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The fast method for a rough tsunami
amplitude estimation∗

An.G. Marchuk, G.S. Vasiliev

Abstract. The method for estimating a tsunami height using the wave front
kinematics computation has been developed and tested. This method is based
on an orthogonal advance of computational points located along a moving tsunami
wave front line. Precise algorithms for determining these points movement direction
and an addition of new ones have been proposed. This method was tested in
an area with a constant depth. Then in the areas with a parabolic and sloping
bottom topography the obtained result of wave front propagation was compared to
exact analytical solutions, which are delivered to such depth models. The method
proposed makes possible to compute not only tsunami travel times but wave rays
as well. Tsunami amplitudes can be estimated by the wave-ray divergence and a
change in depth along the wave route. The wave amplitude estimation was tested
against the results of the shallow-water numerical modeling of tsunami propagation
using the MOST software. A difference in results between the two methods on the
model (slope-like) bathymetry does not exceed a few percent. The advantage of
the method proposed is its rapidness and low computer costs.

The tsunami wave characteristics such as the length-to-depth ratio can
be considered to be long waves. The propagation process of this type of
waves can be correctly described by a system of differential shallow-water
equations. This has been checked by practice again and again. In the one-
dimensional case without friction and Coriolis power, the linearized shallow-
water equations can be written down as

∂u

∂t
+ g

∂η

∂x
= 0, (1)

∂η

∂t
+
∂(Du)

∂x
= 0. (2)

Here u is the horizontal flow velocity, η is the water surface displacement
above the mean water level, g is the gravity acceleration, and D is depth.
From the shallow-water equation it follows that the tsunami propagation
velocity does not depend on its length and is expressed by the so-called
Lagrange formula [1]
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c =
√
g(D + η). (3)

This formula plays the key role for the long-wave (tsunami) kinematics.
Here it is necessary to note that a tsunami front and a crest are propagating
with different velocities and the wave crest is step-by-step approaching the
front. A tsunami wave will break when its crest reaches the wave front.
When a tsunami wave propagates in deep water, this effect (the amplitude
nonlinearity) is difficult to detect even when passing the whole Pacific Ocean.
However a wave can break after a long cruise along a shallow shelf or when
tsunami is approaching the coast. Further, the wave propagation velocity
will be mentioned as the wave front propagation velocity which, according to
(3), does not depend on the wave parameters but only on the water depth:

c =
√
gD. (4)

This fact makes possible to obtain in advance a lot of peculiarities of the
behavior of wave above the uneven bottom.

Properties of the shallow-water differential equations can help in obtain-
ing some wave parameters estimations which can be used for a rough tsunami
height determination. In the long-wave horizontal flow the velocity is con-
stant at all depth levels from surface to bottom. We, also, take into account
the fact that in sufficiently deep water (exceeding 100 m) the tsunami wave
height usually does not exceed 2–3 m. This means that the water depth is
much greater than the wave amplitude. First, let us derive an approximate
formula for the horizontal flow velocity when η meters high tsunami wave
propagates in D meters deep ocean. This formula can be obtained directly
from equations (1), (2) and Lagrange formula (4). Let a wave be a harmonic
function

η = a cos(kx− bt), (5)

which describes a wave of the amplitude a propagating along the axis OX
with the velocity c = b/k. Placing the expression for wave amplitude (5)
into equation (1) we have

∂u

∂t
= gka sin(kx− bt). (6)

Taking integrals with respect to the time of the both parts of equation
(6) we can determine how the horizontal flow velocity depends on the wave
amplitude and water depth

u =

∫
−gk
b
a sin(kx− bt) d(kx− bt) =

g

c
a cos(kx− bt)

=
g√
gD

η = η

√
g

D
. (7)
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Thus in a harmonic wave of the type of (5) the water flow velocity is
determined by formula (7). Due to linearity of the tsunami propagation
process any wave can be presented as superposition of waves with various
frequencies. Because of this, formula (7) is valid for any long wave being a
solution to the system of linear shallow-water differential equations (1), (2).
For quasilinear shallow-water equations the velocities of a wave front and a
wave crest are different (3). So, the formula for the horizontal flow velocity
in propagating tsunami wave will be as follows:

u = η

√
g

D + η
, (8)

where η is the surface elevation, D is the depth and g is the acceleration of
the gravity.

Now let us express the kinetic energy of propagating one-dimensional
long wave with allowance for (8)

EK =

L∫
0

ρu2

2
(D + η) dx =

L∫
0

ρη2

2

g

(D + η)
(D + η) dx =

L∫
0

ρη2g

2
dx. (9)

Here L is a wave length and ρ is the fluid density. Let us also write down
an expression for the wave potential energy assuming that potential energy
of quiet water is equal to zero:

EP =

L∫
0

ρgη2

2
dx. (10)

The comparison of functions to be integrated in (9) and (10) shows their
full identity. This means that in any length segment of a propagating wave
the kinetic energy is equal to the potential one.

Using (7) it is possible to find an approximate formula for the one-
dimensional wave height when it propagates above the uneven bottom. Let
a one-dimensional wave have the profile η1(x) (x = 0, L1) when it propagates
in the ocean locality where depth is equal to D1. Then this wave arrived at
the depth D2. Its length has been changed as follows:

L2 = L1

√
gD2√
gD1

. (11)

This follows from the stability of the one-dim wave period through the whole
propagation process and the Lagrange formula (4). Let the new wave profile
be described by the function η2(y) (y = 0, L2). Due to the whole energy
(including the kinetic energy) conservation in a propagating wave, we can
write down the integral equality of the kinetic energy for the two different
depth values D1 and D2, which are approximately equal to the water layer
thickness D1 + η1 and D2 + η2:
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L1∫
0

ρ(v1(x))2

2
D1 dx ≈

L2∫
0

ρ(v2(y))2

2
D2 dy. (12)

Here we made use of the constancy of the horizontal flow velocity from
bottom to surface in a propagating tsunami wave. If both parts of equation
(12) are to be integrated along the wave period which is constant along the
whole propagation process, then (12) will be transformed to

T∫
0

ρ(v1(t))
2

2
D1 d(t

√
gD1) =

T∫
0

ρ(v2(t))
2

2
D2 d(t

√
gD2).

Taking into account the horizontal flow velocity dependence on the am-
plitude and depth (7), the following equation can be written down:

T∫
0

ρη21(t)
√
g/D1)

2

2
D1

√
gD1 dt =

T∫
0

ρη22(t)(
√
g/D2)

2

2
D2

√
gD2 dt. (13)

For a sufficiently deep ocean (D > 200 m), the wave propagation process
is quasilinear. So, as was noticed earlier, integral equation (13) turns into
the approximate equality of expressions under the integral sign. Then after
a certain simplification we have

η21(x)√
D2
≈ η22(x)√

D1
. (14)

The final formula for the tsunami amplitude can be written as

η2(x) ≈ η1(x) 4

√
D1

D2
. (15)

Thus, during one-dimensional tsunami propagation from a deep ocean to a
shallow shelf its amplitude will grow up to the fourth root of the initial and
destination depth ratio (formula (15)). If a tsunami wave is not flat, then
in addition to the depth-change factor the wave amplitude will also change
due to its refraction (transformation of a wave-front line).

Let us consider a simple case when a round-shaped wave propagates
in the area with a constant depth. According to the Lagrange formula
(4) the wave-front line is a circle of a constantly increasing radius, but the
wavelength remains constant. Let us once again use the energy conservation
law in order to estimate the wave height decreasing rate. If at one instant
of time a radius of the wave-front line is equal to R1 and later it becomes
to be equal to R2, then the length of the circle-shaped wave fronts will be
equal to L1 = 2πR1 and L2 = 2πR2. The tsunami wave parameters are the
same along the whole front line. So, the constancy of the total potential
energy of a wave can be written as
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EP =

L1∫
0

λ1∫
0

ρgη21
2

dλ dl =

λ1∫
0

ρgη21
2

L1 dλ

=

L2∫
0

λ1∫
0

ρgη22
2

dλ dl =

λ1∫
0

ρgη21
2

L2 dλ. (16)

Here λ1 is the wave length which is constant during the whole propagation
process. In the linear (quasilinear) case, the integral equality (16) means
the equality of sub-integral functions

ρgη21
2

2πR1 =
ρgη22

2
2πR2, η2 = η1

√
R1

R2
. (17)

Therefore, due to the cylindrical divergence the wave height is decreasing
inversely-proportional to the square root of the circle-shaped front radius
(formula (17)).

In the general case, the perturbation kinematics in various media is de-
scribed by the eikonal equation. In the two-dimensional space it can be
written as (∂f

∂x

)2
+
(∂f
∂y

)2
=

1

v2(x, y)
, (18)

where v(x, y) gives the velocity distribution in a medium. If the function
f(x, y) is a solution of the eikonal equation (18), then the wave-front location
at the time instant T is described by the equation f(x, y) = T , and the
equation f(x, y) = 0 gives the initial location of perturbation sources or the
initial wave front position (the tsunami source boundary). For example, let
the solution function be of the form f(x, y) = x2 + y2.

In this case, the equation f(x, y) = 0 sets a source in the beginning of
the origin of coordinates (x = 0, y = 0). If inside the circle of radius R with
the center at a point (0, 0) the propagation velocity is constant and equal
to V0, then after the time period T = R/V0 the wave front that initially
consists of one point will become a circle of radius R.

In the paper [2], where properties of the eikonal equation are studied,
it is shown that for any propagation velocity distribution in a medium all
the points on a wave front are moving in the orthogonal direction to the
frontal line. The velocity is determined as a property of a medium. As
far as tsunami waves are concerned, their propagation velocity is dependent
only on a depth and is determined by Lagrange formula (4). The definition
of a wave ray as a line, which is always orthogonal to the wave frontal line,
is also given [2]. These properties of a wave front and a ray are the basis
for the numerical method of the step-by-step wave frontal line advancement
that will now be described.
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Let us consider the rectangular computational domain where the wave
propagation velocity c(x, y) is known at any point. In the case of tsunami
modeling this velocity can be obtained from a depth value using formula (4).
Let also set the initial wave-front being a curve somewhere in the computa-
tional domain. As a rule, these curves are closed and convex. For example
it can be a circle or an ellipse. Its smoothness is not required because
in the numerical implementation the initial wave front is presented by a
limited number of computational points located along this curve. We will
assume that the area bounded by this curve completely consists of pertur-
bation sources. Due to this fact a tsunami wave must propagate in the
off-normal direction to the initial front line. Before carrying out computa-
tions, it is necessary to set a time step which determines a time difference
between every computed location of the wave frontal line. It is obvious that
a smaller time step will give us a better approximation accuracy of an actual
wave-front.

Thus, we have a limited number of computational points (xi, yi) (i =
1, . . . , N) which are located along the closed initial wave frontal line. The
point (xN , yN ) is the neighboring point to (x1, y1). In order to obtain reliable
results of modeling it is better a time step be taken inversely-proportional
to a maximum of a propagation velocity gradient in the whole domain. We
need to determine the next position of all the wave-front computational
points (xi, yi) (i = 1, . . . , N) after one time step. First, it is necessary to
determine the moving direction for all these points. This direction must be
orthogonal to the wave-front line. Instead a smooth curve we have a bro-
ken line coming through N computational points (xi, yi). In this case, the
orthogonal direction vector can be built by various ways. In the numerical
implementation of this method the movement direction for the point (xi, yi)
is determined as the outer-normal to the circle which passes the three com-
putational points (xi−1, yi−1), (xi, yi) and (xi+1, yi+1). So if we will move
the point (xi, yi) in this direction within the distance c(xi, ji) ·∆t, then this
location will present the new position of the point with the index equal to
i at the time instant t = ∆t. If a wave-front is a closed line then for the
computational points with indices 1 and N one of the neighboring points
must be (xN , yN ) or (x1, y1) respectively. When all the computational points
move, we will build the wave-front location at the time instant t = ∆t. If we
repeat this procedure as many times as is necessary for a tsunami to reach
the computational domain boundaries, the kinematic picture of the wave
propagation (tsunami isochrones) will be built. The source was bounded by
the initial wave-front line. If the initial front is not a closed line, then the
direction of the edge points movement is determined as being orthogonal to
the segment which connects this point and its neighbor. This direction can
also be determined as a normal to the circle which passes through 3 edge
computational points of the wave-front. In this method all computational



The fast method for a rough tsunami amplitude estimation 27

points are moving along wave rays [2]. This is a basic factor for the tsunami
amplitude estimation algorithm that will be described below.

Now let us carry out a few tests of the method on some problems with
known exact analytical solutions. The first test includes the propagation of
an initially round-shaped wave-front in a domain with constant depth. In
this case, theoretically the wave frontal line will be a circle of radius

R = R0 + t
√
gD, (19)

where R0 is the initial frontal line radius,
D is the depth and t is the time after be-
ginning of propagation. In the numeri-
cal experiment, 50 computational points
of the initial front were equidistantly lo-
cated along the circle of radius 50 km
(a small circle in Figure 1).

Due to the concept of this method
(normally directed to a wave-front line
advancement of the wave frontal points),
the resulting location of the wave-front is
absolutely identical to the exact solution.
The next problem is about the propaga-
tion of the initially round-shaped wave-
front above the parabolic bottom. This
means that the depth increases from zero
value at the lower boundary of the do-
main proportionally to the squared dis-
tance to this boundary

Figure 1. The computational
points locations of the initially
round-shaped wave front at 500
seconds after the beginning of
propagation

D(x, y) = 9 · 10−9 · y2. (20)

At the upper boundary the depth is equal to 9000 m. In this case, the
frontal line is always a circle but its center is moving off the shore [3]. The
comparison of the numerical results (black dots) and the analytical solution
(grey circles) of this problem is presented in Figure 2. Here in 1000× 1000
km computational domain the initial wavefront consists of 40 computational
points being located along the circle of radius equal to 50 km and centered
at a point (500, 300) (the small circle in Figure 2). The large circle here
visualizes the exact solution (the wave front) for the time instant 3000 s.
No difference can be seen in Figure 2 between the numerical and the exact
solutions.

One more test is about the behavior of non-closed wavefront line above
the parabolic bottom with a cylindrical symmetry. Let in 1000 × 1000 km
computational domain a depth be proportional to the squared distance to
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Figure 2. The numerical and exact so-
lution comparison in the domain with
parabolic bottom topography

Figure 3. The rotation of the wave-
front segment above the parabolic bot-
tom topography with cylindrical symme-
try

the central point (500, 500). The initial wavefront is being a segment of the
straight line directed down from the central point, where the depth is equal
to zero. Theoretically, this segment of the wavefront will rotate around the
central point of the domain like a clock arrow always being straight and
having a fixed length. Results of the numerical computation suggest such a
behavior of the wavefront (Figure 3). Here the initial front was taken as a
segment of the straight line between the circles having the radii R1, R2 and
directed vertically down from the central point.

All these tests deal with the wavefront only. As was noted earlier, each
computational point of the wavefront moves along the wave ray. It is also
possible to compare the computational point traces with the exact solu-
tions that are known for some types of the bottom topography [4]. For the
parabolic bottom topography where depth is proportional to the squared
distance to one of the domain boundaries, a wave ray is being an arc of a
circle. In the numerical experiment, the depth in 1200× 1200 km computa-
tional domain is defined by formula (20). The initial wavefront consists of
50 computational points located along the circle of 50 km radius. The circle
center was posed at a point (450, 500) (Figure 4).

Let us consider the movement trajectory of the wavefront point initially
having the coordinates x = 500 km, y = 500 km. This computational
point at the first time step will advance in the horizontal direction because
of the same its vertical position as a center of the initially round-shaped
wave front. Theoretically, this ray must move along the circle of a radius of
500 km and will arrive at the coast (the lower boundary of the domain) at
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Figure 4 Figure 5

the point (1000, 0). This point is marked as a big black dot in the bottom
of Figure 4. Such a ray being numerically computed is also drawn here by
the black color. The computed wave ray looks very similar to the circle
arc and a difference between the theoretical and the actual coast arrival
points is less than 1 percent of the arc radius. This error can be reduced by
using a smaller time step in computations. In the second problem, used for
testing, the bottom topography presents a uniform slope, where the depth
linearly increases from the lower boundary of the domain D = 0.009y. Here
the dimension of the computational domain was 1200 × 1200 km and the
initial wave-front consists of 100 points located along the circle of a radius
of 50 km having the center at the point (450, 450). Above such a kind of the
bottom topography any wave ray has the cycloid arc shape [4]. Due to the
above-said, the wave ray, which is horizontally directed at a point (500, 450),
must theoretically approach the coastline (the lower boundary) at the point
having the coordinates x = 450 + 450π/2, y = 0.

As a result of the numerical experiment, the wavefront computational
point that is initially located at a point (500, 450) moves along the trajec-
tory which is very close to the cycloid arc (Figure 5). The computed ray
approaches the lower boundary of the domain at a point (1156, 0), which has
approximately the same location as the theoretical one. All the tests show
that the method proposed is sufficiently precise for the numerical simulation
of tsunami wave fronts and wave rays.

If a computational domain is large, then sooner or later the neighboring
computational points of the wavefront will move away from each other widely
spaced. In this case some bottom irregularity can occurs between these
points, and kinematics of a wavefront will not be correct. So, we need to
add new computational points of the wavefront if a distance between the
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neighboring points will exceed the value we have set. It is necessary to
do this correctly without spoiling the general curvature of a front line at
this locale. For example, if a new point is posed towards the center of the
segment which connects two computational points of the wave-front, then
this segment of the frontal line will move slower than an actual one. Figure
6 schematically shows the procedure of adding new frontal points which is
implemented in the computer program.

Let a distance between two computational points Pi and Pi+1 of the wave-
front exceed a maximum available value that we have set. Now we need to
pose a new computational point somewhere between these two points. Let
us also take into account the other two points Pi−1 and Pi+2 that are the
nearest neighbors to the points Pi and Pi+1. Let us build an orthogonal
line coming through the center of the segment [Pi, Pi+1] (Figure 6) and two
circles which pass through the points Pi−1, Pi, Pi+1 and Pi, Pi+1, Pi+2.
If any set of these points locates on a straight line, then this line must be
taken instead of a circle. If the first circle intersects the orthogonal line at
a point A and the second circle at a point B, then a new computational
point of the wave-front C must be posed towards the center of the segment

Figure 6. The scheme of the algorithm
for adding a new computational point of
a wavefront

[A,B] (see Figure 6). This algo-
rithm was tested on model prob-
lem with a parabolic bottom topog-
raphy. The results of this numeri-
cal experiment are presented in Fig-
ure 2. The wave-front initially con-
sists of 40 computational points, and
in the course of computations their
number has increased up to 200 (see
Figure 2).

Thus, the proposed numerical method makes possible to determine not
only the wave-front location at different instants of time, but also to build
the wave-ray trajectories. Two wave rays being traces of two neighboring
computational points of the wave-front construct the so-called ray tube in-
side which the total amount of wave energy is constant. In other words,
there is no energy transfer between the ray tubes. This allows us to use
formulas (15) and (17) for estimating a wave height inside a ray tube. If we
know the tube width in the beginning of wave propagation and later when
a wave-front segment moves along the ray tube, then according to (17) it is
possible to calculate the wave height decreasing coefficient due to the wave
rays divergence. Knowing, also, depth values all around the computational
domain, one can determine the coefficient of the tsunami amplitude change
due to a wave transition from one depth to another. If we multiply both
these coefficients and the initial wave height, then we can obtain a rough
estimation of the tsunami height at any point of the computational domain,
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where the wave-front was determined using this method. This formula can
be written down as

η2 = η1

√
L1

L2

4

√
D1

D2
. (21)

Here L1 is the ray tube initial width that can be presented as a distance
between the neighboring computational points of the initial wavefront, D1

being the depth value, L2 is the ray tube width at the destination site,
where the depth value is equal to D2. As already was noticed, sometimes a
new computational point of the wavefront is added. This procedure divides
the width of the ray tube by 2. We count a number of such additions for
each ray tube and finally use this number in the formula for the wave height
estimation

η2 = η1

√
L1

L2 · 2N
4

√
D1

D2
. (22)

Here N is the number of new computational point additions for this one ray
tube. If in the course of the wave segment propagation along the ray tube
we eliminate computational points (due to their too “tight” closeness) M
times, then formula (22) will be modified to

η2 = η1

√
L1

L2 · 2N−M
4

√
D1

D2
. (23)

So, the method for a wave front and ray kinematics which allows estimating
the tsunami wave amplitude without modeling of dynamic flow parameters
has been developed and realized.

Let us compare the wave height maximum distribution obtained by the
method described against the results of numerical tsunami modeling within
the shallow-water model using MOST algorithm [5]. Let us consider the
following problem: in 1000× 1000 km area, the central-symmetric tsunami
source is fixed. It is centered at a point (500, 300). The vertical profile of
this source is defined by the following expression:

η(x) = 1 + cos
πR

R0
, R = [0, R0]. (24)

Here R is a distance to its center. The initial source radius R0 is equal to
50 km. It is seen from formula (24) that at the source center the initial water
surface displacement is equal to 200 cm. The depth is varying only along
the ordinate axis. The depth linearly increases from zero at the shoreline
(y = 0) up to 2000 m at a distance of 200 km from the coast. Then there is a
200 km wide terrace with a constant depth (2000 m). Then from y = 400 km
to the upper boundary of the domain a depth linearly increases from 2000
up to 8000 meters. The tsunami source is located above the bottom terrace
(the coordinates of its center are x = 500 km, y = 300 km). Figure 7 shows
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Figure 7. The distribution of wave-height maxima as a result of
tsunami numerical simulation within the shallow-water model

isolines of the wave height maxima obtained by the numerical modeling of
tsunami propagation within the shallow-water model.

Due to the depth constancy above the bottom terrace these isolines are
circles when tsunami propagates in this zone. For example, the wave height
is equal to 50 cm at a distance of 96 km from the source center. So, if
the initial wave front is a circle of a radius of 96 km with the center at
a point (500, 300), then the numerical simulation of initially 50 cm high
tsunami must give the wave height distribution similar to the one obtained
by the MOST algorithm (see Figure 7). The results of such a modeling are
presented in Figure 8 as trajectories of wave-front point movement. Here the
wave amplitude maxima that were estimated by formula (23) are visualized
by the grey color brightness according to the color legend shown in Figure 8.
It is very clearly seen that above the bottom terrace the wave rays are
straight lines.

And finally, for the quantitative comparison of the results that were
obtained by these two different methods, the isolines of the height maxima
distribution and the corresponding wave-height value locations along the
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wave rays are simultaneously pre-
sented in Figure 9. Here the isolines
were drawn by black color within 5
cm intervals and as a maximum lim-
ited by 0.5 m. Short grey lines in-
dicate to the locations on the ray
trace where formula (23) gives ap-
proximately the same wave height
within 5 mm difference against the
isoline levels. The comparison of
these 2 distributions confirms their
approximate similarity. The spatial
difference between these two sets of
tsunami height isolines does not ex-
ceed a few kilometers. Figure 8. The wave-ray traces and the

wave height change along the each one

Figure 9. The comparison of maximum wave height distribution
obtained by two different methods
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Conclusion

The new method for the tsunami wave height estimation using the wavefront
kinematics computation was developed and tested. In comparison with the
numerical methods for solving the shallow-water differential equations, the
method proposed requires much less computer resources and time.
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