
Bull. Nov. Comp.Center, Comp. Science, 21 (2004), 69–84
c© 2004 NCC Publisher

The cellular pipelined algorithm architecture
for 1D diffusion simulation using

residue number system∗

Valentina P. Markova

Abstract. This paper is oriented to the cellular pipelined algorithm architecture
for the 1D diffusion simulation. The finite difference representation of 1D diffusion
is written in terms of the residue number system. The cellular pipelined algorithm
architectures for the main operations with a minimum period are developed. The
parallel Substitution Algorithm is used for the algorithm design and modeling. The
time complexity of the algorithm presented is obtained.

1. Introduction

In [1], an attempt has been undertaken to use the residue (modular) number
system (RNS) for the numerical simulation. The idea of using the RNS is not
new [2–4]. Many authors have demonstrated the potential of the modular
arithmetic for realizing high-speed digital signal processing (digital filtering,
convolution, correlation, and the DFT and the FFT computations). A high
speed is attained due to parallel, carry-free arithmetic (addition, subtraction
and multiplication) and shorter length of each remainder as distinct from an
initial integer. In addition, the RNS arithmetic is exact (without overflow)
and therefore free of a round-off error. This makes modular arithmetic an
attractive platform for implementation of high-precision, and high-speed
computations.

In [1], the computational characteristics (stability, accuracy, time com-
plexity) of the residue number system have been investigated on an example
of the 1D diffusion simulation. For this purpose, the finite difference repre-
sentation of the diffusion equation, where time, space, and a certain physical
value are discrete, has been written in terms of the RNS. To overcome the
difficulties associated with the RNS division, in the finite difference repre-
sentation, two strategies have been introduced: transfer of a remainder to
the next step and representation of the diffusion number as a fraction.

Numerical simulation has been performed on Pentium III, MVS 1000/M.
In our studies, a solution in the floating-point numbers is used for compari-
son. The experimental results have shown that the RNS computations are
stable over a wide range of values for a diffusion number as opposed to the
floating-point computations. The RNS provides an acceptable accuracy of

∗Supported by Russian Academy of Science, Basic Research of No. 17 (2004).

70 V.P. Markova

solution. As expected, the time complexity of simulation of a diffusion pro-
cess in the RNS on general-purpose computers is above the time complexity
of the floating-point diffusion simulation. Indeed, general-purpose comput-
ers do not support the modular arithmetic. Some reduction in the time
complexity (60%) has been obtained using the OpenMP and the MMX. A
significant improvement of the time complexity can be gained due to the
design of specialized computing devices.

In this paper, we present the cellular pipelined algorithm architecture
for the 1D diffusion simulation. A good time complexity is attained due to
the following.

• Parallel data processing in all the strips obtained by the domain de-
composition.

• Parallel processing of arithmetic operations in all the moduli.

• Pipelining at both the initial data and the computation process levels.

• Using the table look-up operation.

• Loading the initial data, transformation of intermediate results and
their moving in parallel.

The Parallel Substitution Algorithm (PSA) [5] is used for the design of
the algorithm. The PSA is a model of the fine-grained parallelism, integrat-
ing the concepts of a cellular automaton and the Markov algorithm. Unlike
other cellular models, the PSA properties and expressive capabilities allow
one to represent any complex algorithm. Moreover, there is a one-to-one
correspondence between the PSA and an automata net, thus forming the
basis for the architectural design.

This paper is organized as follows. The second section describes the
main operations in the Residue Number System. In the third section, the
3D cellular pipelined algorithm architectures for main operations (addition,
subtraction, multiplication, and division) are described and their time com-
plexities are evaluated. The cellular pipelined algorithm architecture for the
1D diffusion and its time complexity are given in the fourth section.

2. The RNS arithmetic

2.1. The RNS representation

Let P = {p0, p1, . . . , pk−1} be a set of the pairwise relatively prime inte-
gers (the moduli set). The interval [0,M), M = Πk−1

i=0 pi, determines the
dynamic range of the system. Then any integer X ∈ [0,M) has a unique
RNS representation or the RNS number [2–4] given by

The cellular pipelined algorithm architecture . . . 71

〈X〉P −→ (x0,x1, . . . ,xk−1) = X,

where xj = 〈X〉pj = X mod pj is the j-th remainder of X modulo pj . The
remainder xj is calculated in the following way

〈X〉pj = xj = X − bX/pjcpj ,

where bY c denotes the largest integer smaller or equal to Y . If X < 0, then

〈−X〉P = 〈M −X〉P = 〈X̃〉P −→ (x̃0, x̃1, . . . , x̃k−1) = X̃.

As distinct from the weighted NS, the RNS representation has two prop-
erties:

• all remainders are independent,

• the length of each remainder is smaller than that of an initial integer.

These two properties of the RNS representation provide a parallel, high-
speed, and carry-free arithmetic. In addition, the RNS arithmetic is exact
and therefore free of the round-off error.

2.2. The RNS arithmetic

Let P = {p0, p1, . . . , pk−1} be a moduli set (here the moduli are located
in increasing order), M = Πk−1

j=0pj . Let X = (x0,x1, . . . ,xk−1) and Y =
(y0,y1, . . . ,yk−1) be the two RNS representations of the integers X and
Y , X ∈ [0,M), Y ∈ [0,M). Then the RNS representation of the integer
Z = X ◦ Y , Z ∈ [0,M), is given by

X ◦ Y = Z = (z0,z1, . . . ,zk−1),

where ◦ denotes addition, subtraction, or multiplication,

zj = 〈xj ◦ yj〉pj =

 xj ◦ yj if 0 ≤ xj ◦ yj < pj ,
xj ◦ yj + pj if xj ◦ yj < 0,
xj ◦ yj − pj if xj ◦ yj > pj ,

for all j = 0, 1, . . . , k − 1.

Example 1. Let P = {3, 5, 7, 11}, M = 1155, X = (1, 2, 1, 0) (X = 22),
Y = (0, 0, 4, 5) (Y = 60). Then we have X + Y = (1, 2, 5, 5), X − Y =
(1, 2,−3,−5) = (1, 2, 4, 6), X · Y = (0, 0, 4, 0).

72 V.P. Markova

Division. Let P = (p0, p1, . . . , pk−1) be a moduli set, X = (x0,x1, . . . ,xk−1)
be a RNS dividend, pi = (π0,π1, . . . ,πi−1, 0, pi, . . . , pi︸ ︷︷ ︸

k−1−i

) be the RNS divisor.

If the number X is divided by pi, then xi = 0, otherwise, the number X ′ =
X − xi is used as dividend. The division is carried out in two steps.

At the first step, the algorithm generates the first approximation of
the quotient

Ẑ = (ẑ0, ẑ1, . . . , ẑi−1, 0, ẑi+1, . . . , ẑk−1),

where ẑj = 〈xj

πj
〉pj = 〈xj · 〈 1

πj
〉pj 〉pj , j 6= i, 1

πj
is the multiplicative inverse

of πj modulo pj . To avoid uncertainty, the digit ẑi is equated to zero. Here
ẑj = zj for all j, j 6= i.

The obtained quotient Ẑ can belong to one of the intervals lmMi
, Mi =

M/pi, m = 0, . . . , pi − 1, that are derived from splitting the range [0,M) to
pi parts. Each interval lmMi

contains Mi numbers. The first number of the
m-th interval takes the form

Gm = (0, 0, . . . , 0, m︸︷︷︸
i

, 0, . . . , 0).

Here gmj = 0 for all j 6= i, because the number Gm is a multiple of each
module pj . As far as Z ≤ M/pi, the quotient Z always belongs to the
interval [0,Mi).

At the second step, the algorithm determines the digit value zi. The
determination is based on the fact that both numbers Z and Ẑ are at the
same distance from the beginnings of appropriate intervals, i.e.,

Z − 0 = Ẑ −Gm.

Hence, zi = 〈0−mi〉pi .
The number Gm is determined according to Ẑ with the help of nul-

livization. The idea of nullivization consists in successive increase of the
amount of zero remainders in the RNS representation of an integer (initial
or intermediate). It begins with the least nonzero remainder except the i-th
remainder (the modulo pi is the divisor). The nullivization is carried out in
(k − 1) steps. It can be expressed as

Ẑ → (0, g1
1, . . . , g

1
k−1) = G0 → (0, 0, g2

2, . . . , g
2
k−1) = G1 → · · · → Gm.

Here the moduli p0, p1 are not divisors. The number Gj is defined as follows:

Gj =

{
Gj−1 if gj−1

j = 0 for all j 6= i,

Gj−1 −M
pj

gj−1
j

otherwise,

The cellular pipelined algorithm architecture . . . 73

where Gj−1 = (0, . . . , 0, gj−1
j , . . . , gj−1

k−1), j < i, is a result of the (j − 1)th
step of nullivization, a number M

pj

gj−1
j

= (0, . . . , 0, gj−1
j , . . . , gj

k−1) is a nul-

livization constant. This constant is the number that sets up into zero the
jth remainder of the number Gj−1 and saves zero remainders obtained at
the previous steps. For each pj , the quantity of the nullivization constants
equals pj − 1.

Example 2. Let P = {3, 5, 7, 11}, the number X = (0, 4, 2, 1) (X = 309)
be a dividend, and the modulus p1 = (3, 0, 5, 5) be a divisor. Since the
remainder x1 = r1 = 4, then the number X is not divided by p1. In such a
case, the RNS number X ′ = X − r1 is used as a dividend. Here r1 = 〈r1〉P
= 〈4〉P = (1, 4, 4, 4). Then X ′ = (0, 4, 2, 1)− (1, 4, 4, 4) = (−1, 0,−2,−3) =
(2, 0, 4, 8).

First, we calculate the remainders of the quotient Ẑ = (ẑ0, ẑ1, ẑ2, ẑ3) =
(2,0,4,8)
(2,0,5,5) , except ẑ1:

ẑ0 = z0 =
〈2

2

〉
3

=
〈
2 ·

〈1
2

〉
3

〉
3

= 〈2 · 2〉3 = 1,

ẑ2 = z2 =
〈4

5

〉
7

=
〈
4 ·

〈1
5

〉
7

〉
7

= 〈4 · 3〉7 = 5,

ẑ3 = z3 =
〈8

5

〉
11

=
〈
8 ·

〈1
5

〉
11

〉
11

= 〈8 · 9〉11 = 6.

As a result, Ẑ = (1, 0, 5, 6) (Ẑ10 = 985). Further, we carry out the nul-
livization. For the set P = {3, 5, 7, 11}, the sets of nullivization constants
(M3, M7, and M11) are tabulated in the table. In order that g0

0 = 0 be
obtained, we choose the constant M3

1 = (1, 1, 1, 1) from the set M3, since
the digit ẑ0 equals 1. As a result, we have the integer G0 = Ẑ − M3

1 =
(1, 0, 5, 6) − (1, 1, 1, 1) = (0,−1, 4, 5) = (0, 4, 4, 5). The nullivization con-
stant M7

4 sets up the second remainder into “zero”: G1 = G0 − M7
4 =

M3 M7 M11

M3
1 = (1, 1, 1, 1) M7

1 = (0, 0, 1, 4) M11
1 = (0, 0, 0, 1)

M3
2 = (2, 2, 2, 2) M7

2 = (0, 4, 2, 9) M11
2 = (0, 4, 2, 0)

M7
3 = (0, 3, 3, 3) M11

3 = (0, 3, 0, 3)
M7

4 = (0, 3, 4, 7) M11
4 = (0, 2, 0, 4)

M7
5 = (0, 2, 5, 1) M11

5 = (0, 1, 0, 5)
M7

6 = (0, 1, 6, 6) M11
6 = (0, 0, 0, 6)

M11
7 = (0, 4, 0, 7)

M11
8 = (0, 3, 0, 8)

M11
9 = (0, 2, 0, 9)

M11
10 = (0, 1, 0, 10)

74 V.P. Markova

(0, 4, 4, 5)− (0, 3, 4, 7) = (0, 1, 0,−2) = (0, 1, 0, 9). Finally, we obtain the last
integer G2 = G1 − M11

9 = (0, 1, 0, 9) − (0, 2, 0, 9) = (0, 4, 0, 0). The num-
ber G2 points out that the number Ẑ belongs to the fourth initial interval.
Hence, the digit z1 = (0 − 4) mod 5 = 1 and the quotient Z = (1, 1, 5, 6)
(Z = 65).

3. The cellular algorithm architectures for the main RNS
operations

3.1. The cellular algorithm architecture for the RNS addition

Let xj , yj , pj , j = 0, 1, . . . , k − 1, be 2′s-complement representations of the
initial remainders xj , yj and modulo pj , respectively.

A cellular algorithm for the RNS addition is carried out in two steps.
First, the algorithm calculates the sum (xj + yj) for all pj , pj ∈ P in par-
allel by the 2′s-complement addition. At the second, the remainder of the
obtained binary sum with respect to pj is formed for all pj in parallel, i.e.,
the transformation xj + yj → 〈xj + yj〉pj is performed.

The straightforward modulo p transformation of a binary integer is re-
duced to dividing the integer by modulo p. However, the division of a large
number can be slow and does not fit for high-speed calculations. To avoid a
division, we use the generalization of the usual casting out of nine rule for
the binary number system [6]. The idea consists in the following.

Let p = 2l ± 1 and Z = bn−1bn−2 . . . b0 be an initial n-bit number. Split
the number Z to any numbers of l bits, i.e., Z = al−1al−2 . . . a0, where
0 < ai < 2l for all i. Then

〈Z〉p =
〈 l−1∑

i=0

ai(−1)i

〉
p

if p = 2l + 1, (1)

and

〈Z〉p =
〈 l−1∑

i=0

ai

〉
p

if p = 2l − 1. (2)

Example 3. Let p = 17 = 24 + 1, Z = 100110110001 (1201). Since l = 4,
the number Z is partitioned into three numbers: 3-bit, 4-bit, and 4-bit each,
starting with the most significant bit. As a result, we have a2 = 100 (8),
a1 = 1011 (11), and a0 = 0001 (1). Then, according to (2),

〈Z〉17 = 〈1− 11 + 8〉17 = 〈−4〉17 = 13.

Since xj < pj and yj < pj , pj = 2lj ± 1, then the length of the binary
sum (xj + yj), does not exceed (lj + 1) bits. Hence, the second number,
obtained from partitioning the integer (xj + yj), consists of one carry out

The cellular pipelined algorithm architecture . . . 75

bit. So, the following rule results from equations (1) and (2) for modulo pj

transformation of a binary integer.

Rule.

• If 0 ≤ xj + yj < pj , then 〈xj + yj〉pj = xj + yj .

• If xj + yj > pj , then there will be a carry out of the leftmost bit, and
〈xj + yj〉pj is obtained by adding 1 to the binary sum if p = 2l− 1 and
by subtracting 1 from the binary sum if p = 2l + 1.

• If xj + yj = pj , then in this case, the result will be 11 . . . 1, which is
converted in 2′s-complement representation.

Figure 1 shows an example of the RNS addition. The cellular algorithm
architecture for the RNS addition is given in Figure 2a. As the main RNS
operations (addition, subtraction, and multiplication) are carried out in each
modulus pj in parallel, the algorithm architecture for each of such operations
is done for one modulus.

The algorithm calculates 〈xj + yj〉pj in the arrays p1
j and p2

j of a uniform
size equal to (lj+1)×blog2 ljc. The binary sum xj+yj is generated in p1

j . The

〈25〉15 = 10 → +

1100
→ 1 100〈12 + 13〉15 =

1001

1

6

→ 1010

Figure 1. An example of the RNS addition

CLA

CLA

?

q2
j

q3
j p3

j

p2
j

〈xj − yj〉pj

Cout

xj yj

??

CSA

??

?

q1
j p1

j

CLA

CLA

?

q1
j

q2
j p2

j

p1
j

〈xj + yj〉pj

Cout
??

?

xj yj

?

?

a b

(cj , sj)sj

ŝj

Figure 2. Cellular algorithm architecture for RNS addition (a)
and RNS subtraction (b)

76 V.P. Markova

remainder of the obtained sum modulo pj is formed in p2
j according to the

rule. All the data of loading and processing in both arrays are accomplished
by the control of the arrays q1

j , q2
j , respectively. To provide pipelining of the

basic algorithm (Section 3.2), two fast conventional carry look-ahead adders
(CLA) are used for a binary addition and the modulo p transformation of a
binary sum.

The time complexity of a cellular algorithm for the RNS addition is
defined by the time complexity of CLA. In the worst case, tad = 2tCLA =
2 log2 pk−1 + 4 = 2lk−1 + 4, where pk−1 is maximum modulo from P, the
period, pad (the time between two successive calculations of sums), is equal
1 step.

3.2. The cellular algorithm architecture for the RNS subtraction

The cellular algorithm for the RNS subtraction is reduced to addition, in
which the second addend is a negative integer. As 〈−yj〉pj= 〈pj−yj〉pj , then
−yj = pj+y′j , where y′j is the integer (−y)j in 2′s-complement representation.
Figure 3 shows an example of the RNS subtraction.

+

2′s complement of (−13) →

0.1100

0.1111

1.0010

0.1100

0.0010

1110

1

→ + →〈12− 13〉15 = 〈−1〉15 = 14

(p = 15) →

→

Figure 3. An example of RNS subtraction

Unlike the cellular algorithm architecture for the RNS addition, the al-
gorithm architecture for the RNS subtraction has an additional array dj for
each pj . In this array, a sum of four integers xj , pj , y

′′
j , and 1, where y′′j is

1′s-complement representation of −(yj), is generated in the form of the two-
row code (cj , sj), using a carry-save adder (CSA). As a result, the algorithm
calculates the RNS subtraction in the time tsub = tad + 6 (four steps are
needed for loading the initial data and the inversion of the second addend,
the CSA-addition takes 2 steps), psub = 1.

3.3. The cellular algorithm architecture for the RNS
multiplication

The cellular algorithm for the RNS multiplication is performed in two steps.
At the first step, the algorithm calculates binary products zj = xjyj for
all pj , pj ∈ P, in parallel. For this purpose, a cellular pipelined algorithm
with a very short period (four steps) from [7] is used. At the second step,
the transformations xjyj → 〈xjyj〉pj are carried out for all pj in parallel,
according to equations (1) and (2). For this purpose, the product zj is

The cellular pipelined algorithm architecture . . . 77

partitioned into two numbers: a0
j and a1

j if pj = 2lj − 1. The number a0
j

consists of lj low-order digits of zj , the number a1
j consists of lj high-order

digits of zj . If p = 2lj + 1, the product zj is partitioned into three numbers,
since the product length is over 2l bits. The number a2

j includes only one
bit.

Example 4. Let x = 7 (x = 111), y = 7 (y = 111), and let p = 9 = 23 +1.
〈xy〉9 = 〈7 × 7〉9 = 〈49〉9 = 5 = 〈111 × 111〉9 = 〈110001〉9. Further, the
transformations are shown in Figure 4.

〈7× 7〉9 = 4 → →
−

→110001

001

001

0

1.

+ +

1

→ 100

2′s complement of (−6) →

110

001

1000. 1

1

0.

Figure 4. An example of RNS multiplication

Let pj = 2lj − 1. The algorithm architecture for modulo (2lj − 1) mul-
tiplication is given in Figure 5a. The initial data (yj , xj) are stored in the
array yj and in the 0-th row of the array p1

j of the size lj×1 and lj×(2lj +1),
respectively; lj low-order bits of the 0-th row of p1

j are significant bits, the
others are equal to zero. The first step of the cellular algorithm forms the
two-row code (cj , sj) of the product zj in p1

j using fast carry-save technique
for summation of partial products. Here generation and addition of partial
products are done in parallel. Then the two-row codes (cj , sj) are trans-
ferred to the array p2

j of log2 lj × (2lj + 1) size to calculate the sum zj by a
carry-look-ahead adder. At the second step, the algorithm calculates the re-
mainder 〈xjyj〉pj in the array p3. Data loading and processing in the arrays
p1

j , p2
j , and p3

j are accomplished by the control of the corresponding arrays
q1
j , q2

j , and q3
j , respectively.

Let pj = 2lj + 1. The algorithm architecture for modulo 2l
j − 1 multipli-

cation is given in Figure 5b. The first step of this algorithm is done like to
the algorithm architecture for modulo pj = 2lj − 1 multiplication. At the
second step, the algorithm calculates the sum (a0

j − a1
j + a2

j) in the array p3
j

of 4 × (lj + 3) × 2 size. The first layer of p3
j is intended for storage of the

two numbers: the modulo pj and 1. pj is placed in the 2-nd row, 1 is placed
in the 3-rd row. At first, the number a0

j is loaded into the 0-th row of the
array p3

j . Then shifting the number a0
j one row to the bottom of the array,

loading the number a1
j into the 0-th row of p3

j , and loading the modulo pj

and 1 into the same rows of the 0-th layer are carried out in parallel. In this
case, each digit of the number a1

j has been inverted. If a2
j = 1, then 1 in the

third row of the 0-th layer of p3
j is shifted 1 bit to the left. After this, the

78 V.P. Markova

? ?

PP generation

CSA array

CLA

(cj , sj)

??
a0a1

modpj

adder

〈xjyj〉pj

?

p1
j

p2
j

p3
j

yj

q2
j

q3
j

q1
j

? ?

PP generation

CSA array

CLA

(cj , sj)

〈xjyj〉pj

?

p1
j

p2
j

p3
j

p4
j

yj

q2
j

?

q3
j

q4
j

q1
j

?
(ĉj , ŝj)

modpj

adder

???
a0a1a2

a1

a0
pj

1
�

a b

Figure 5. Cellular algorithm architectures for modulo (2lj − 1)
multiplication (a) and modulo (2lj + 1) multiplication (b)

algorithm adds four integers, using the CSA. The obtained two-row code
(cj , sj) is transferred into the array p4

j for modulo pj addition.
The time complexity of mod P multiplication is defined by the time

complexity of last remainder calculation and is equal to the following sum

tmul = tcsa + tcla + t(1) + tlsum.

Here tcsa is the time needed to generate a set of partial products and to
form a two-row code of the product zk−1, it takes lk−1 + 2 steps, tcla is
the time for summation of the two integers ck−1 and sk−1 at the CLA,
tcla = log2 2pk−1 + 2 = lk−1 + 3, t(1) (four steps) is the time to load the
numbers in the array p3

j , and to calculate the sum (1), tlsum = tad is the
time required for the last modulo summation (2lk−1 + 4). As a result, the
algorithm calculates the modulo P product in the time 4lk−1 + 12. The
period of this algorithm is four steps.

3.4. The cellular algorithm architecture for the RNS division

The algorithm architecture is given in Figure 6. The modulo pi is the divisor.
The initial data are placed as follows. The table for the first approximation
of the quotient ẑj is stored in the array t1j . The table contains (pj − 1) 2′s

The cellular pipelined algorithm architecture . . . 79

x0 x1 xi xk−1

z0 z1 zi zk−1

{ẑ1}

Mp1

adder

?
t11

t21q2
1

q1
1

q3
1 ?

?

?
p1
1

{ẑk−1}

Mpk−1

adder

?

?

t1k−1

t2k−1q2
k−1

q1
k−1

q3
k−1 ?

?

?
p1

k−1

{ẑ0}

Mp0

adder

?

?

t10

t20q2
0

q1
0

�

q3
0 ?

?

?
p1
0

�

adder

q3
j

p2
j

?

?

p1
j

?

data bus

�

?? ?

q4
j

modp0 modp1 modpi modpk−1

adder
modpi

?

?

Figure 6. Cellular algorithm architecture for RNS division

complement numbers. The nullivization constant table Mpj is placed in the
array t2j . The quantity of the constant Mpj equals (pj − 1).

At the first step, the cellular algorithm chooses the values ẑj for all xj ,
j 6= i, from the tables t1j in parallel, and places them in the arrays p0

j . The
values obtained are remainders of the quotient, i.e., ẑj = zj for all j, j 6= i.

At the second step, a successive nullivization procedure is carried out
beginning with the 0-th remainder. The cellular algorithm chooses a nul-
livization constant M0

l = (m0
l0,m

0
l1, . . . ,m

0
l(k−1)) from the array t01 so, that

m0
l0 = z0, and places this constant into the data bus. The control arrays q1

j ,
q2
j accompany the fetch constants from the tables t1j and t2j , and accommo-

dation the nullivization constants into the data bus.
The values m0

lj are chosen in parallel for all pj , pj ∈ P, and transferred
to the arrays p2

j , accompanied by the arrays q3
j . Further, the algorithm

calculates the values g1
j = z0

j −m0
lj for all pj in the arrays p2

j . As a result,
the 0th remainder is equal to zero. The nulivization process is produced in
(k − 2) steps. In response to this process, all the jth remainders, j 6= i,
are set up into zero. The value zi = 〈0 − gk−2

i 〉pi is formed by modulo pi

subtraction in the array p3
i .

The algorithm carries out the modular division in the time

tdiv = tf + (k − 1)(2tf + tsub) + tsub,

80 V.P. Markova

where tf is the fetch time. Since tf � tsub, it may be omitted from the
formula. Then tdiv = (k− 1)tsub + tsub = 2klk−1 + 10k. For a small number
of moduli, the division time complexity unessentially exceeds in complexity
the multiplication algorithm (4lk−1 + 12). However, a period of the division
algorithm is more essential (pdiv = (k − 2)tsub) due to the communications
among intermediate results at every step of the nulivization process.

4. The cellular pipelined algorithm architecture for 1D
diffusion simulation using the residue number system

4.1. The RNS representation of 1D diffusion

It is known, that a finite difference representation of the 1D diffusion as a
result of using an explicit scheme of the time and the spatial discretization,
takes the following form

ut+1
i = ut

i +
1
d
(ut

i−1 + ut
i+1 − 2ut

i) = ut
i +

1
d
L(ut

i), (3)

where t = 0, 1, . . ., ut
i, i = 0, 1, . . . , N , is a value of the integer function u at

the nodes in 1D lattice, 1
d is a diffusion number.

To obtain an exact realization of division in scheme (3) by the RNS, two
strategies are used.

Representation of the diffusion number as fraction. Since the num-
ber 1

d is a fraction, by definition, the number d is represented as ratio between
the integers d = pj

d1
, pj ∈ P. Then expression (3) takes the following form

ut+1
i = ut

i +
d1L(ut

i)
pj

. (4)

Transfer of a remainder to the next step. Let t = 0, L(u0
i) mod

pj = r1
ij 6= 0. Then d1L(u0

i) =
⌊

L(u0
i)

pj

⌋
pj + r1

ij , where the remainder r1
ij

is transferred to the 1-st step and added to d1L(u1
i). According to this

strategy, expression (4) is rewritten as

ut+1
i = ut

i +
Lt

i

pj
, (5)

where Lt
i =

⌊
d1L(ut

i)+rt
ij

pj

⌋
pj , rt+1

ij = (d1L(ut
i) + rt

ij) mod pj , r0
ij = 0.

Representation (5) in the RNS is

ut+1
i = ut

i +
V t

i −Rt+1
i

pj
= ut

i +
V̂ t

i

pj
= ut

i + Dt
i , (6)

The cellular pipelined algorithm architecture . . . 81

where V t
i = (vt

i0, . . . ,v
t
ij , . . . ,v

t
i(k−1)) = d1L(ut

i) + Rt
i, Rt+1

i is the RNS
number of the residue vt

ij . The algorithm, realizing expression (6) is referred
to as the basic algorithm for the 1D diffusion simulation.

4.2. The cellular basic algorithm architecture for 1D diffusion
simulation

The basic algorithm calculates values ut+1
ij at the i-th node of a 1D lattice

at the t-th time step in parallel for all moduli and successively inside each
module. Figure 7 shows the cellular basic algorithm architecture for modulo
pj . (The control arrays are omitted here.)

mod pj

adder

mod pj

multiplier

mod pj

adder

mod pk−1

substraction

mod pj divisor

mod pj

adder

?
L(uij)

t

?

d1j

d1jL(uij)
t

〈vt
ij〉P

?

v̂t
i(k−1)

?

?

vt
ij

Dt
ij

-
ut+1

ij

?

CSA
array

??

p1
j

ut
(i−1)j , u

t
ij , u

t
(i+1)j

p2
j

p3
j

p6
j

p8
k−1

p10
j

p9
j

?

vt
i0

p4
j

�
�

�
�vt

ij = 0?

mod p0

substraction

v̂t
j0

?

p8
0 ?

�

vt
i0 vt

i(k−1)

vt
i(k−1)

-

?

yesno
?

?

? data bus

p5
j

p7
k−1p7

0

-

?

?

?

???

vt
i(k−1)vt

i0

.

.

6

Rt+1
i

Rt+1
i

Figure 7. Cellular basic algorithm architecture for 1D diffusion simulation

82 V.P. Markova

At the first step, the algorithm forms the value L(ut
ij) in two arrays: p1

j of
5×(lj+4)×2 and p2

j size. The first layer of the array p1
j stores the modulus pj

and 1 needed to calculate the value L(ut
ij). In the 0-th layer of the array p1

j ,
two-row code (cij , sij) of the sum (ut

i−1,j+ut
i+1,j−2ut

ij) is generated and then
transferred to modulo pj adder (the array p2

j) to calculate their sum. Then
the formed sum is multiplied by d1j in the array p3

j . At the third step of the
algorithm, the product dijL(uij)t and the remainder rt

ij obtained at (t− 1)-
st step are summed up in the array p4

j . If vt
ij = 0, then modulo pj division

is carried out in the array p9
j . Finally, the sum of the quotient Dt

ij and the
j-th remainder of the function ut

i is calculated in modulo pj adder (the array
p10

j). If vt
ij 6= 0, then vt

ij = rt+1
ij . The algorithm calculates the RNS number

of the remainder vt
ij , i.e., Rt+1

i = 〈vt
ij〉P = (rt+1

i0 , rt+1
i1 , . . . , vt

ij . . . , vt
ij︸ ︷︷ ︸

k−1−i

) in the
array p6

j . Here rt+1
im = vt

im − pm for all m < j.
Remainders of the number Rt+1

i are transferred to the arrays p4
j for

all pj for their use in the calculation of the values V t+1
i at the (j + 1)th

step. Furthermore, the number Rt+1
i is placed into the data bus to form

the number V̂ t
i in the array p8, where v̂t

im = vt
im − pm for all m 6= j. Once

the number V̂ t
i has been calculated, the modular division is performed in

the array p10
j . The basic algorithm architecture (Fig.7) is peculiar to the

cellular processor architecture intended for the 1D diffusion simulation.
The time complexity of the basic algorithm is defined by the following

sum
tbasic = tL(u) + tmul + 2tad + 2tsub + tdiv.

Here tL(u) is the time needed to obtain the modulo pj sum of L(uij)t =
(ut

i−1,j + ut
i+1,j − 2ut

ij). It takes 6 + tad = 2lk−1 + 12 steps. As a result, the
basic algorithm calculates the value ut+1

i in the time 2lk−1(k+9)+12k+62.
The period of the basic algorithm is equal to the period of the division
algorithm.

4.3. The cellular algorithm architecture for 1D diffusion
simulation

Let U0 = (u0
0, u

0
1, . . . , u

0
N−1) be a set of values of the integer function u at the

nodes in a 1D lattice. Let m be a number available for cellular processors
realized in the basic algorithm for the 1D diffusion simulation. Obviously, a
good time complexity estimation can be attained due to the following.

• Parallel implementation of a cellular algorithm using domain decom-
position.

• Reduction of the basic algorithm period.

The cellular pipelined algorithm architecture . . . 83

Parallel implementation of the cellular algorithm on a linear-connected
processors is straightforward: for m processors, the simulation domain is
split to m strips of equal size. Each processor stores this strip plus two
notes from the neighboring strips. The algorithm is carried out in all the
strips in parallel. Inside a strip, the algorithm is carried out sequentially
for all N

m − 1 triplets (ut
i−1, u

t
i, u

t
i+1). At the end of each time step, the data

in the overlapping nodes is updated by messages between the neighboring
processors.

Reduction of the basic algorithm period is associated with increasing the
number of devisers (D). This number is defined by the following relation:
pdiv = p̂difD, where p̂dif is a reduced period. As an example, let us take
k = 7 and p̂dif = 3pmul, where pmul is the period of the multiplication
algorithm (four steps), then D = l + 5. In this case, the initial data will
be loaded at the 12-th step. In response to a deep pipelining algorithm the
time complexity of one step of the algorithm is tbasic +12(N

m −2)+ tup steps,
where tup is the time for data exchange between the neighboring processors.
Parallel implementation of the cellular algorithm takes K(tbasic+12(N

m−2))+
(K − 1)tup steps, where K is the number of time steps.

5. Conclusion

In this paper, we propose the cellular algorithm architecture for the 1D
diffusion simulation. For this purpose, the cellular pipelined algorithm ar-
chitectures for computing the main RNS operation are proposed. The time
complexity algorithm is K(tbasic + 12(N

m − 2)) + (K − 1)tup steps, where N
is the number of notes in a 1D lattice, m is a number of strips. A good time
complexity estimation is attained due to the following features:

• Processing data in all the strips in parallel.

• Processing of the arithmetic operations in all moduli in parallel.

• Deep pipelining at both the initial data and the computation process
levels.

• Using the table look-up operation.

• Loading the initial data, transformation of intermediate results and
their moving in parallel.

References

[1] Markova V. Using the residue number arithmetic for simulation of diffusion //
Avtometria. – 2003. – Vol. 39, No. 3. – P. 60–71.

[2] Akyshskii I.J., Udizkii D.I. Computer Arithmetic in Residue Number System. –
Moscow: Soviet Radio, 1968.

84 V.P. Markova

[3] Torgashov V.A. Residue Number System and Computer. – Moscow: Soviet
Radio, 1973.

[4] Taylor F.J. Residue arithmetic: a tutorial with examples // IEEE Comput.
Mag. – 1984. – Vol. 17, No. 5. – P. 50–62.

[5] Achasova S.M., Bandman O.L., Markova V.P., Piskunov S.V. Parallel Substi-
tution Algorithm. – Singapore: World Scientific, 1994.

[6] Aho A., Hopcroft J., Ullman J. The Design and Analysis of Computer Algo-
rithms. – Moscow: Mir, 1979.

[7] Markova V. Cellular algorithm architecture for long integers multiplication //
NCC Bulletin. Series: Computer Science. – Novosibirsk: NCC Publisher, 1998. –
Issue 9. – P. 45–57.

