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The variation approach to travel-time calculations
on regular grids*

An.G. Marchuk

Abstract. Application of the variation method to simulate tsunami wave rays and
to estimate the wave travel times corresponding is studied. In some cases, the wave
ray determined by this method, connecting two points of the water area, may not
present the global extreme, which provides the shortest tsunami travel time. In this
way, for the correct calculation of the wave travel time from one point to another a
broken line passing through the nodes of the calculation grid, which is built by the
method based on the Huygens principle must be taken as an initial approximation.
The variation method described can be applied to optimize the grid method for the
wave travel time determination.

One of the possible methods for the wave ray construction from a source
point to a receiver is based on a variation approach. Briefly, the essence of
the method is as follows. The initial approximation of the wave ray (usually
a straight line or geodesic line connecting a source and a receiver) is split
to short segments by intermediate points, which then are moving in the
orthogonal to this line direction in order to minimize the tsunami travel
time along this broken line. The positions of these intermediate points are
varying until a minimum sum of the wave travel times along all the segments
composing the wave ray is reached. Probably, the first who used such an
approach to calculate the tsunami arrival time was Braddock [1]. Figure 1
taken from [1] shows the initial ray approximation being the arc of a big
circle which is the shortest route between two points on the Globe.

Let us test this method on the known exact solutions for the wave ray
obtained by the author [2, 3]. Let the coastline in a two-dimensional area
be presented by the line y = 0, and the depth D(z,y) linearly depends on
the distance y to the shore

D(z,y) =0.1y.

Let us consider two points (a source and a receiver) located just near the
coastline 1 m off it. It is necessary to determine the trajectory of the wave
ray along which the disturbance (wave) propagates from the source (point A)
to the receiver (point B) in the shortest time. We take a segment of the

*This work was carried out under state contract with ICMMG SB RAS (0315-2019-
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Figure 1. The wave-ray route (dashed line) connecting the tsunami source situated
near Aleutian Islands and the Sitka Island built by method of variations [1]. The
black line presents the geodetic trace being the shortest route on the spherical Globe

straight line AB as the initial approximation of the wave ray, along which
101 points (including points A and B) are posed within equal space intervals
between them. The depth between the neighboring intermediate points is
assumed to change linearly. Thus, according to [2], the approximate wave
travel time along the segment connecting points F' and H is expressed by

the formula
2L

T = ,
V9DF ++gDg

where D and Dy are depth values at the points points F' and H, L is the
distance between them, and g is the acceleration of the gravity.

In order to find the wave ray trajectory, we will move one by one each of
the intermediate points (starting from the closest to the point A) in parallel
to the ordinate axis. In this case, the point can move by 1 m up (in the
direction of increasing the ordinate) or down. After each variation, we find
out whether the wave travel time along the new trajectory decreased as com-
pared to the trajectory before this variation. If it decreases, then we fix a
new travel time and this position of the point and proceed to vary the next
one. After passing through all intermediate points, the variation procedure
is repeated again. In this case, the direction of a passage can be inverse to the
previous one (starting at the intermediate point closest to B). Here again,
the value of the each point vertical shift is either plus or minus 1 m. This
process continues until the wave travel time along the constructed ray stops
decreasing after another pass along the entire ray. Figure 2 shows the com-
parison of the wave ray trajectory constructed by this method (painted red)
with the exact solution, which is a segment of a cycloid [2] (painted black).

(1)
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Figure 2. Comparison of exact solution with the wave-ray routes obtained by
the method of variation: red — the final ray initiated by the straight segment AB;
black — the exact solution (a segment of the cycloid); and green — the final wave
ray trajectory initiated by the broken line AMB

In some cases, the wave ray presents only a local extreme route providing
only a local minimum of propagation time along this trajectory. Publica-
tion [4] gives an example when due to the incorrectly chosen initial approx-
imation, it is not possible using the described algorithm to build a wave ray
that would provide a global minimum of the wave travel time between two
points. Let us present this example. In the coastal area there is a shelf with
a constant depth of Dy. The shelf at a distance yg off the shore is followed
by the bottom slope. If we need to build a wave ray between the two points
A and B situated on the shelf, then, taking a straight segment AB as the
initial approximation of the ray, the algorithm described will result in the
same segment of the straight line AB connecting these points. According
to [2], for a sufficiently large distance between the source and the receiver,
there are two solutions for this boundary value problem. The first wave
ray will be a straight segment AB. And the second ray is represented by a
smooth curve combined of a segment of the cycloid (above the sloping bot-
tom) and two segments of the straight line going from the points A and B
to the edge of the shelf (Figure 3).

Therefore, in order to avoid such a situation when determining a wave
ray above the bottom slope, the broken line AMB shown in Figure 2 was also
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taken as initial approximation of the

wave ray. In both cases of ini-
tial ray approximation (segment AB
and broken line AMB), the resulting

% broken lines providing a minimum
tsunami travel time are quite close
to an exact solution. The difference
Figure 3. A non-unique solution of 15 limited by several tens of meters

the edge problem for the wave ray in and is caused by the too large in-

the case of the shelf of constant depth terval between positions of interme-
diate points. The wave travel time

along all the three routes differs by only 1.5 seconds. The shapes of the
obtained wave rays together with the exact solution are given in Figure 2.
Here, the exact solution is located between the wave rays (red and green
lines) obtained by the method described, when the initial approximation
was the segment of the straight line between the source and the receiver (red
line) and the broken line AMB (green line). The lower wave ray (colored
red) practically merges with the arc of the cycloid, representing the exact
solution.

Shore

Let us consider another test. The task remains the same. It is necessary
to determine the wave ray between the two points A and B located 100,000 m
away from each other, and one meter off the shoreline. This case differs
from the previous test by the depth distribution in the coastal area. Here
the bottom has the parabolic topography where the depth increases by the
formula

D(z,y) = 10"%?,

where y is the offshore distance. In this test, the initial approximation of the
ray trajectory was a straight segment connecting both points. As is shown
in [3], the exact solution for the wave ray trajectory with such a bottom
topography will be the arc of a circle which is also presented in Figure 4.

Figure 4 shows, that the position of both lines is almost the same. At the
same time, the difference between the calculated wave travel time and the ex-
act solution is approximately 20 seconds. This can be explained by errors in
estimating the wave travel time between the neighboring intermediate points
above the parabolic bottom by the formula (1). Increasing the number of
intermediate points (with decreasing the space intervals between them) will
improve precision of the travel-time estimation.

The variation method presented can be used for the wave ray determi-
nation between two points of the water area, but it should be taken into
account that this will be a local extreme, providing a minimum among the
routs close to the initial approximation of the ray trajectory. In order to
find the ray that give the global travel-time minimum it is necessary to con-
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Figure 4. A comparison of the exact solution (painted black) with the wave ray
constructed by the variation method (painted red) above the parabolic bottom
topography

struct the approximate wave ray by some rough method (for example, the
one described in [5]), then the method described here can clarify its position,
ensuring that this will be the shortest (with respect to time) route for the
tsunami propagation among all possible ones.

As an example, Figure 5 presents the wave rays that were built by the
method based on the Huygens principle [5] which can help to roughly deter-
mine the wave rays in the grid computational domains. This figure presents
the constructed wave rays, which connect the center of the tsunami source

Figure 5. The bottom relief and tsunami wave rays in the Eastern Indian Ocean
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of 26.12.2004 with some other points in the Indian Ocean. However, the
wave rays constructed by this method are not smooth lines, but are the bro-
ken ones composed of segments whose spatial direction has only 16 possible
variations [5].

These trajectories can be considered to be the first approximation of real
wave rays. For a better accuracy, the trajectory refinement procedure based
on the variation position of intermediate points can be proposed. After the
end of calculation, each of the grid point through which the wave ray passes
(the first approximation) moves along the grid lines in order to find a new
position of the point at which the travel time along the changed broken line
will be minimal. Such a procedure we do sequentially for each of the grid
point through which the first approximation of the wave ray passes. As a
result, the ray trajectory becomes smoother, since it no longer necessarily
passes through the nodes of the computation grid.

We describe this optimization procedure using as an example the wave
ray obtained by method [5]. Let the broken line SABCD be the wave ray
which provides minimum travel time between the grid-points S and D (Fig-
ure 6). In order to optimize the wave ray trajectory, we move the interme-
diate point A along the lines of the rectangular calculation grid in all the
four directions (up, down, right, left) with a small step (approximately 1/10
of the mesh size). For each new position of the intermediate point 4; we
calculate the propagation time of the wave along the broken line. The depth
along segments SA; and A1 B is assumed to change linearly. So the wave
travel time along them is still determined by the formula (1). In order to
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Figure 6. The scheme of the algorithm for optimizing the wave ray path
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reach the better travel-time optimizing the intermediate point A; can be
posed anywhere inside the mesh of computational grid. But this implies ad-
ditional problems on realization and significant increment of the computer
processing time. We are looking for the optimal location of the point A;
at which the travel time along route S4B is minimized. Then we fix the
point A; and repeat the procedure with the next segment of the ray A; BC.
Now we move the point B, and so on along the whole ray to the point D.
Then we have to repeat the procedure in the same or in the reverse direc-
tion (from the point D to the point S). If a maximum accuracy is required,
then such iterations (passes along the entire ray) must be carried out un-
til the total propagation time cannot be reduced by shifting intermediate
points. The practice shows that two passes along the wave ray are sufficient
to achieve the accuracy desired. As a result, we get a wave ray that no
longer necessarily passes through the nodes of the original calculation grid.

As an example, Figure 7 shows the wave ray above the parabolic bottom
before carrying out the optimization procedure (left) and after it (right).
Here, the depth increases proportional to the square of the distance from the
left boundary of the computational domain. The shape of the “optimized”
ray is well correlated with the exact solution, which has the appearance of
an arc of a circle.

A similar procedure in the 70s of the last century was proposed and
implemented by Braddock [1]. He used such an approach without initial
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Figure 7. Comparison of the wave ray shapes above parabolic bottom before (left)
and after optimization (right)



30 An.G. Marchuk

calculation grid, and as the first approximation of the wave ray trajectory,
the arc of a large circle was used (the shortest distance between two points
on the surface of the Globe in spherical coordinates). Then the ray route
was split to segments whose edges position was moved in orthogonal to the
ray direction. The main disadvantage of this approach is that a trajectory
obtained gives a local travel time minimum, which is not always the fastest
route for tsunami propagation.

This method makes it possible to improve the precision of the travel-
time estimates in nodes of a computational grid. The variation approach
described can be used in the course of calculation the tsunami arrival times
to the grid points using methods based on the Huygens principle. The
scheme of such a procedure is shown in Figure 8. The entire calculation
stencil used for the arrival time estimation to the grid point A is shown in
the bottom-left part of this drawing. It is necessary to find the wave arrival
time at point A, using the tsunami arrival time at point C. As a result of
the calculations, it was found out that the wave coming from the grid point
B arrives at the grid point C' in the earliest time as compared to the other
neighboring to B points. Further, by varying the position of the point C1,
we are looking for such its position, which would minimize the wave travel
time along the broken line BC'1 A. This value added to the arrival time at
the point B for finding the wave arrival time at the point A. And so on for
each grid-point of the computational domain.

Figure 8. A scheme of the travel-time correction algorithm

The most rigorous test for tsunami gridded kinematic methods is the
calculation of tsunami isochrones from a round (point) source in an area with
a constant depth. A conventional algorithm with a sixteen-point template [5]
gives as the result the tsunami isochrones have the shape of polygons instead
of circles (Figure 9a). Here the size of the gridded computational domain is
1000 x 1000 nodes. The center of the rounded source is located in the central
grid-point of the domain. The spatial grid step is equal to 1000 m in both
directions. The depth is equal to 1000 m at all the grid points. Figure 9
shows the tsunami front positions in the range from 0 up to 5,000 s with the
interval of 250 s.
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Figure 9. A tsunami isochrones as a result of testing the kinematic method
for gridded data in the area of the uniform depth. The results of non-optimized
method (a) and optimized one (b)

Using the described optimization procedure one can significantly cor-
rect a map of tsunami isochrones. The travel-time isolines, built according
to the results of the calculation by the optimized method (Figure 9b), are
much closer in the shape to the circles than the isochrones in the course
of “non-optimized” calculation (Figure 9a). At the same time, the differ-
ence between the travel times obtained by the “optimized” and the “non-
optimized” methods may at some points exceed one minute per each hour
of tsunami propagation.

Conclusion

The variation method for determining the tsunami wave ray between two
points of the water area can give a local extreme route which sometimes does
not match the global extremal providing the shortest tsunami travel time
along all possible trajectories. In order to build the global extreme wave tra-
jectory by the variations method we need to take a rough solution obtained
by a non-optimized method [5] as first approximation of a wave ray. The
procedure of the trace variation can be implemented for the method based
on the Huygens principle for improving precision of its travel-time estimates.
The implementation of the procedure for travel-time optimization into the
method [5] increases the processing time just slightly, because arithmetic
calculation is the minor part of an algorithm.
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