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On one modification of Marchuk—Kuzin’s
scheme for parabolic equations
with mixed derivatives

Yu.M. Laevsky and O.V. Rudenko

In the article, we propose and study ome modification of the finite element
splitting algorithm for the solution to the Neumann boundary parabolic problem
with mixed derivatives [1]. We consider the simplest equations with constant coef-
ficients without advective terms. For the Neumann problem, the error estimate of
the method from [1] contains the term O(r/vh), and the numerical experiments
show that this estimate cannot be improved. We give the modification with the
estimate O(r+h). The approach is based on our results for the parabolic problems
in nonrectangular domains [2, 3).

1. Description of the problem and discretization

Let 2 C R? be a rectangle with the sides parallel to coordinate axis, I' be
the boundary of Q. In the space H!(R2) x H'(R2), let us consider the bilinear
form

ao(u, v) = /Q (AVy, V) dz, (1.1)

where A is the matrix of coefficients A;j, 4,5 = 1,2, such that the bilin-
ear form aop(u,v) is continuos and H!(S2)-elliptic. Bellow we consider the
symmetric ao(u, v) with A2 = A3;. Moreover, let us define the bilinear form

m(g,9)= [ o@)pvs,

where ¢, ¥ € La(T'), o(Z) is a piecewise continuos nonnegative function
defined on I'. Then in the space H'(Q2) x H!(f) the family of the continuos,
H(Q)-elliptic, symmetric bilinear forms

a(uﬁ v) = ao(‘u, U) + ""(7‘“, 7”)1 (1'2)

is defined, where v is the trace operator onto I'. And ﬁnally, we introduce
the bilinear form (f(t),v).

Let us formulate a parabolic problem to whlch we apply the splitting
method. For ug € L2(R) and f € La(to,ts; L2()) it is necessary to find
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the function u € La(to, t.; H}(R,T)), such that ft_: € La(to, ts; L2(R2)), and
Yv'e HY(Q,Ty), and t € (fo,t.) the following equalities are valid:

(Z:() )‘l‘“("(t) v) = (f(t),v),
(‘u(to), U) = (“01 v)-

Consider the finite element discretization. Let 7, be the regular trian-
gulation that is based on the uniform rectangular mesh in 2 with the steps
hy and h; corresponding to the variables z; and z;. Every rectangular box
is triangulated by a diagonal with the positive direction (from low-left to
up-right) if A;2 > 0, and with the negative one (from up-left to low-right) if
A12 < 0. Let a be the angle between positive direction of the axis OX; and
direction [ of triangulating diagonals. Then

au ou ou .
Tl -&-:;cosa + 5;-2-5111 o, (1.4)

(1.3)

where
hy ha

cosa =sign(A2) —==, sina=-—F———=. (1.5)
NICES Y \/h? + k3

'Let us denote 1 = hy/hy. In the space H(2) x H!(Q) define the bilinear
forms

a((]k)(u,v) = z\kﬁﬁ dz, k=12,
Oz Oz,
(1.6)
)(u v) = ./'/\ Buav
3511 ¢

where the functions Ax (k = 1,2, 3) are given according to the equalities

A = A — 0|,
A2 = Az — 07 Agal, ()
A3 = neos™? a|Apg].

The following additive presentation is valid:

ao(u,v) = Z ag‘)(u, v). (1.8)
k=1

-

This equality follows from (1.6), (1.7). Let us reqgire the nonnegativeness in
H'(2) x H'(Q) of the bilinear forms (1.6). For this aim it is sufficient that
Ax >0, k=1,2,3, or in accordance with (1.7)
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A 2 Azl A2z > 97 Al (1.9)

Let (%) be the angle between the vector Z; and the external normal
to I'. Let us define the bilinear forms

mi(p,¥) = [ ou@)ppds, k=123, (1.10)

where @, ¥ € Ly(T'),

A cos? @ Agsin? @
gy = a, Oq = a,
w v (1.11)
A3(cos? acos? 8 + sin? asin? §)
g3 = a,
[y
w = cos? B(A; + Az cos® @) + sin? B(Ag + Agsin? a). (1.12)
Then in the space H;(Q2) x H; () the bilinear forms
ai(u,v) = a(()k)(u, v) + mi(yu,yv), k=1,2,3, (1.13)
are defined.
And finally, in the space Hy(I') X La(I) let us introduce the bilinear
forms
be(p, ¥) = vk@vds k=1,2
kLY, T ds ’ 1 4y (1‘14)
b, %) = bip, ¥) + ba(ep, ),
where Arz)y cos? Aiz)gsin? 0
v = Mf._’ vy = AnAzsi U (1.15)

w w
As it is easy to see the following additive presentation is valid:

a(u,v) = Z ar(u,v),
k=1

and this one is the basis for splitting method formulation. Note that the
set of numbers I of all verticies of the triangulation 7} may be ordered such
that Vie I, s € Z,and i+ s € I at |s| > 1 the equality

Q‘Ea‘i’i+a
al  al
holds. Here {@i(Z)}icr is the system of piecewise linear functions corre-
sponding to the set Ty, @i(Z;) = &;;, 4,5 € I.
Let us discuss the third boundary condition on.I'. Under sufficient

smoothness of the solution to the problem (1.3) the following equality is
valid:

=0, €9, (1.16)



48 Yu.M. Laevsky, O.V. Rudenko

du _ -
N o(f)u=0, z€T, (1.17)
du du _ . . . .
where — N E Aij=— 9z; cos(:c_,, n), Z; is the unit vector of j-th coordinate

i,7=1
axis, and 2(Z) is the unit vector of the external normal to I'. The expression
for the co-normal derivative may be rewritten with respect to 8(z) in the
following form:

ou
N —Z/\u

Let Ty, p = 1,4, be the sides of 2, and Ty, T3 || OX;. Let us suppose that
a direction of the sides I';, I'y coincide with the directions of corresponding
axis (I‘g, I'3 have opposite directions to I'y, I'1). Let z), = (a:lp,mzp), g =
(z1p, T5,) be the begining and the end of the side I, Then the doma.m Q
may be presented in the following form:

Q={z € R? | 21 € (zl4,214), 72 € (z21,2%)}. (1.19)
Our analysis will be based on the following

Ou cosG+ZA

i=1

,gg sin 8. (1.18)

Lemma. Letu(t) € H%(Q) be the solution to problem (1.3) and A\; € C}(),
k=1,23. Let

0 ., Ou "0, Ou

z(t) = _BTkAka_n:;,(t)' k=1,2, z3(t) = 61A3 50 ().
Then for bilinear forms (1.13), (1.14) the equalities
ax(u(t), v) + bi(u(t), )= (2x(8),v), k=1,2, (1.20)
az(u(t}, v) — b(u(t), v) = (zs(t), v) (1.21)

hold.

Proof. Firstly, let us obtain equality (1.20) for £ = 1. In accordance with
presentation (1.19)

""21 6u(t)
z —vdz; )dz
(alt v/::m L 3-’»"1 0z, 1) =
After integration by parts we have

(z1(t),v) = aq )(u(t), v) — / )vd z3. (1.22)

1
Iuls 0z,

Let us consider the second term on the right-hand side of (1.22) more de-
tailly. Introduce the local orthogonal coordinate system (=, s) with the origin
at the point Z;, (p = 1,3). Then the equalities
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n = (2, — 1,) cosf + (z2 — z5,) sin 6,

8= —(1 - 2},) sin @ + (27 — },) cos 6

hold. It is easy to see that

ou du ou

+— = —cosf — —siné,

0z, on ds (1.23)
91 = @ i 9+@cosﬁ -
aIg - an sin ds )

According to (1.18) from the latter equalities it follows

ou
N = (A11 cos? @ + Aggsin? 0)3— + A12(cos® @ — sin 9)3
Substitute this equality into boundary condition (1.17) and use notations
(1.7) and (1.12). Then we obtain the following formula for normal derivative:

Ou _ Ap(cos’@—sin?0)u  ou
on w 3 T W (1:24)

And finally, the use of equality (1.24) and the fact that cos®8(z) =
sin?8(z) = 0 for # € Ty UT3 in accordance with the first formula from
(1.23) leads to the following expression on I'; UT'3:

3_u_ Algcosﬁau ocosf
0z, w 05 @ w

(1.25)

Those, we obtain dz; = cosfds,

du(t) du
fnul‘a 6:51 vdz, = rLors (u155+alu)vds.

Let us note that oy = vy = 0 on I'; and I'y. Then according to (1.10), (1.14)
we have

du(t) _ ~
-/I‘1UI‘3 31‘ vd$2 =-m (ﬂ, v) bl(ua U).

Substituting this equality into (1.22), we obtain (1.20) for k = 1. The case
k = 2 may be considered the same way. Then integration by parts gives

(23(2), )—a((,‘?')(u,v)— f cosau\:;a vdzy — /snna/\sg‘,—vdn (1.26)
I'hurls Ul

Transform expressions (1.23) in accordance with (1.24). As a result we have
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Ou _ —@siHG Ou _ _A1psinfdu  osing
3171 - as ! a:[,'? - w as w et

on I'z, Ty, as cos#(Z) = 0, sin?8(Z) = 1 for Z € [, UTy. Then

ﬂ = @cos()
0z, s

on Iy, I's, as cos?#(Z) = 1, sind(z) = 0 for # € I'; U L. Recalling that

dzz = cosfds on I'y, I'; and dz; = —sinfds on [y, Ty, substitute these

equalities into boundary integrals from (1.26). After simple transformations

with the use of notations (1.7), (1.5), (1.11), and (1.15) equality (1.26) gives
(3)

)
(23(t),v) = a& (u,v) - o (- +V2)a—:asu)vds+

ou
-/l"zul“q (— (1 + Vg)a + crau)vds.

Then according to (1.14), (1.10), and (1.13), we obtain (1.21). m]

At the end of this section introduce some finite element notations. Let
Vi = span{yi(Z)}ics and Il : C(Q) — V; be interpolating operator:
Mau(Z) = Tieru(Zi)pi(Z). With the use of lumping operator (4] let us
introduce mesh scalar product dj(u,v) in Ly(R). In the future we will use
such propeties of the bilinear form dj(u,v) as continuity in L2(Q2) x Ly(Q)
and Ly(Q)-ellipticity. It means that

ldn(u, v)| < dollullz,@)llvllzy @), (1.27)
dh(uav) 2 di””“Lz(Q)! (1°28)

where dy, d; do not depend on A and functions u, v.

2. The method of formulation and convergence -

Here we propose the scheme for the solution to the problem from the previous
section. We suppose that o(Z) > 0o > 0VZ € " and A\j3 > 0. Then v > 0,
k =1,2. Let us denote F:(fl,fg) = (VUkfa=Uih)(&),), k=1,2,p=1T,4,
fi, f2 € Vi Let 7 = (t. —to)/N and t,, = tg + nr, where N is some interger
number, n = 1,N. We give the method of formulation as the following
difference problem. It is necessary to find the family of functions

{u™ 3 k=1,2,3, n=0,N -1},

such that «"t*¥/3 ¢ V; and Vv™+*/3 ¢ V, the equalities
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n+k/3 k-1
X (u +k/3_ yn+(k=1)/ 3, vu+k/3) + ak(u""'k/a, vn+kl3) + bk(u"""’/:’, vﬂ+’¢/3) +
- .

Z F: (un+(k-l)/3’un+k/3)mvn+k/3(£;) =0, k=12,

p=k,k+2
ntl _ ,n42/3
(u u ,vn-}-l) + aa(u""", vn+1) _ b(uu+1, vn+l) -

-
Y B um ) o™ (@) = (f(tne), v™H) (2.1)
p=13

hold. Here n =0, N — 1,

dp

u® = Iy, (2.2)
and up € H%(). The conditions of a smoothness of the solution u(t) will
be given bellow. The role of the terms with the values of mesh functions in
the corners of € is to provide a stability. It has different form at A\;2 < 0,
but with the similar analysis.

-Let us introduce the sequence of the functions
{¢" = u"—Thu(tn), £ = ™3 Myu(tap) +7rmH3, k= 1,2)N1,
with elements from Vj,. The functions r*+*/3 € V}, will be introduced bellow.
Here according to (2.2), €2 = 0. Let us write the equations for the functions
EMk/3 |k =1,2,3. In accordance with (2.1) we have

n+k/3_gnt(k—1)/3
dh(§ §

- ,vn+k/3) + ak(En-{-k/S, vn+k/3) +bk(£n+kfa’ vn+k/3) +

Z F:(§n+(k—1)/3, €n+k/3) s/ﬁv""'k/a(f;,) = gz(vn+k/3), k=1,2,
p=k,k+2

n+l _ ¢n+2/3
dh(f Tf ,v"“) + a3(Eﬂ+la Un+1) _ b(f"+1,vn+l) _
Y- ER(EM3,6n+Y) ot (3)) = gR(v™H). | (2.3)
r=1,3
Here

9k (v) = of (v) + BE (v) + TYE(v) - SR (v) + 7gF" (v), k=1,2,

g5(v) =a5(v) +B5(v)+ D (6p(v) —af(v))—7 Y VErtt(z), (2.4)
k=1,2 =13

where

o= T (M~ Mafuta)l,) @)o(e)), [u(e), = stk = ulo),

= T (VErm - ymr) @)oe)),

p=24
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o (v) = dn(Thzk(tar1), 0) = (2(tna), v),

BL(®) = (ak+b4) (u(tass) - Mau(tnsr), v),

1R(v) = (ak+ be) (r" T/, v),

53(v) = du(Talultn)lr + Mazi (bnsa) = 7"+17%,0), (2.5)
2v) = da (thg(tn+1) 4 pn1/3 /3 v),

a3(0) = (1), 0) - da (Taluta)l,v),

B3(v) = (0 = b) (ultns2) = Thu(tnsa),v).

To obtain (2.5) we use the lemma. The functions r+k[3 ¢ Yy are defined
from the conditions

rH3(30) = Mifu(tn)]-(35), p=13,
VIR = @), =24,
rn+2/3(§;) =0, p=1,3.

Let-
rﬂ+1/3 = Hh(ﬂl[ﬂl(tn)]r +y’2‘zl(t“+1))’

P+ = Mg ([u(t))s + 21 (tns) + 2(ts1),

where y; (Z), p2(Z) are the cutting functions such that 4, (z;) = 0atp= 1,3,
pa(Zy) =0atp= T1,4. As it is easy to note for such definition of rn+k/3 the
conditions mentioned above are valid.

Now in the domain € let us introduce new triangulation 7,, where p =
p(h,7), and ch < p, where ¢ > 1. For the set 7, define the space V, with
the piecewise linear basis {¢?(Z)}ic1,. Let i, be the indexes of points zy in
triangulation 7,. Let

(2.6)

4
p(E) =1- Y @), @) =1-3 ¢ @3) (2.7)

p=1,3 p=1
As a result formulae (2.4) may be rewritten in the form

ar(v) = af(v) +BR(v) + Ti(v) - & (v), k=12,

2
02(6) = o2(0) + B3 () + 3 (62 (0) - a2(v)), 28)
k=1

where
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5 (v) = da(Ta(2 - pr)[u(tn)lr + TIn(1 = p2)22(tns), v),
2(0) = da (T (1 = p2)[u(tn)]s + a1 = p2)2(tns), o).
Equalities (2.5)—(2.9) completely give us the rihgt-hand side of the error

equations (2.3). In equations (2.3) suppose v"+5/3 = 2rgn+k/3 k =1 2 3.
According to v = const the following equalities are valid:

(2.9)

bi (v, v)=ka~g§vds= 32'5 > (vz(i‘;’) -~ vQ(i;)), k=1,2. (2.10)

p=k,k4+2

Let us introduce nonnegative functionals

Ei(n) = dn(vr,v1) + 711 Y vi(z)),

=13
E2(vyv2) =dp(vy — v, 02— v)) + 7 E (Vv2ve — \/v_lvl)'z(f;),
=24
Z3(v1,v2) = dh(vz —v, 2 —-v)+T Z (vv1vs — \/_'Ul) (-"Jp)v
p=13

where vy, v; € Vj. From equations (2.3) and equality (2.10) we obtain
E1(€) + Ea (€2 - €7) + Sy (€713, 7H2%) 4 5y (723, gn )

3 3
2r Y ak (€ ) = = (e7) 420 3 gp(entHR). (2.11)
k=1 k=1

Further d; is the constant from inequality (1.28). Give the estimates of
functionals from (2.5):

ok (v)| < kdh(‘“ ”)+ h2 1llE 0,852 (c2)) +

EEh ||u||C(t0'¢_;H4(g)), k=12

d2
n 3
ag(v dh v, v)+ —
| 3( )l ( ) [ dtz La(tn,tny1xQ)
T_Ihz( c_iE : dﬁ )]
dt Lﬂ(tn‘fn-l-liHl(n)) dt Lz(t"'t"+l;H2(9))

BE(0)] < % (ak(v,v) + ma(v, v) + / v ds)

;;P'ml [+] l\ala-'a

(""||C(:.,,:.;H=(n)) + ||ﬂ||0(co,¢.;H2(r))), k=1,2,3;
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@) < Z£(a*(v,v) +
il(l :
elp\T
el

(@) < —dalv,v)+

< Q(Idu

eip Tdt

du
dt

+ J|ulld, .. ),k:Lm
La(tn,tns1:H2(S2)) Il oo

2 .
+ "u”%(to,t-;H‘(ﬂ))): k=1,2.

La(tn tns1;:H2(Q))

Then from (2.8) we have the estimates of the functionals gf. Substi-
tute these estimates in (2.11). Let us note that the parameters € (from
¢-inequalities) may be chosen such that after its substitution into (2.11) we
will obtain the inequality

=, (€n+l)+31(£n+1/3_£ﬂ) < El(fn)+2Tz_&;dh(£n+l,fn+l)+2,rwn, (2'12)

where the term VU™ depends on the norms of the solution. Moreover, it is
important that ef, 7, ei, k = 1,2, are the values of the order 1/7, and

ef ~ O(1) (k = 1,2,3). Here we essentially make use of the fact that the
number ¢ exists, such that 0 < ¢pog < o, k = 1,2,3. It means that

-

Coaof v’ds < mi(v,v), k=1,2,
Txuliy2

000'0/["02‘13 < ma(v,v).
Chosing €§ = d; /4 from (2.12) we obtain
S1(€") S Ea(€7) +4rTm

The use of the Gronwall grid lemma and condition (1.28) gives the estimate

I llza(@) < c(Mah + My + Mo (p,7)), (2.13)
where ,
u
Mi=1g + l|lu ) ’
h dt Lz(to,t-;H’(ﬂ)) ” HC(to.t.,H‘l(n))
il (2.14)
M'r = _2 ’ M@ — M,T.
dt La((to,ts)x82)

The function &(p, 7) has a form ®(p, 7) = (1p*+72/p)1/? and, as a function
of the argument p, it has a minimal value at p = (1/2)/3, or p ~ 71/3, Then
instead of (2.13) the following estimate is valid:
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€™ Loy < c(Muh + M,T5/6),

where
M =M, + (2723 4 21/3)1/2pp,, (2.15)

Using the tringle inequality and the interpolation theorem we obtain the final
error estimate of the splitting scheme including a mesh tangent derivative:

Theorem. Let for problem (1.3) the conditions
wEClots @), B ¢ Lyto @), 2

be valid. Then for the solution to problem (2.1), (2.2) at 7 < 1 we have the
estimate

€ La((to,ts) X )

15_:111.&5’5\{ Il‘un _ u(t")"Lz(ﬂ) S C(Mhh + M:_TSIGL

where c is the number independent of 7, h, and the function u(t) and the
quantaties My, M, are given by equalities (2.14), (2.15).

3. Numerical example

The scheme described above includes additional three-points relations on
the boundary, and it’s special realization is similar to the realization of the
method from [3]. Now we illustrate proposed technique by the following
mixed boundary value problem with the known solution:

Ou (62 0%u 32u)

-a—t = 63:2 + — axlazz Eg , (t,$1,$2) € (0, 1) X Q,
u(t, zy, z2) = ¢(), (t,z1,22) € (0,1) x Ty,
du
'(.% =0, (tsxls:E?) € (01 1) x Iy,
u(O, T, {!72) = sin 1['(2!1 - 232), (.’L‘l,.’.cg) €1,
Ou Ou 1 0u
Here = 33’1 + = 5 3;2 is the co-normal derivative,

Q= {(zl,zg) | 0(&71 < l ""1/2<E2S 1/2},

To = {(5‘:1,32) | 0<z; <1, 2= —1/2}U
{(z1y22) | 0< 21 L1, 22 =1/2}U
{(z1,22) | 21 =0, -1/2< 23 <1/2},
{(xl,zz) | I = 1 —1/2 < Z < 1/2}
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The solution to this problem is the function
u(t, z1,22) = =3 Yot gin 7(z1 — 229).

For calculations we suppose Ao = 0.03. For this value La-norm of the solu-
tion decreases approximately in e times in the time ¢ = 1. In the domain Q
a uniform mesh with the step & is introduced. For the L;-norm error the
following notation is used: *

e = h( WV (E) - u(t,2)* + 5 10V (@) - u(t, 7)),
ielp i€l
Nt =1, I is the set of the numbers of inner verticies, I; is the set of the
numbers of the verticies from I';. Let &; be the error of the Marchuk—Kuzin
scheme in one-cyclic reduction, and €2 be the error of the scheme described
in Section 2. In the table bellow the results are given at 7 = h.

logy h -3 -4 -5 -6 -7 -8
€ .013780 | .006116 { .003371 | .002128 | .001424 | .000972
€2 .012411 | .004489 | .001807 | .000795 | .000371 | .000179

Those, on the simplest example we can see the role of vk in the estimate
lle1llz; (). Given results allow us to see that with decreasing h in 2 times for
€1, especially on the detail meshes with the greate accuracy, V2 is realized.
For the scheme with the derivative along the boundary I'; we have a con-
vergence O(1). Let us note that in the considered example the assumption
from previous section on the third boundary condition is not valid, but we
see from the table that our modification gives good results. Whereas in
numerical expirements it is difficult to see the difference between quantaties
of orders  and 75/, we do no definite conclusion on an optimality of the
estimate O(75/6), based on these results.
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