
Bull. Nov. Comp. Center, Comp. Science, 38 (2015), 29–36
c© 2015 NCC Publisher

A DSL and a SPIN-frontend for river-crossing
problems defined with Xtext

Th. Baar∗

Abstract. Bodin [1] has applied SPIN to solve puzzles like the Japanese river
puzzle, an advanced version of the famous wolf-goat-cabbage puzzle. Defining a
Promela model can become cumbersome and debugging can be very time-consuming,
since SPIN does the syntax check (e.g. type checking) only at runtime and devel-
opers might have decided to use general-purpose editors, from which they do not
get any support when editing Promela models.

The purpose of the work described in this paper is twofold. Firstly, it addresses
the lack of rich editors for Promela models. Thus, an Eclipse-editor has been defined
based on Xtext, which is able to assist the developer of Promela models and which
comes with rich features such as auto-completion, syntax highlighting, and rename
refactoring. Together with a shell script to start SPIN on the edited model, this
editor enables the developer to work with Promela models efficiently.

Secondly, a domain-specific language (DSL) has been developed based on Xtext
that allows us to formulate river-crossing puzzles in a very intuitive way. The DSL
comes with a rich Eclipse-editor as well as with a code generator, which generates
the corresponding Promela model as input for the model checker.

Keywords: SPIN, model checking, Promela editor, dsl, Xtext.

1. Motivation

The model checker SPIN [2][3] has been widely used both in academia and in
industry to verify system properties automatically [4]. SPIN traverses the state
space of a system and verifies whether some given safety or liveness properties hold
as expected. The system itself is defined in the C-like language Promela.

Bodin [1] has applied SPIN to solve puzzles like the Japanese river puzzle,
an advanced version of the famous wolf-goat-cabbage puzzle. The Japanese river
puzzle is described as follows1:

1. The boat can carry no more than two people.

2. Only the adults (Mom, Dad and Policeman) can operate the boat.

3. Dad can’t be left alone with the Daughters without Mom.

4. Mom can’t be left alone with the Boys without Dad.

∗The results described in this paper have been worked out during my research stay
at Novosibirsk State University and at A.P. Ershov Institute of Informatics Systems
(Akademgorodok, Novosibirsk, Russia) during winter term 2015/16.

1The description was taken from http://izismile.com/2010/12/07/

oldie of the day famous japanese river crossing.html and has been slightly changed.

30 A DSL and a SPIN-frontend for river-crossing problems defined with Xtext

5. The Thief can’t be left alone with any of the family without the
Policeman.

After encoding the transportation process together with the above constraints
in Promela, SPIN finds a path for moving all persons safely from one river side to
the opposite one. The actual Promela model in the form of the input text for SPIN
as well as an accurate explanation of the encoding can be obtained from [1] and is
not discussed further here. For the purpose of this paper, it is sufficient to refer to
the coarse structure of the Promela model:

1. Declaration of the domain-specific things to be moved (as mtype)

2. Description of the target state DONE (as a propositional logical formula for-
mulated using #define)

3. Description of dangerous situations that have to be avoided (as propositional
logical formulas formulated using #define)

4. Declaration of global variables

5. Inline-functions for defining certain steps in the process of crossing the river

6. Process init() to formulate the complete process of crossing the river

Changing and testing this Promela model can become very time-consuming
and error-prone if only a general purpose text editor like vi is used and if SPIN is
launched by means of a shell script.

In order to make the work with SPIN more fun as well as more efficient (both
aspects are probably very interrelated), we decided to implement an Eclipse-editor
for Promela models having the above structure. This implementation is based on
the Xtext-framework [5], which allows text editors to be implemented with moderate
effort (see the textbook from Bettini [6] to minimize the effort). Since the resulting
editor is integrated into Eclipse, Eclipse has become an IDE for developing Promela
models. Note that also the launch script for SPIN can be integrated into Eclipse.

An editor for Promela models does not help much if one wants to change the
problem description a little bit, e.g. to switch from the Japanese river puzzle as
described in [1] to the simpler but more well-known wolf-goat-cabbage puzzle. The
developer has to manually encode both the entities and the constraints of the new
puzzle into the Promela model (which prerequisites an in-depth understanding of
the existing Promela model!).

Surely, the SPIN technology would be useful for many users but a lot of prospec-
tive users refrain its usage due to the considerable effort to understand SPIN ’s input
language and to aquire enough skills to write complex models such as the ones au-
thored by Bodin in [1]. For users who wish to solve their own river-crossing problems
without learning the odds and ends of Promela, the DSL rcrs has been developed.
By this DSL, a user can formulate the settings of a specific river-crossing problem
using an intuitive and simple syntax. The DSL comes with a generator, which
translates automatically the problem formulated in rcrs into a Promela model.

Both the Promela editor described in Section 3 as well as the tool set for rcrs
are open source software. Together with the examples discussed in this paper, they
can be downloaded from [7].

Th. Baar 31

Figure 1. Frontend for Promela models (the example file was taken from [1])

2. Related work

Inventing and applying domain-specific languages became a simpler task over the
last decade thanks to DSL frameworks and tools like Xtext [5], Spoofax [8],
MetaEdit+ [9] and others. However, we are not aware of any DSL targeting river-
crossing problems such as our rcrs (see Section 4). None of the numerous commu-
nity DSLs defined with Xtext and published in [10] is designed as a frontend DSL to
facilitate the interaction with a model-checker such as SPIN for a certain domain
(in our case, the domain river-crossing puzzles).

For the domain-independent interaction with Spin, there is an Eclipse-plugin
called EpiSpin [11], which is generated from the Spoofax workbench. EpiSpin has
encoded the grammar of Promela and offers an editor for Promela files. One can
configure and invoke SPIN directly from EpiSpin, which also offers a graphical view
on the edited Promela files. EpiSpin can be freely downloaded from [12].

3. Frontend for SPIN

The Eclipse-framework Xtext allows one to define textual domain-specific languages
(DSLs) easily [5]. At first, a DSL-developer has to define the grammar for the
textual notation. In Xtext, grammar definition is done in an EBNF-inspired for-
malism. Based on this grammar, the Xtext-framework can generate already a fully
functioning textual editor supporting advanced features like syntax highlighting,
rename refactoring, auto-completion, etc. However, the grammar alone is not suf-
ficient in most cases and the auto-generated tools like the editor or Outline pane
need customization in order to function properly. Also well-formedness rules on the

32 A DSL and a SPIN-frontend for river-crossing problems defined with Xtext

DSL models have to be implemented separately (as validators), since they are not
expressed within the grammar.

Defining the grammar which matches the Promela models having the structure
described in Section 1 was almost straightforward (even if the current solution might
not be perfect yet). The grammar has a length of appr. 200 lines. More important
is the resulting editor, which can be seen in Figure 1.

The figure shows the original Promela file developed by Bodin in the Eclipse-
editor generated by Xtext. As one can see, the keywords and comments are high-
lighted in different colors. The syntax error Bot (the correct element would be
Boat) is marked by an error marker and a tooltip suggests two possible corrections,
among which is the right one.

On the left side, there is the Outline pane showing the structure of the file.
It starts with mtype, then there are the propositions defined via #define followed
by declarations of global variables and inline functions. At the end, there is the
definition of the process init. As usual in Eclipse, by clicking on one element in the
Outline pane, the cursor in the editor moves to the corresponding location, which
facilitates navigation within large model files a lot.

Using the Eclipse-editor for Promela models makes it much more fun to work
on them. However, it does not take the burden to understand the Promela model
deeply before one is able to adapt it to a different but similar situation. For this
purpose, the second DSL rcrs has been developed, as described in the next section.

4. A DSL to formulate river-crossing puzzles

Wouldn’t it be nice if one could use SPIN without much effort in order to solve
problems like the Japanese river puzzle? This is exactly the goal of the DSL rcrs
(for river crossing) described in this section. It enables the user to describe the
essentials of a river-crossing problem in an intuitive and concise way.

If one wants to have a concise notation for characterizing single instances among
a class of problems, one should point out first, what all problems of the class have
in common (the more they share, the less a single problem instance has to be
configured by a DSL model). It is assumed that the following invariants hold for
all river-crossing problems:

• There are different types of persons/items (e.g. Mom, Dad, Boy, Cop2). Usu-
ally, there is only one instance per type, but a type can also be declared to
have more than one instance (e.g. two Boys).

• At the beginning, all persons/items together with the boat are on the left
side of the river. In the target state, all persons/items have been brought to
the right side of the river.

• There is exactly one boat available to move persons/items from one river side
to the other.

2In difference to the introductory description of the Japanese river puzzle given in
Section 1, we use in the following the term Cop instead of Policeman and Criminal instead
of Thief. These renamings bring us closer to the original puzzle encoding for SPIN made
by Bodin in [1].

Th. Baar 33

Figure 2. The Japanese river puzzle formulated in DSL rcrs

• The boat needs a driver and can take in addition one person/item as a pas-
senger. The passenger is optional, i.e. the boat can also go with the driver
alone.

• Not all persons might be eligible to be the boat’s driver. The eligible types
of persons have to be selected.

4.1. The Japanese river puzzle formulated in rcrs

Figure 2 shows the editor for rcrs on the Japanese river puzzle, which illustrates
this DSL in full. Let us go through the problem description of the Japanese river-
crossing problem line by line:

The first line

project j apanese

gives the subsequent specification a unique name. Organizing different specifica-
tions under different names has some technical advantages since it narrows the
default visibility of each symbol to that specification, in which the symbol has been
declared.

Then, one has to declare which types of persons/items actually exist in the
current puzzle. If a type has more than one instance, the instance number is given
in parenthesis after the type (e.g. Boy(2)).

types Cop Dad Mom Criminal Boy (2) G i r l (2)

34 A DSL and a SPIN-frontend for river-crossing problems defined with Xtext

Then, one has to select the types of persons eligible to drive the boat:

boat drivers Cop Dad Mom

At the end, one has to specify all constellations that can become dangerous.
Each constellation is given a name (e.g. BoysUnsafe) and specified by a proposi-
tional formula (e.g. Mom && !Dad && Boy). The dangerous constellations must
be avoided during the transportation process on both river sides as well as on the
boat!

dangerous
CriminalUnsafe : Criminal && ! Cop &&

(Dad | | Mom | | Boy | | Gir l) ;

BoysUnsafe : Mom && ! Dad && Boy ;

Gi r l sUnsa f e : Dad && !Mom && Gir l ;

4.2. The grammar for rcrs

This simple structure is encoded by the following grammar, which is much simpler
and shorter than for the language Promela described in Section 3. Note that the
complexity of formulating the input model for SPIN is now mastered by the code
generator for rcrs. The definition of the code generator is lengthy but straightfor-
ward.

grammar de . htwber l in . s e l a b s . RcrsDsl with org . e c l i p s e . xtext .
common . Terminals

generate r c r s D s l ” http ://www. htwber l in . de/ s e l a b s / RcrsDsl ”

RcrsModel :
’ p r o j e c t ’ name=ID
td=TypeDecl
bd=BoatDecl
dd=DangerousDecl ;

TypeDecl :
’ types ’ types+=Type+;

Type :
name=ID (’ (’ num=INT ’) ’) ?

;

BoatDecl :
’ b o a t d r i v e r s ’ {BoatDecl} d r i v e r s +=[Type]+

;

DangerousDecl :
’ dangerous ’ c o n s t r a i n t s+=Constra int+

;

Th. Baar 35

Constra int :
name=ID ’ : ’ body=Fml ’ ; ’

;

Fml :
OrFml

;

OrFml returns Fml :
AndFml ({OrFml . l e f t=current} ’ | | ’ r i g h t=AndFml) ∗

;

AndFml returns Fml :
AtomicFml ({AndFml . l e f t=current} ’&&’ r i g h t=AtomicFml) ∗

;

AtomicFml returns Fml :
{Compound} ’ (’ t=Fml ’) ’

| {Pla in } v=[Type]
| {Neg} ’ ! ’ nv=[Type] ;

5. Conclusions

The model checker SPIN has proved to be applicable for many different purposes
and is also able to solve demanding problems. However, formulating input files in
Promela is a challenging cognitive task and using a general purpose editor is less
efficient than using dedicated editors. Both problems have been addressed in this
paper by implementing two DSLs using the framework Xtext.

The resulting editors are of great help when working with models. Model ele-
ments can be renamed flexibly and syntax errors are detected and partially resolved
on-the-fly when typing the model. The language rcrs is used as a frontend language
for the interaction with SPIN for problems from a certain domain (river-crossing
puzzles). Since SPIN finds solutions for the Japanese river puzzle and similar
problems (e.g. the more simpler wolf-goat-cabbage puzzle) within milliseconds, it
is now very tempting to investigate different variants of the problem using SPIN.
For example, just by changing very small portions in the rcrs input file, the user
can immediately make statements on the solvability of variants of the Japanese
puzzle, e.g. if the number of boys is changed from 2 to 1 or to 3. Another inter-
esting dimension for variants is to add new constraints for dangerous situations or
to change the existing ones. Note that the formulation of each problem variant in
plain Promela would be a demanding, time-consuming and error-prone task, which
is now fully automatized by the rcrs’s code generator.

Acknowledgements: I thank the German Academic Exchange Service
(Deutscher Akademischer Austauschdienst, DAAD) for financial support of my re-
search stay in Akademgorodok near Novosibirsk, Russian Federation, in winter term
2015/16.
I am deeply indebted to Evgeny V. Bodin for drawing my attention to the model
checker SPIN and to puzzle solving. Since I had no experience in using SPIN before

36 A DSL and a SPIN-frontend for river-crossing problems defined with Xtext

coming to Akademgorodok, Evgeny helped a lot to master technical problems and
provided many useful example inputs and invocation scripts for SPIN. Without
him, I would not have written this paper.

References

[1] Bodin E.V. Spin for puzzles: Using Spin for solving the japanese river puzzle
and the square-1 cube // System Informatics. – 2013. – No.2. – P. 101–116.

[2] Holzmann G.J. The model checker SPIN // IEEE Trans. Software Eng. –
1997. – Vol. 23(5). – P. 279–295.

[3] Holzmann G.J. The SPIN Model Checker – Primer and Reference Manual. –
Addison-Wesley, 2004.

[4] Boehm B.W., Holzmann G.J. The economics of systems and software reliability
// IEEE 24th Internat. Sympos. on Software Reliability Engineering, ISSRE
2013, Pasadena, CA, USA, November 4–7, 2013. – 2013. – P. 1–2.

[5] Xtext. – Homepage http://www.eclipse.org/Xtext/.

[6] Bettini L. Implementing Domain-Specific Languages with Xtext and Xtend. –
Packt Publishing, 2013.

[7] Baar T. Sources for DSLs Targeting the Modelchecker SPIN. –
https://github.com/thomasbaar/ModelCheckingDSLs.

[8] Wachsmuth G., Konat G.D.P., Visser E. Language design with the Spoofax
language workbench // IEEE Software. – 2014. – Vol. 31(5). – P. 35–43.

[9] MetaCase. – Metaedit+ – Homepage. – https://www.metacase.com.

[10] Xtext. –
List of community projects. https://eclipse.org/Xtext/community.html.

[11] de Vos B., Kats L.C.L., Pronk C. Epispin: An eclipse plug-in for Promela/Spin
using Spoofax // Proc. of Model Checking Software (18th Internat. SPIN
Workshop), Snowbird, UT, USA, July 14–15, 2011 / Groce, A., Musuvathi,
M., eds. – Lect. Notes Comput. Sci. – 2011. – Vol. 6823 . – P. 177–182.

[12] EpiSpin. – Homepage http://epispin.ewi.tudelft.nl/.

