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Calculation of displacements around the crack
formed during pulsed thermal load∗

A.G. Maksimova, G.G. Lazareva, A.S. Arakcheev

Abstract. This paper presents the results of mathematical modeling of the prob-
lem of elasticity theory. The problem consists in the calculation of a model problem
in a two-dimensional formulation aimed at finding the displacements around a crack.

Introduction

The objective of this paper is to numerically implement a new simplified
elastic deformation model [1] to describe a crack propagating along a sur-
face. Simplification of the model consists in reducing a system of differential
equations of the theory of elasticity to the Fredholm integral equation of the
second kind. This model may be used when calculating the conditions of
forming cracks in metals under a strong thermal load. The existing models
of cracking in the surface layer of a material at a pulsed thermal load are
one-dimensional [2, 3].

1. Statement of the problem

We consider the problem of finding displacements around a crack at the
surface of a rectangular sample. Let us assume that the crack is located
along the axis x (Figure 1a). The equation for finding the displacements is
the following [1]:

(1− 2ν)∆u + grad divu = 0.

where u = (u, v), ν is the Poisson ratio. We find the stationary solution
of the system of equations of the elliptic type by finding the steady-state
solution of the following evolutionary system of equations of the parabolic
type in the Cartesian coordinates (y, z):
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Figure 1. The coordinate system in the quarter space filled with an elastic
medium (a) and the boundary of the computational domain (b)

where τ is the steady-state parameter. In the calculation domain (Figure 1b)
let us set the location of a crack at a point z0 on the axis z.

2. Boundary conditions

Let σ be the stress tensor with the components σij , f = (fi) = (σijnj) are
the surface forces, i, j ∈ {“y”, “z”}.

At the boundary γ1, the condition f |γ1 = 0 is satisfied (see Figure 1b).
In terms of the stress tensor components: σyz|γ1 = 0, σzz|γ1 = 0.

At the boundary γ2, the condition f |γ2 = nyδ
′(z− z0) is satisfied, where

ny is the normal to γ2, δ
′(z) is the derivative of a Delta-like function.

In terms of the stress tensor components: σyz|γ2 = 0, σyy|γ2 = δ′(z − z0).
It is assumed that the boundaries γ3 and γ4 are far away from the crack.

At these boundaries, the displacement is zero: u|γ3 = u|γ4 = 0.
The relation between the stresses and displacements is expressed by the

Hooke law:
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where E is the Young modulus, uij =
1

2
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)
is the strain tensor.

Here uy := u, uz := v, xy := y, xz := z.
The Poisson ratio and the Young modulus fully characterize the elastic

properties of the isotropic material.
Therefore, the boundary conditions on γ1 can be written as
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The boundary conditions on γ2 are the following:
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The Delta function approximation based on the normalized Gauss func-
tion was chosen for the calculation. The choice is due to the results of the
analysis [4]. Finally, we have
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where k is the compression ratio.

3. Method of solution

We introduce in the calculation domain a uniform rectangular grid with the
step h in y and z and denote by unij and vnij the values of u and v at the
node (yi, zj) at the nth iteration. The number of grid steps in y and z is N .

The numerical implementation is based on the Douglas–Rachford scheme
and the run method [5]. The finite difference scheme for the system of
equations (1) has the form:
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For the numerical implementation by the prediction method, the system
of difference equations (2) is rewritten in the canonical form. Each equa-
tion is supplemented with the boundary conditions. Two equations for the
y-components of the displacement u are:



26 A.G. Maksimova, G.G. Lazareva, A.S. Arakcheev

(2− 2ν)u
n+1/2
i−1j +

(
4ν − 4− h2

τ

)
u
n+1/2
ij + (2− 2ν)u

n+1/2
i+1j

= (2ν − 1)unij−1 +
(

2− 4ν − h2

τ

)
unij + (2ν − 1)unij+1 −

1

4
(vni+1j+1 − vni+1j−1 − vni−1j+1 + vni−1j−1),

u
n+1/2
1j − un+1/2

2j =
ν

2(ν − 1)
(vn2j−1 − vn2j+1) +

(1− 2ν)(1 + ν)

(1− ν)E

2h(jh− z0)
k3
√
π

exp
(
−(jh− z0)2

k2

)
,

u
n+1/2
Nj = 0.

(1− 2ν)un+1
ij−1 +

(
4ν − 2− h2

τ

)
un+1
ij + (1− 2ν)un+1

ij+1

= −h
2

τ
u
n+1/2
ij + (1− 2ν)(unij−1 − 2unij + unij+1),

un+1
i1 − un+1

i2 =
1

2
(vni+12 − vni−12),

un+1
iN = 0.

Two equations for the z-components of the displacement v are:
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4. Results of numerical calculations

In numerical calculations, the most indicative is the y-component of the
displacement u, since the crack is located in the plane z. The Poisson ratio
is equal to the ratio of the relative transverse compression to the relative
longitudinal tension and characterizes the nature of the material from which
the sample is made. The calculations were carried out on the grid with
parameters h = 0.01, t = 0.01. The crack is located in the middle of the
border. The data have been obtained after 50 iterations from the initial zero
approximation.

Figure 2 presents the graphs of the displacement components at the
boundary for different Poisson ratio values. Figure 3 shows the graphs of
the displacement components in the whole computational domain. The
numerical results obtained qualitatively correspond to the analytical solution
from [1]. The difference is due to the approximation taken for the Delta
function.

a b

Figure 2. Graphs of y-component (a) and z-component (b) of the displacement
u at the boundary for different Poisson ratio values

a b

Figure 3. Graphs of y-component (a) and z-component (b) of the displacement
u in the whole computational domain for the Poisson ratio ν = 0.04
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Conclusion

A new simplified model of elastic deformations has been numerically im-
plemented to describe the crack propagating along the surface. The model
problem in two-dimensional statement has been solved. The values of the
displacements around the crack for different Poisson ratios have been ob-
tained. Further we suppose to use the model obtained for calculation of a
condition of formation of cracks in metals at a strong thermal loading.
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