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Multilayer cellular pipelined algorithm
architecture for complex scalar product
computation

V. Markova

A new multilayer cellular pipelined algorithm architecture for the complex scalar
product computation is presented. The time complexity is evaluated. The initial
data and results are quaterimaginary numbers. The design is performed in terms
of a model of distributed computation — Parallel Substitution Algorithm.

1. Introduction

Complex multiplication is the main operation in digital signal processing.
One possible method for increasing speed of complex multiplication is
through the use of non-conventional number systems, specifically, the Knuth
(or the quaterimaginary) number system [1].

The Knuth number system (NS) is defined as a positional NS with the im-
age radix » = 27 and the base D = {0,1,2,3}. The most interesting property
of this number system is the possibility of representing a complex number
as single vector (a quaterimaginary number). This property is the key to
a high-speed performance of complex multiplication. In fact, in this case a
complex multiplication requires only one multiplication distinctly from three
multiplications and three additions for conventional positional NS.

However, in spite of its attractiveness the Knuth number system has not
found much application. There are three reasons for that:

e The singularities of the conversion of the binary numbers in the equiv-
alent quaterimaginary ones.

e The necessity of a sequential modification of intermediate results (the
partial products and their sums).

e The absence of a multi-valued hardware.

The second disadvantage is associated with the fact that the result of any
arithmetic operation over the quaterimaginary numbers may occur not to
be a quaterimaginary one. This means that an intermediate result contains
not only the digits belonging to the base (they are further referred to as the
staff digits) but also, at least, one not belonging to the base (the unstaff
digits). For the intermediate result be involved in the computation process,
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a modification of all unstaff digits (the number-modification) should be done
beginning with the least significant digit. This modification is similar to the
sequential carry propagation along a number. The time required for the
number-modification is half the length of a modified number.

In [2], the first attempt has been undertaken to get rid of the above
disadvantage. The 2D algorithm for complex multiplication is a cellular
version of the classical algorithm. At the first stage of the 2D complex mul-
tiplication algorithm, the partial products (PP) and the modification of the
results obtained are carried out in parallel. We employ the parallel number-
modification as opposed to the classical algorithm. At the second stage, a
pairwise summation of the quaterimaginary numbers is performed concur-
rently with the parallel modification of the intermediate results. These pro-
cesses are repeated until the last sum is calculated. This algorithm multiplies
two n-digit quaterimaginary numbers in time T ~ 3.5n. This estimation is
obtained with the help of an experimental simulating system.

In 3], the above estimate has been improved. The algorithm has covered
the classical form. As distinct from the 2D algorithm [2], here the 2-layer
summation is used. The idea of the 2-layer summation consists in the follow-
ing. The staff and the unstaff digits in each pair of the intermediate results
are processed concurrently in two layers of a 3D array. This is considered to
mean that the pairwise summation starts without waiting the intermediate
results to be modified.

A new pipelined multilayer cellular algorithm for the complex scalar
product computation is proposed in this paper. High-speed calculation is
attained due to abandonment of the classical form for multiplication and
deep pipelining at both the data and the computation process levels.

The Parallel Substitution Algorithm (PSA) [3, 4] is used for designing an
algorithm. The PSA is the fine-grained parallelism model, which integrates
the concepts of the cellular automaton and the Markov algorithm. Unlike
other cellular models, the PSA properties and expressive capabilities enables
us to represent any complex algorithm. Moreover, there is one-to-one corre-
spondence between the PSA and the automata net, thus forming the basis
for the architectural design.

This paper is organized as follows. The first section describes the main
operations in the Knuth number system. In the third section, a 3D multi-
layer cellular pipelined algorithm architecture for the complex scalar product
computation is described, its time complexity being evaluated.

2. The Knuth arithmetic

The Knuth number system (NS) is a positional NS with the image radix
r = 27 and the base D = {0,1,2,3}. The most interesting property of
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this number system is the possibility of representing a complex number as
a single number. This property is the key to the high-speed performance of
complex multiplication. Here we deal with only Gaussian integers (complex
numbers with integer parts).

2.1. The Knuth representation

The Knuth (or quaterimaginary) number system is a positional NS with the
image radix r = 2i and the base D = {0, 1,2, 3}.

In the Knuth NS, any Gaussian integer g = a+bi corresponds to a Knuth
representation or o quaterimaginary number as sequence of the coefficients

g€=8n 1---80-8 1, (1)

where g; € D for all j # —1, and g 1 € {0,2}. The digits with even
indices in (1) specify the real part of a Gaussian integer, the digits with odd
indices — the imaginary one.

A= 8- A4 =200— A 4, =120.0
B=-5—3By=-22—-3B 4=122

8 4= 1 2 0

U U 4
g=8—5i= 84 83 82 81 80-8-1 =112202=g¢g
ft ft f
*574 - 1 2 2
Figure 1

The conversion algorithm g = g is shown in Figure 1. At first, both parts
of the integer g = 8 — 5¢ are transformed to the quaternary numbers, then to
the quaterimaginary ones. The obtained representations are concentrated
into the single vector g in such a way, that digits of the real part are put
at the even positions, and the digits of imaginary part are put at the odd
ones. The length of the quaterimaginary number is equal to the length of
the greatest part of the Gaussian integer in the binary NS.

The conversion g = g is executed in the usual way as in any positional
number system. For example, the inverse conversion of the quaterimaginary
number g (see Figure 1) is computed as the following sum

g=[0(-4)° +2(—4) +1(—4)?* +2i[2(—4) " +2(—4)° +1(-4)"] =8 — 5.
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2.2. The Knuth arithmetic

Let us consider the main operations in the Knuth number system. Let g =
gn 1---8180-8-1andh =h, ;...h;hg.h_; be two n-digit quaterimaginary
numbers.

The quaterimaginary sum s = Spy1 ...S1S9.S_1 is produced in two steps.
At the first step, for each pair of digits (g;,h;), 7 = —1,0,...,n — 1, the
sum modulo (—4) is obtained as

(g +h;) mod (—4) = ¢j12 + vy,

where c¢j 2 € {0,—1} and v; € D are called the intermediate carry digit and
the intermediate sum digit, respectively. Further, the digits belonging to the
base are referred to as the staff ones. Distinctly from other number systems
the carry is transferred to two positions ahead of a current intermediate sum
digit. At the second step, the final sum digit s; is calculated by the usual
arithmetic addition

vj+cj =8 for all j = —1,0,...,n+ 1.

It is easily seen that s; may occur not to belong to the set D. Such digits
are further called the unstaff digits. In order that an intermediate result
becomes the quaterimaginary number, modification of unstaff digits (the
calculation of new values) should be performed according to Rule 1 beginning
with the least significant digit. Further, the modification of an unstaff digit
to the base is referred to as the digit-modification. The calculation of new
values of the intermediate result digits is similar to the carry propagation
along the number. The conversion process of s = s! = ...s' = ... = s
according to Rule 1, is further called the sequential number-modification.

Rule 1. Let s* be an intermediate result. Then for any pair of digits
(s;, S§+2); Jj=-10,...,n+1,s] ¢ D, the following computation is done:
i i+l _ i+l _
o If 57 <0, then s; —s;+4andsj+2—s;-+2+1.
) i1 1
o If 55 >4, thens; —s;f4ands;+2—s;—+2fl.
In worst case, the time required for the sequential number-modification
of n-digit intermediate result is n/2 steps.

Example. Let g = (227 — 344)y; = 101220023.0, h = (—111 — 307); =
2211021.0. Figure 2 shows computation of their quaterimaginary sum.
Three steps are needed for the number-modification of the indeterminate re-
sult s = 001-13030-100.0 to the quaterimaginary number s =
01132103300.0. It is easy to check up that the sum obtained in the Knuth

number system agrees with directly computed sum. Indeed, the inverse
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Figure 2

conversion of the quaterimaginary number s is [0(—4)° + 3(—4)! +0(—4)% +
2(—4)® + 1(—4)* + 2i[0(1/4)"" + 0(—4)° + 0(—4)" + 0(—4)* + 3(—4)® +
1(—4)%] = 116 — 64i.

The quaterimaginary product p = Pa2p_1---P1Po-P_1 is calculated in a
classic manner first by obtaining n partial products and then performing
their summation.

Each k-th partial product py = (Prn+1---Pk,1Pk0-Pk,—-1), K = —1,0,...,
n — 1, is obtained in two steps. At the first steps, for each pair (g, h;),
j=-1,0,...,n — 1, the product modulo (—4) is defined

(g - hy) mod (—4) = ry j12 + 2Zp 5,

where 74, ;.2 € {0, -1, -2} and z;; € D are called the intermediate carry
digit and the intermediate product digit, respectively.

At the second step, the partial product digit ps ; is calculated by the
usual arithmetic addition

Zk,j + Tk, = Dk,j for all j = —-1,0,...,n+ 1.

If the obtained partial product is not a quaterimaginary number, then the
number-modification should be performed according to Rule 1. The final
result (the quterimaginary product) p is calculated by summation of all
partial products using the quaterimaginary addition.

As one can see, the quaterimaginary product requires only one mul-
tiplication distinctly from three multiplications and three additions for a
conventional positional NS. One of the reasons which restrains the use of
the Knuth number system is the sequential number-modification.

In [3], the parallel number-modification was presented. It is done ac-
cording to Rule 2 in time O(logn).
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Rule 2. Let s* be an intermediate result. For each pair (s§,s§+2), j =
—1,0,...,n+ 1, the following computation is performed in parallel

1. If s; < 0, then 33112 = .§;+2 + 1, where
$iio+4 ifsi o <0,
§;+2 — S;+2 if S:;'+2 S _D, (2)

siio—4 ifsh,>3.

2. If .s’; > 3, then 33112 = §§+2 — 1 where §§+2 is calculated according to
(2)-

3. If s; € D, then 33112 = .§§-+2 where .§§-+2 is calculated according to (2).

001-13030-100.0
— |
01133040300.0 g
|
01132000300.0 s2=s

Figure 3

An example of the parallel number-modification of the sum s° from the
example performed according to Rule 2 is shown in Figure 3.

3. Multilayer cellular pipelined algorithm
architecture for complex scalar product
computation

In this section, we present a new 3D cellular pipelined algorithm architecture
for the complex scalar product computation and evaluate its time complexity
(the period (Tp) the latency (T}) and the execution time (T¢)). In this case,
Ty, is the time between two successive calculations of products, T} is the time
needed to generate the first product, and T, is the total time to generate
the result. At first, we will describe the main principles of a new algorithm.

3.1. Main principles of the new algorithm

Let G = (8n-1,8m 2,---,80) and H = (h,, 1,h,, 2,...,hy) be two vec-
tors, whose components are n-digit quaterimaginary numbers. It is required
to calculate the scalar product of the two vectors G and H
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m—1 m—1
=0 =0

Let us design the algorithm architecture, based on the belief that only a
single 3D array can be used for computing the products g;h;. This means
that in spite of a special parallelism (3), the high-speed sequential compu-
tation of the product P can be attained due to the following:

e abandonment of the classical form for multiplication and

e deep pipelining at both the data and the computation process levels.

Clearly, the process pipelining is based on functional decomposition of
task (3). In our case, the pipeline has two stages. The first stage generates
the products. The second stage accumulates the sum as

Pt = P! 4 g.h,. (4)

The data pipelining is classified as two types: the initial data pipelining
and data reduction. The initial data pipelining or data forwarding is defined
as loading and moving of the initial data inside a cellular array. The Data
reduction is interpreted as high-speed summation and moving a result in
the direction of the computation front. Currently, there are many reduction
schemes.

In Figures 4 and 5, two reduction schemes for multiplying 12-digit in-
tegers are shown. Here the symbols r/z and p stand for the intermediate
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Figure 4
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Figure 5

carry/the intermediate product and product, and m denotes the integer,
which is modified. The symbols ¢/v and s stand for the intermediate carry /
the intermediate sum, sum, respectively, and e denotes the integer with the
unstaff digits. In both schemes the multipliers are loaded digit serially, the
least significant bit first. The multiplicands are loaded digit paralleling in
w step intervals, w = T},. The value of w will be estimated bellow.

Let us consider the calculation of the first product in Figure 4. Beginning
with the 4th step, a single summation of the neighboring intermediate results
without preceding reduction is done every 1st step. (Here a pair of the
neighboring intermediate results is written in the neighboring rows with
even and odd indices.) As a result, the intermediate results are reduced
one row per two step to the bottom of the processing array. So, according
to this reduction scheme the algorithm calculates the first product at the
(2n 4+ 2)-th step, the second product — in (n + 3) step intervals. Hence,
loading the multiplicand g; is performed at the (n + 3)-th step.

As distinct from the reduction scheme in Figures 4 and 5 two summa-
tions of the neighboring intermediate results are carried out in parallel. The
second step of summation of the first pair is merged with shifting the ob-
tained sum one position down. As a result, two rows leave the process of
calculation of the product and are ready to take a new multiplicand. Hence,
loading the g; is performed at the Tth step and the latency equals (n + 6).

So, the computation process is distributed over a 3D cellular array ac-
cording to the following principles:

1. The multiplicand is shifted one row to the bottom.
2. The multipliers are loaded digit serially, the least significant bit first.
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The multiplicands are loaded digit paralleling at 7 step intervals ac-
cording to the scheme in Figure 5.

3. The generation of partial products is carried out in two layers.

4. The summation of the staff digits and the processing of the unstaff
ones in each pair of intermediate results are done concurrently in two
layers.

5. The parallel number-modification of the intermediate results.

6. The generation of the partial products, the number-modification of the
intermediate results, the data reduction and the initial data loading
are performed concurrently.

3.2. New algorithm architecture

The 3D cellular pipelined algorithm for the complex scalar product compu-
tation is carried out in the arrays H, G, Py, P5, Cy, Cg, Cpy (Figure 6).

G Ca
Sn—1
g2
g1
lgi
P
Cu ' [ l
%
| gih;
P.
Cp2 ‘2| l
P
Figure 6

The 2D arrays H and G store the initial data (multipliers and multipli-
cands). The least significant digit of multiplier is placed in the Oth row of
the array H. The least significant digit of the multiplicand is placed in the
2nd column of G. In Figure 4, the first pair of the initial data (hg,gg) to
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be multiplied is marked. Data loading is accomplished by the control of the
arrays Cg and Cg.

The 3D arrays P; and P; are intended for processing. The array P; has
four layers. The Oth and the 1st layers constitute a pure processing field.
The generation of the partial products is performed as follows. At the first
step, the intermediate carry digits and the intermediate product ones are
generated in the Oth and the 1st layers, respectively. At the second step,
the obtained results are summed up and the partial products are placed in
the Oth layer. If the obtained result is not an quaterimaginary integer, then
it is modified iff it does not participate in summation.

The summation is carried out as follows. At the first step, for each pair
of the staff digits the intermediate sum and carry digits are obtained and
placed in the 1-th layer. At the same time, the unstaff digits from the odd
row of the given pair are added to the unstaff ones of the even row. At the
second step, the algorithm calculates the arithmetic sum of the unstaff digits
and the quaterimaginary sum of the staff ones and loads in the Oth layer
according to the scheme in Figure 5. Each product is generated in the last
row of the Oth layer and then is transferred into the Oth layer of the array
P,. The data processing is done by control of the 2nd and the 3rd layers.
The above processes are repeated until the last product is calculated. This
moment is indicated by the array Cps.

The array P, has three layers. The algorithm accumulates the sum
(4) in two layers and modifies a result when it does not participate in the
summation. The 2nd layer of the array P5 controls the two-layer summation
as well as the modification. The result (the quaterimaginary product P) is
considered to be obtained when the fact of termination is recognized by the
array Cps.

3.3. The time complexity

The presented 3D algorithm has the following time complexity:

e The latency 7; = n + 5.
e The period T}, = 7.
e The execution time is T, = (n+5)+7(m—1)+3 +logn =n+Tm +

1 + log n, where m is the number of products.

This algorithm calculates a complex scalar product faster than that of
ordinary algorithms. Of course, the cost of the hardware has not been
assessed.
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4. Conclusion

In this paper, we present the new 3D cellular pipelined algorithms for com-
plex scalar product computation.

As would be expected, the 3D algorithm has a very short period (7 steps).
This is achieved due to the following features:

e using the Knuth number system,
e deep pipelining at both the data and the computation process levels,
e the parallel number-modification of the intermediate results,

e the generation of the partial products, the number-modification of the
intermediate results, data reduction, and loading the initial data in
parallel.

However, it is difficult to estimate the proposed algorithms with respect
to their ability to be embedded on a chip without doing a detailed design.
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