithm [1] and to O(nlog; nloglog, n) in the
Schonhage-Strassen algorithm [1].

In this paper, we present a new cellular algorithm architecture for mul-
tiplication of two long binary integers in arrays of restricted size and give
the time complexity of the new algorithm.

By architecture of cellular algorithm we mean the space-time arrange-
ment of the data, operations and their interaction. Algorithm architecture
maps a structure of data interaction and, similarly to-device architecture
has, some levels of the description which form hierarchy. Each level of the
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architecture description is defined by a degree of a detail. The architecture
of algorithm may be represented graphically and analytically.

The new algorithm is based on “divide and conquer” technique and is
designed within the framework of a model of fine-grained parallelism — Par-
allel Substitution Algorithm [2, 3]). The product of two n-bit binary integers
X and Y is formed as XY 2~"/2. The scheme for computation of the shifted
product includes four multiplications of n/2-bit integers, three additions and
two shifts n/2 bits. For this scheme realization we use a cellular algorithm
for computing a sum of products of binary integers (further referred to as
the basic algorithm) with a period of four steps [3).

The new algorithm multiplies two n-bit integers in time (1.25n+log, n+
14). For comparison, the parallel version of the Karatzuba algorithm re-
quires (1.75n + 2log, n + 15) steps. (Let us recall that its computation
scheme includes there multiplications, six additions, and two shifts n and
n/2 bits, moreover, the multipliers of the third pair are two sums of n/2-bit
integers.) The reduction of the time complexity of the presented algorithm
is achieved due to the following. Firstly, the algorithm forms the’shifted
product, it reduces the number of shifts in half. Secondly, the algorithm
generates four products. It allows to constant the basic algorithm archi-
tecture. In the Karatzuba algorithm, to be able to multiply the third pair
multipliers should be calculated in seven steps. Even though a fast carry-
look-ahead adder is used, the summation takes at least log, n steps. Hence,
the summation is done in time only for n < 16, otherwise the multiplicand
loading rate should be changed. ‘

The new algorithm is exceeds in complexity the basic algorithm which
computes product of two integers in time (n + log, n + 3). So, “divide
and conquer” technique does not decrease the time complexity of the par-
allel algorithm as compared with the sequential one. It is explained by the
following, the basic algorithm multiplies with such a high speed that de-
creasing the time complexity due to the reduction of the operand length by
half (~ 0.5n) is less than the time needed to realize a composition of four
n/2 bit integer products (~ 0.75n).

The article is organized as follows. In the second section a necessary
background for organization of long integers multiplication is given. The
third section is devoted to cellular algorithm for computing a sum of prod-
ucts. The new cellular algorithm architecture for multiplication of two long
binary integers and its time complexity are discussed in the fourth section.

1. Background

In this section the necessary material for understanding the new cellular
algorithm architecture is given. It includes the Karatzuba algorithm (an
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illustration of “divide and conquer” technique) and a carry-save adder (4]
(an effective way of the accelerated summation).

1.1. Karatzuba algorithm

Let X and Y be two n-bit binary integers (for simplicity n is a degree of
integer 2). The multiplicand and the multiplier are broken into two equal
parts @ and b, ¢, and d, respectively (Figure 1). Then the product P can be
expressed as

P=XY = (a2"/? +b) (c2/? + d) = ac2" + (ad + b)2"? + bd. (1)
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Figure 1

Equality (1) gives the scheme for calculation of n-bit integers product
with the help of four multiplications of n/2-bit integers, several additions
and shifts. To calculate each of four products the given scheme can be
applied recursively. If we denote ac, bd and (a + b)(c + d) as v, w and u,
respectively, then equality (1) can be transformed to the following form:

P=XY =v2"+ (u—v—w)2"? 4+ w. (2)

Here u is the product of (n/2+1)-bit integers. The substitution of three mul-
tiplications for four ones has allowed to improve an asymptotical estimate
of the time complexity up to O(n'°8%) instead of O(n?). It is necessary to
add that the choice of scheme (2) was made by the author of the algorithm
[1] with the assumption that multiplication is more complex than addition.

1.2. Carry-save adder

A parallel counter (3,2) is the base of a carry-save adder (CSA). A
(3,2)-counter is a usual single-bit full adder, i.e., a combinatorial network,
which receives three bits of equal weight as mputs and produces a 2-bit
word corresponding to their sum as output. The first bit is the carry and
the second bit is the sum. (Both bits are calculated by addition rules in the
binary number system which, as it is known, has not natural parallelism as
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distinct from other number systems.) It is conservation, rather than carry
propagation from the less significant bit to the more significant bit, that al-
lows CSA to reduce any three binary integers X, Y, and Z into two binary
integers (the sum S and the carry C) in one step (Figure 2), i.e., in parallel.
Further the obtained result will be called the two-row code of a sum.

CSA as an effective way of the accelerated summation is used in fast
multiplication schemes in different ways. In reality, these are the CSA array
and the Wallace tree [5]. The former reduces a partial products set into the
two-row code product in time O(log n), the latter — in time O(n).

2. Cellular algorithm architecture for computing
a sum of products

In this section, we present in some detail the cellular algorithm architecture
for computing a sum of products, since this algorithm (further referred to
as the basic one) dictates a computation scheme of the new algorithm. The
time complexity of the basic algorithm is given.

2.1. Basic algorithm architecture

Figure 3 shows the cellular algorithm architecture for computing a sum of
products of n-bit binary integers

m-—1 m-—1
P=3 P=3Y XV, (3)
i=0 =0

Here the arrays ya and za store the initial data (the multipliers and
the multiplicands). The first pair (X, Yo) is placed in the arrays pal, and
yay. The former is the 0-th row of pal, n low-order bits of the row are the
significant bits, the others — are equal to zero. The latter is the rightmost
column of ya. In Figure 3 the arrays yay, pal; are marked. The arrays pal,
pa2 and pa3 are intended for computing the product P according to (3).
pal calculates m products in the form of the two-row codes. The array pa2
(CSA) accumulates the two-row code of the product P which is transferred
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into the array pa3 (carry-look-ahead adder (CLA)) [5] for summation of two
final integers. Data loading is accomplished by the control of the arrays cal,
and ca2, data processing is accomplished by the control of the arrays ca2,
ca3, and cad.

The computation process in the algorithm is organized as follows. A
new multiplier digit is loaded in ya at each step beginning from the least
significant bit, placed in the 0-th row of ya. A new multiplicand is loaded
in the 0-th row of pl at 4 step intervals. (Hence, at the instant of i-th
multiplicand loading, in the array ya, i-th multiplier is represented by the
first four bits). i-th product as the two-row code (C;, S;) is formed in the
array pal as a result of the following three operations:

¢ one row shift of the multiplicand to the bottom,
@ the generation of a partial product (PP),

o the reduction of integer triple (the partial products or (and) the result
of their addition). .

Figure 4 gives the graphical representation of the process of computing
in the array pal. Let us consider the process of the first product calculation.
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At the first three steps, the algorithm shifts the multiplicand and gene-
rates the partial products. As you can see from Figure 4, the result of the
3-rd step includes three partial products PP, PP}, PP2, and the mul-
tiplicand X accommodated in the first four rows. At the 4-th step, this
quadruple is processed into a new quadruple by three operations (multipli-
cand shift, PP generation, and reduction) carried out in parallel. The new
quadruple is shifted one row to the bottom and contains the following data:
the two-row code (Cg,S3), the partial product PP} and the multiplicand
Xo. As a result, the 0-th row leaves the process of calculation of the first
product and is ready to take the new multiplicand, thus providing the deep
pipelining of the basic algorithm.

So, the computation front propagates one row per step to the bottom of
the array pal. At (n — 1)-th step X; achieves the last row and after two
steps the first product Py = (C373,5773) = (Co, Sp) is calculated in two
latter rows.

At the 4-th step, the multiplicand X, is loaded in the 0-th row and
beginning the 5-th step the basic algorithm forms two products in parallel.
The second product is obtained in 4 step intervals and so on.
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2.2. Time complexity

So, the algorithm calculates the first product in the form of two-row code at
(n + 1)-th step, the second product - in 4 step intervals, i.e., at (n + 5)-th
step. Computing the sum of (Cy, S1) and (Co, So), placed in the array pa2,
takes 3 steps. After one step, i.e., at (n+9) step, two-row code of the third -
product is ready in the array pal. Hence, the code of the sum (3) is obtained
in the array pa2 at ((n+ 1) +4(m — 1) + 3)-th step. The final summation of
two integers using a fast carry-look-ahead adder requires (2 + log, n) steps.
Thus, this algorithm has the following time complexity:

e the latency T. = n + 1 (a time to calculate the first product);

e the period T, = 4 (a time between two successive calculations of prod-
ucts), which equals to the multiplicand loading rate; -

o the execution time T, = n + logy n + 4m + 2 (a total time to generate
the result).

As you can see, the basic algorithm has a very short period. It is achieved,
firstly, by pipelining at both the initial data and the computation process
levels, secondly, by loading of the initial data, transformation of the inter-
mediate results and their moving in parallel, and, third, by using a fast
carry-cave technique. This algorithm calculates the product of two n-bit in-
tegers in time (n+log, n+3). It is faster than that of high-speed sequential
algorithms of the Karatzuba and the Schonhage-Strassen (O(n'°823) and
O(n log, nloglog, n), respectively).

3. Cellular algorithm architecture for long
integers multiplication

In this section, we present the new cellular algorithm architecture for mul-
tiplication of long integers. The time complexity is obtained. At first, we
describe the idea of the new algorithm.

3.1. New algorithm idea

The algorithm calculates the product of n-bit integers X and Y (see Fig-
ure 1) as

P =Xy

where X’ and Y’ - the new multipliers, whose components are defined as
follows: '

ﬂ?;,'r = 'rj—n/'-fh y;’ = yj—-n,{‘lv J = 0! ]-1 ceey— 1.
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Graphically X’ and Y’ represent the integers X and Y shifted n/4 bits to
the right along the axis j.

The substitution of the initial multipliers for the shifted multipliers is
associated with the desire to speed-up the multiplication. Let us return
to the sum (1). As mentioned in the introduction, for its calculation the
base algorithm with a period in four steps is used. Hence, the speed-up in
calculation (1) can be achieved due to

e the reduction of the shifted products number,

e the reduction of the number of shifts.

To reduce the shifted products number and the number of shifts, the val-
ues of the degrees of integer 2 in the sum (1) should be reduced to minimum.
It means that the integers @ and b, ¢, and d in the binary representation
of multipliers should have the degrees of integer 2 with the opposite signs.
From this follows the rule for the construction of new multipliers: the inte-
gers a and b, ¢, and d should be shifted to the opposite sides with respect
to “0” (Figure 5a), unlike to the original multipliers X and Y (Figure 5b).
Moreover, the shift should be done to equal numbers of bits and so that
the obtained multipliers X’ and Y’ might be n-bit long. That is the way
the integers @ and b, ¢, and d are shifted n/4 bit to the opposite sides. (In
Figure 5 only one multiplier is shown.)

Taking into account that X’ = X2-"/4 and Y’ = Y2-"/4

P' = X'Y' = X2 ~/tya™/4 = xyo /2 = pp~/2,

i.e., the product P’ is equal to product P, shifted n/2 bits to the right. So,
the new algorithm forms product P’ as the sum of four products

P = P2 = ac2™? + 5d27/* + ad + be. (4)
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Graphically scheme (4) is given in Figure 6a. As a comparison, Figure 6b
shows scheme (2) (the Karatzuba algorithm). Below we list the distinguish-
ing features of the new algorithm.

o The products ad and bc are not shifted at all. The products ac and bd
are shifted only n/2 bits to the opposite sides.

o The algorithm computes four products. The abandonment of the
scheme, where the third (last) product is the product of two sums
of n/2-bit integers (see Figure 6b) is motivates by a very short multi-
plicand loading rate. As we can see from Figure 4 to begin multiplying
the 3-rd pair, the sums (@ +b) and (¢ + d) must be already calculated
which is be done not more than in 7 steps. Even if we use a fast CLA
the addition can be done in time only for n < 16. Otherwise, the
loading rate must be reduced. Moreover, the computing of two sums
in the array pa3 makes the multiplier loading more difficult.

3.2. New algorithm architecture

Let X and Y be n-bits multipliers. It is required to calculate their product
in an array of the size n’ x (2n’ — 1), where n’ = n/2. The multiplication
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algorithm architecture is given in Figure 7. Its difference from the basic
algorithm is as follows.

¢ Presence of two additional arrays pa4 and pa5 of the size 2 x (1.5n—1)

carrying out shift of the products ac and bd n/2 bits to opposite side
under the control of the arrays ce4 and ca5.

e The arrays za and ya of the sizes (4 x nx2) and (n x4 x2), respectively.
The 0-th layer of each array is the processing one, the 1-st layer is the
controlling one. In the initial state the arrays za and ya store two
copies of the multipliers X and Y respectively which then are shaped
into initial data & and Y for computing the product P’ according to
(4). The shaping X, X = X and Y,Y = Y are described below.

Shaping X, X = X and Y,Y = Y. According to the accepted order
of calculation of the products (bd, ac, bc and ad) forming the product P’
(see Figure 6a), the arrays & and ) should take the following form A" =
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(b,a,a,b) and Y = (d, ¢, d,c) respectively. The shaping schemes for 8-bit
multipliers are given in Figures 8, 9 (the controlling layers are not shown).
Here the symbols e, o, # and © stand for bits in the integers a, b, ¢, and d.
The step 0 in Figures 8, 9 shows the arrays za and ya in the initial states.

The shaping procedure X, X = X and Y,Y = Y is carried out under
the control of the first layers of the arrays za and ya and consists of the
following two steps.

1. Splitting the multipliers into two parts. It is carried out by a simple
shifting of the integers a and b, ¢, and d relative to each other (Step 1).
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2. “Alignment” of the integers a, b, ¢, and d. The alignment is realized
by shifting the integers during n/4 steps as follows: the integers a and d are
shifted in the direction of the low-order bits, the integers b and ¢ are shifted
in the direction of the high-order bits.

It is obvious that the shaping procedure of the initial multipliers plus
the loading of the integer d in the 0-th row of the array p1 require (n/4 4 2)
steps.

3.3. Time complexity

From the calculation scheme of the product P’ (see Figure 6a) and the time
complexity of the basic algorithm it follows that the sum of the products
bd2-"/2 ad, and be is already generated by the time of complecting the cal-
culation of ac2™/2. Hence, the time complexity of the new cellular algorithm
for long integers multiplication is defined by the following sum

te = tioad + t,ygn/2 + tosa + toLa -

Here %joaq — the time needed to generate the arrays X', Y and load the first
multiplicand in the array pal, it takes (n/4 + 2) steps; t,4n/2 ~ the time
that the algorithm requires for computing the two-row code of the product
ac ((n/2 + 5) steps), loading in the shifting register (2 steps) and shift n,/2
steps to the right, hence, (n + 6) steps; tcsa — the time needed to calculate
the sum of m products in the form of the two-row codes in the array pa2
(3 steps); tcra — the time needed to transfer the result from CSA into CLA
(2 steps) and to sum two last integers (log, n) steps).

As a result, our algorithm calculates the product of two n-bits integers in
the array of restricted size in time (1.25n+ 144 log, n). The parallel version
of the Karatzuba algorithm requires (1.75n + 2log, n + 12) steps. Thus,
the time complexity of the new algorithm is less than that of the parallel
version of the Karatzuba algorithm but it is more than the time required by
the basic algorithm to multiply two n-bit integers in the array without size
restriction ((n + log, 7 + 3) steps). In other words, the speed-up obtained
due to reduction of the operand length by half is less than the time needed to
realize the composition (shaping and shift) of four n/2 bit integer products.
Indeed, the new algorithm computes four n/2 bit integer products is ~ 0.5n
steps, i.e., we obtain the speed-up of about 2, and the time complexity of
its composition is ~ 0.75n steps. .

The inverse impact of “divide and conquer” technique relatively to the
Karatzuba algorithm is explained as follows. Firstly, the initial algorithms
with respect to which the speed-up are calculated, i.e., the traditional (se-
quential) algorithm and the cellular (parallel) algorithm have the different
time complexities O(n?) and (O(n), respectively. Secondly, in the Karaz-
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tuba algorithm, the time complexity of the composition is taken into account
the complexity of shifts only.

4. Conclusion

In this paper, we present the new cellular algorithm architecture for mul-
tiplication of two long n-bit binary integers in the arrays of restricted size.
The time complexity of this algorithm is (1 251 + logy n + 14) steps. It is
less than the complexity of the parallel version of the Karatzuba a.lgorxthm
The speed-up is achieved due to the following,.

e The algorithm forms the product of n-bit integers as XY 2", It reduces
the number of shifts by half.

e The algorithm computes four products. The increase in the number
of products is resulted from this scheme is better adapted to the basic
algorithm than the scheme with three products. There is no multiplier
which is the sum of n/2-bit integers and hence the multiplicand loading
rate is constant.

However it is necessary to note, that “divide and conquer” technique does
not allow to reduce the time complexity of the cellular algorithm similarly in
the sequential multiplication algorithm, and can be used only in the design
of the arrays of restricted size.
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