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Tsunami waves propagation
along the waveguides*

An.G. Marchuk, A.A. Shevchuk, V.V. Titov

In this paper, the process of tsunami wave propagation along the waveguide with
flat sloping sides is studied using the wave-ray method. When propagating along the
waveguide, a single tsunami wave transforms into the wave train. The expression
for the propagation velocities of the fastest and slowest signals is defined. The
tsunami waves behavior above the ocean bottom ridges which have different model
profiles is numerically investigated with the help of the finite difference method.
Results of numerical experiments show that the highest waves are detected above
the ridge with flat sloping sides.

Introduction

The qualitative theory of waveguides in a medium with a varying optical
density (the velocity of signals or waves in it) was developed, for example,
by L.M. Brekhovskikh [1]. Let us introduce, following this work, concept of
the waveguide as applied to the tsunami problem. Let in a two-dimensional
space the wave (disturbance) propagation velocity be constant and equal to
vg, and in the neighborhood of some straight line it monotonically decreases,
reaching a minimum value just on this line. This line (the axis of the waveg-
uide) with the neighborhood, where the wave propagation velocity is less,
than v, is named “the waveguide”. If a wave source is initially located on
the waveguide, some part of the wave energy will be trapped by it, and the
waves will propagate along the waveguide for a long distance (till its end).
In [1], the concept of the waveguide with the total reflecting boundary is
also given.

The waveguide with the linearly varying wave velocity is studied (it
means that the wave propagation velocity linearly increases when moving
away from an axis). The waveguides considered here look like the bottom
ridges with flat sloping sides.

As a source of waves on the mean water surface, a segment of the plane
wave is considered. The initial propagation direction of the wave is the
same as the waveguide axis. Then the segment of the wave front, which
was initially located above the waveguide is propagating along it. For wave-
guides of this type the quantitative theory of the wave propagating process
is presented.

*Supported by the Russian Foundation for Basic Research under Grant 02-05-64519.



80 An.G. Marchuk, A.A. Shevchuk, V.V. Titov

1. Investigation of waveguides using wave rays

Wave rays, which are widely used for the wave kinematics research, can be
determined as curves, orthogonally directed to the propagating wave front
every time moment. In other words, they are the trajectories of the wave
front line points. For example, in the area with constant depth all the rays
have the form of straight lines.

Let us consider a rectangular water area with a sloping bottom. In the
Cartesian coordinate system the depth is linearly increasing from zero on
the axis Oz (y = 0) by the formula H = ytga, where « is an inclination
angle of the bottom slope (Figure 1). If from a point (0,2C}) the wave ray
starts in parallel with Oz axis direction, it will look like a segment of the
cycloid of radius €1, and its trajectory can be described by equations [2]

z=Cj(t —sint —7), y=C1(1—cost), te (m,2n). (1)

The ray will reach the axis Oz at the point (z2,0), where z; = #C;. If
the plane of the bottom has the same declination, but a decrease the depth
stops on the line y = o, the considered ray after arriving at the point M;
at a distance yp from Oz axis, will be reflected from the line y = y,. After
reflection the wave ray will go to the point M, along the new cycloid with
the same radius (see Figure 1). The condition of reflection of a wave ray on
the line y = y, is caused by symmetry of the picture relative to the axis
y = yo which is true for symmetric waveguides.
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Figure 1. Trajectory of the wave ray above the bottom slope

Let us determine the length of a step of this truncated cycloid, and
also, the wave travel time along it. As length of a step of a full cycloid is
expressed as L = 2C, for the length of a step of a truncated cycloid we
have (see Figure 1)

L1 =T3 — &1 = L— 2(3:2 = :121). (2)

The value (z2 — 1) can easily be defined from the equation of a cycloid (1):

L, =27Cy, - 2C4 (a.rccds (1 - g—?) - sin(a.rccos( — g—i))) (3)
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The wave travel-time along this cycloid will be written down as follows

T:\Z/‘;_f_gc_;(vn-arccos( —-%91—)). (4)

Here a is the inclination angle of the bottom plane to horizon, C; is
a radius of a cycloid. If a maximum depth H, outside the waveguide and
minimum depth on a ridge H; are given, then

H, _H
Yo = tga’

Ztga’ l =2Cl — Yo, (5)
where [ is a half-width of the waveguide. If it is twice wider (I; = 20), but
the depth variation remains the same, the declination of the bottom tg 8
will be reduced to half the former value and will be tg 8 = (tg @)/2. Due to
the above-said, the radius of a cycloid appropriate to “extreme” rays, which
reach the edges of the waveguide, will be doubled, C; = 2C;. The value y,
will also increase (y2 = 2yp). The wave travel time from the axis up to the
edges of the waveguide along the new cycloid will be written as

T2=~\/%(w—arccos( —%)) =2T. (6)

The length of the cycloid step will be also twice increased. Therefore, the av-
erage velocity along the waveguide of the signals which propagate along the
“extreme” rays does not depend on the waveguide width and is determined
only by the difference of the depths Hy and H;.

Let us investigate the propagation velocity along the waveguide of dif-
ferent segments of the wave front depending on their initial distance from
the axis. In Figure 2, the traces of the wave rays, which are start at the
distances 2y; and y; away from the axis of the waveguide and the wave ray,
going along the axis, are shown.

Let I be a half-width of the waveguide, a — the angle of inclination of
the bottom planes, Hy - the depth outside the waveguide. The basic values
we need for the calculation are defined as
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Figure 2. Wave rays in the symmetric waveguide
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H,
H; = Hy—ltga, = —
1=Hi~ltge, m=g (M
where Hj is the depth above the ridge. The value C1 (aradius of the cycloid)
depends on the initial distance y; from the axis of the waveguide to the wave-
ray starting point
‘ o, =% + 4
L =5 ety
2
Using expressions (3) and (4) the ratio between the average wave velocity
along the waveguide and the value y; can be defined

W) _ [0 (w)?
2wCy (a.rccos( Cl) Cr ( 01) )
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where the values C; and y, are determined by the ratio (5). The velocity of
an appropriate wave motion along the waveguide depends on the value (&
(or yo) and it is as less, as closer the initial wave ray to the axis. Let us find
a velocity limit V', when the parameter tends to zero. Let Yo be equal to a
small value . Then, keeping in formula (8) the terms of the least order by

€, we obtain ]
V =1/29Ci tga, (9)

H,
Gr1= 2tg

0<y <Ll

v=Z= ®)

and due to the ratio

the value corresponds to disturbances propagation velocity along the axis
of the waveguide calculated by the Lagrange formula V = /gH;, which is
applied to the top of the ridge.

Thus, each waveguide (not only with flat bottom planes) has a specific
dispersion, which is discovered in expansion of the initial plane wave along
the waveguide during its propagation. Finally, the initial single wave will
transform into a “wave train”. This dispersion ability of each waveguide can
be measured by the value ¢ = Vipay/Vinin, where Vnax is the running velocity
of the fastest rays along the waveguide and Vi, is the running velocity of
the slowest wave ray, which coincides with the axis of waveguide.

Let us study the problem of wave energy focused by the waveguide.
Above a flat bottom the amplitude of a circle tsunami wave is decreasing due
to the cylindrical divergence proportional to R=1/2, where R is the distance
from a source. Coming into the waveguide, the wave does not decrease any
more due to the cylindrical divergence. However from this moment the wave
energy dissipates by the stretching the initially single wave along the axis of
waveguide, which also causes the reduction of an amplitude. If the degree
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of the amplitude loss due to the wave dispersion along the waveguide is less
than a possible amplitude loss due to the cylindrical stretching of a front,
then in this case the waveguide has focusing properties. Mathematically, it
can be written as follows: -

(Vinax — Viaia)T < %’ER (10)
Here T is the propagation time of waveguide waves, K is the value indicat-
ing, which part of circle front of an-incident wave is iii the waveguide, R
is the distance from the wave source up to the position of the front in the
waveguide after the time period T'. Thus, not every waveguide causes the
focusing effect. The greatest focusing ability is intrinsic of the broad waveg-
uides with a small difference in depths (Ho — H;). A favorable situation for
focusing arises in the case, when a tsunami waves source is localized above
the waveguide.

Let us make some remarks about asymmetric waveguides, where the
declination of a flat bottom is various for different sides from the ridge. Let
the declination of one side be 2 times greater, than the other. The depth
outside the waveguide is equal to Hy and on the ridge (axis) — H;. Let us
consider the trajectories of “extreme” rays, which reach the edges of the
waveguide. At the initial moment they are at the distances y; and y; = 2y,
on both sides from the axis of the waveguide (Figure 3).

According to the previously-stated, the radius of cycloids, along which
wave rays propagate above the most flat side, is twice greater, than the
radius of the both considered rays, when they propagate above the other
side of greater inclination. In Figure 3 it is seen, that both rays before they
reach the cross-section & = x4 have passed the identical-length paths which
consist of two cycloid pieces each. Thus, at the cross-section & = z4 this
two rays arrive simultaneously. The cross-point M of these “extreme” rays
is not located on the Oz axis of the waveguide.

In spite of the point M is a cross-point of wave rays (caustic) a noticeable
increase of the wave amplitude in it is not detected, because the rays come to
this point nonsimultaneously. Let us show this. As y; = 2y3, then z3 = 22;.
The wave travel-time along the “large” cycloid is twice more, than along

Figure 3. Trajectories of “extreme” rays in the asymmetric waveguide
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“small” (time Tp). Taking into account the fact that the travel-time along
the curve PC is equal to 2T}, travel-time along the curve PA will be less than
Ty, because the length of PA is less than the length of AM. Furthermore,
on PA the depths are greater. In addition, the wave travel-time along the
curve AM will be less, than along BM, because the length of AM is less
than the length of BM, and the curve AM is located at a greater depth.
Thus, the wave reaches the point M along the curve PM much earlier, than
along the curve QM. Let us estimate the propagation velocity of “extreme”
rays along the waveguide. To the cross-section = = x4 the “extreme” rays
will come simultaneously, their travel-time being 3Ty. Therefore the average
wave velocity along the waveguide is expressed as x;/To, that is equal to
Vinax for the symmetric waveguides with the same depths on the ridge and
outside of the waveguide. Therefore the statement about independence of
the wave propagation velocity along the waveguide of its width is correct
also for asymmetric waveguides.

Now let us consider the ratio of tsunami amplitudes in the wave train
that arises as a result of the above mentioned dispersion. Using relation (8),
we have found some values of the propagation velocity V along the ridge for
wave rays which are disposed different distances from the waveguide axis.
The obtained values of the propagation velocity V show that the relation of
V from y; is rather close to linear, but for the rays initially disposed closer
to the waveguide edge, the rate of varying V depending on the distance
11 is lower, than for the rays initially located closer to the waveguide axis.
Thus, the dispersion of the waveguide impact on the slowly moving part of
a “wave train” is somewhat stronger and, consequently, the leading waves
from a dispersing signal have a slightly greater amplitude, than in the “tail”
of the same “wave train”.

Let us consider the case when at the entrance of the waveguide perpen-
dicular to its axis there are not one, but two consecutive waves. Let between
positive maxima of these waves the initial distance be equal to 2A. Then
the waves in the waveguide will be transformed into “wave trains”. The
“leading” part of the second wave can reach the “tail” of the first wave, thus
causing amplification of the wave amplitude above the waveguide axis. It is
possible to find the conditions to realize the given ability. Let the initial dis-
tance between wave maxima in the waveguide be equal to 2\ and maximum
and minimum wave rays propagating velocities of the considered waveguide
be equal to Vipay and Viin. The distance between the “tail” of the first wave
and the “leading” part of the second wave will be expressed as

I = ViginT + 2\ — VinaxT, (11)

where T'is the propagation time. Therefore, at the time Ty, when 1 tends to
zero the dispersed signals from both waves will be imposed on each other,
which will cause the amplification of oscillations near the waveguide axis at
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- the distance TyVpin from its beginning. Thus, the maximum fluctuation of
levels in the waveguide are watched on a distance T Vipn from the beginning
of the waveguide. The time period T} is determined by the characteristics

of the waveguide ‘
T L (12)
§ = B
Vmax — min
If the initial wave signals, propagating in the waveguide, have negative parts,
then the picture of interaction of such waveguide waves will be more com-
plicated.

2. Numerical experiments

For the confirmation of a theoretical description of the behavior of tsunami
waves in the waveguide of the indicated type, the numerical modeling of
tsunami waves propagation above underwater ridge, having a model relief
(which is shown in Figure 4) was carried out.

Figure 4. A bottom relief simulating underwater mountain ridge

The numerical algorithm based on variables splitting technique [3] was
used for tsunami propagation modeling. Two-dimensional shallow water
equations were used as the basic equations for the presented numerical
method:

Hi+ (HU), + (HV)y =0,

U +UU, + VU, + gD, =0, (13)
Vi + UV, +VV, + gD, =0,

where H = n + D is the total water depth; n is the vertical displacement
of the water surface; U, V are velocities along X, Y directions; g is the
acceleration of gravity. These equations neglect the wave dispersion effects,
which can affect the tsunami wave only during it trans-oceanic propagation.
Thus this model can be used for simulation of wave propagation along the
waveguides with limited length (2-3 thousand km).
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A finite-difference algorithm based on the splitting method has been
developed. In order to solve shallow water equations, the splitting method
reduces the numerical solving of the equations with two space variables to
solving of two one-dimensional equations. This makes it possible to use the
effective finite-difference scheme, developed for one-dimensional problem.
Moreover, this method permits to set the boundary conditions for a finite-
difference boundary value problem using the characteristjc line method. The
slitting method, which is used for shallow wave equations (13), comprises the
consecutive numerical solution of two one-dimensional systems of equations:

Vi + UV, =0, Vi+VVy +gHy = gDy,
H;+ (UH), =0; H;+ (VH), =0.

If we have two stable finite difference schemes, which approximate each
of one-dimensional systems, the whole algorithm is stable and approximates
the initial two-dimensional equations (13). All the eigenvalues of (14) are
real and different and the system can be written down as

Vt’ + AlVa: =0, B+ APy =0, Qi+ A3Q:=0, (15)

where \; = U, Az;3 = U++/gH are the eigenvalues, V = V', P = U+2+/gH,
Q = U — 2/gH are the Riemannian invariants. The characteristic line
method has been used to set the boundary conditions for this system. At
the open sea boundary the conditions

V' =0, R=+2gD, where R=U +2/gH (i.e. R= P or Q),
are used. At the land boundary the conditions of perfect reflection are used:
V=0 P=-Q.
For numerical solution of (15) the following finite difference scheme is used:
Wit - wr

Wh, —wp AWP, — W) — AWP — W)

A =1_
At + 2Azx AAt 2Az2

_ Fiy —Fiy Fipy - 2F; + F;_,

T 2Az e 2Az2 ' (16)
where

A 0 0 . V! . 0
A=10 X 0], W= P), F”-—"(QD,, .
0 0 As Q gD

The criterion of stability of the scheme is At < Az//gH )
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Figure 5. Water surface above the waveguide at various time moments

The computational area was 720 km x 400 km (720 x 400 grid points)
and the width of the waveguide — 200 km. The depth on the axis of the
waveguide was equal to 500 m, and outside the waveguide — 1000 m. The
tsunami source has the form of a long narrow rectangle (20 x 200 km) with
the profile, determined by the expression

. [(im = ’
17—2+28m(10 2), i=1,...,20. (17)

Figure 5 shows the ocean surface at different moments of the wave prop-
agation process along the waveguide. The source (Figure 5a) is forming the
2 meter high tsunami wave. As can be seen from the figures, the initial wave
is expanded along the axis of the waveguide and transformed into the “wave
train” with a narrow front, that completely confirms the theoretical results.
The comparison of the waves amplitudes in the waveguide and above the
flat bottom shows a significant amplitude growth above the axis (199 cm as
compared to 85 cm without waveguide).

A number of different ridge profiles were used in numerical computations.
The ridge profiles were determined by the formula

H(y) = Hy + (Ho - Hy) 2 - ksin("Y), (18)
Yo Yo
where y is the distance from the axis, H; is the water depth on the axis, Hy
is the depth outside the waveguide and k is the parameter, which is varying
from the value —150 up to +150. When k = 0, the sides are flat. The ridge
profiles for k = —100, k = +50, k = +150 (from top to bottom of the figure)
are shown in Figure 6.
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Figure 6. Profiles of the bottom ridge for different values of parameter k
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Figure 7. Bottom relief in numerical experiment of tsunami -
propagation along the Izu-Shoto island chain
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Figure 8. Water surface during tsunami wave propagation above the Izu-Shoto
bottom ridge

The analysis of the results of numerical computations enables us to say,
that the most effective waveguide is the ore with flat sides (the case of k = 0).
It produces the greatest wave amplitude during the tsunami propagation
with the initial height of 2 meters.

Numerical modeling of tsunami propagation along the real Pacific wave-
guide was carried out with the model tsunami source, which produces the
initial 2 meters high tsunami wave. The computational area includes the
Izu-Shoto island chain southward of Japan (Figure 7).

In Figure 8, the ocean surface during the tsunami wave propagation along
the Izu-Shoto island chain is presented. The results of computations show
a significant tsunami amplitude growth near the axis of this waveguide.
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