Joint NCC & IIS Bull., Comp. Science, 8 (1998), 39-56
© 1998 NCC Publisher :

XDS-COM — a COM binding
for Oberon-2 and Modula-2

Timofei Kouzminov

The XDS-COM toolkit provides a language binding of the Microsoft COM to
Oberon-2/Modula-2. It can be used to develop both COM clients and servers. Mul-
tiple interfaces of a single object are created in a natural way. The XDS-COM
does not introduce any language extensions but extensively uses the rich run-time
support of the XDS development system. .

1. Introduction

XDS is a portable Oberon-2/Modula-2 development system of the XDS com-
pany in Novosibirsk, Russia [1]. It produces native code for Win32, 0S/2 and
various flavors of UNIX and also can convert Oberon-2/Modula-2 programs
into C.

The Component Object Model (COM) [2-4] is a mechanism provided by
Microsoft to perform object-oriented communication between objects in a
multi-process distributed environment. COM is a binary standard describing
data structures (interfaces) plus some API. Microsoft provides a language
binding of COM to C and C++ and automates some routine COM work in
their class library, MFC.

This is also a target of XDS-COM toolkit — to provide a language binding
to Modula-2 and Oberon-2 and create a number of classes to facilitate writing
of COM clients and servers.

A solution to this problem is provided by the Direct-To-COM compiler by
Oberon Microsystems (5, 6]. This compiler provides a set of COM-oriented
language extensions including a pseudo-module COM. The presence of multi-
ple interfaces of the same object is not supported directly by Direct-To-COM,
though it can be modelled by a linked structure of objects acting as a single
COM object. .

Here we present an alternative approach. We do not make any specific
COM language extensions. Instead, we use the rich run-time support of XDS
including access to type descriptors and take advantage of interoperability
with C language already provided by XDS. The main feature of our solution
is, that despite only single inheritance being permitted in Oberon-2, a server
object using XDS-COM may have multiple interfaces.

40 . Timofei Kouzminov

At present the core parts of XDS-COM are implemented and we have a
working example of COM client and server both written in Oberon-2.
The overall structure of the paper is as follows:

e The rest of this section briefly overvirws the main notions of COM.

e The first problem which is solved in XDS-COM is to provide conve-
nient access to COM objects (including COM objects implemented by
non-XDS applications) from XDSoprograms. Sections 2 and 3 describe
the solution to this problem.

e Section 4 describes the solution to the second problem — how to
implement COM objects in XDS.

e Section 5 outlines yet unsolved problems and proposes further di-
rections of the work.

1.1. Interfaces and interface pointers

Objects in COM are accessible via interface pointers. An interface pointer
(IP) is a pointer to a pointer to a method table. The method table consists
of pointers to functions (values of procedure type) each of which takes an
interface pointer as its first argument. The names, types of arguments,
order and semantics of methods in the method table are determined by
the interface — a contract between a method caller (client) and method
implementation provider (server).

Each interface assigned an interface identifier (IID) which is actually a
128-bit globally unique identifier (GUID). Microsoft claims that their technol-
ogy allows the creation of GUIDs that are different from any GUID created
elsewhere. '

Interfaces support single inheritance, that means that a method table
of a derived interface has at the beginning all the methods with the same
names and arguments as methods of a base interface in the same order.
Unlike inheritance in Oberon-2 or C++, interface inheritance is not a regular
method to enrich the capabilities of an object, because this is achieved by
adding multiple interfaces to the same object.

Each interface inherits interface IUnknown which provides the basic ca-
pabilities of COM objects. Among them is the QueryInterface method
which is used to receive another interface of the same object given an IID.

As mentioned above, a COM server is an executable (.exe or .d1l1)
which implements COM objects and a COM client is an executable which
invokes the methods of COM objects. As in Oberon-2, we say that a COM
server erports an IP, and a COM client imports it.

The operating system supports marshalling of IPs, that is taking an IP
in the address space of an application and creating the corresponding prozy

XDS-COM — a COM binding for Oberon-2 and Modula-2 41

IP in the address space of another application. Method calls to a proxy IP
are automatically routed to the server.

The DCOM (Distributed COM) feature allows marshalling of IPs through
a network. It makes invocation of methods on a remote server.transparent.

2. Access to COM objects

2.1. Representation of COM interfaces

In XDS-COM each interface pointer is a "C" pointer to "C" pointer to a
method table. A set of methods in the method table is specific for a COM
interface.

The method tables are represented in XDS-COM as records inheriting
empty record objBase.VTBL. This record is an "Oberon" record to allow
inheritance but you should never use

POINTER ["Oberon"] TO VTBL.

As every interface inherits the basic COM interface IUnknown, the me-
thod tables of other interfaces should inherit objBase.IUnknown_VTBL, not
VTBL itself.

Declaration of an interface IFoo inheriting IBar causes declaration of
the following entities:

o The constant IID_IFoo of type com.GUID represents the unique inter-
face identifier. This identifier may be obtained by the guidgen utility
from Win32 SDK or by the CoCreateGuid API function.

e The "Oberon" method table record type IFoo_VTBL inheriting
IBar_VTBL and augmenting it with methods (fields of procedure type)

method: PROCEDURE [com.STDMETHOD] (com.ipIFoo, ...).

The order of methods is significant.
e The pcIFoo_VTBL type which is

POINTER "C" TO IFoo_VTBL.
e The interface pointer (IP) type ipIFoo which is
POINTER "C" TO IFoo_VTBL.
e Conversion functions IP_IFoo and IFoo_IP which convert from ipIUn-

known to ipIFoo and back. These functions are added only for con-
venience, their implementations consist of single calls of SYSTEM. VAL.

B

42 Timofei Kouzminov

Declarations of these entities may be (but still are not) generated au-
tomatically from IDL definition or COM type library (.t1b). Having the
entities described above, it is possible to invoke methods of an imported
COM interface pointer.

For an IP named ip, the call syntax is

ip~~.method(ip, ...). (1)

Certainly, the caller must follow COM rules of reference counting. That
means that each time an IP is assigned to another variable, the AddRef
method must be called:

ipl := ip;
ip~".AddRef (ip);

And each time an IP value is lost, Release must be called:

ip~~.Release(ip);
ip := NIL;

2.2. Interface objects

To provide good syntax for method calling and to automate reference count-
ing we introduce Oberon-2 interface objects (records inheriting
com. INTERFACE, the corresponding pointer type is com.pINTERFACE).

For every COM interface IFoo inheriting IBar the following entities are
declared:

e The record type IFoo (interface object, 10 type), which inherits IBar
but does not add -any record fields. All such record types inherit
(maybe indirectly) com.IUnknown which, in turn, inherits
com. INTERFACE. IFoo adds its methods to IBar in the form:

PROCEDURE [com.STDMETHOD] (p: pIFoo) method(...).

Note that the declarations of the methods must be in reverse order
because of the XDS compiler feature. It is possible to use forward
method declarations to specify the order of methods before actual
declarations.

e The interface object pointer (IOP) type
pIFoo = POINTER "Oberon" TO IFoo.
e The variable

dIFoo: com.pITF_INFO,

XDS-COM — a COM binding for Oberon-2 and Modula-2 43

which is a pointer to the interface descriptor (typed com.ITF_INFO).
The interface descriptor must be created and initialized with its Init
method. Interface descriptors are used to link interface identifiers and
Oberon-2 types at run-time.

The first field vtbl of an IO is a "C" pointer to method table. For each
IO this field is initialized (by the Init method) with a pointer into the
method table of IFoo in such a way that it points to the first method not
belonging to com. INTERFACE (actually it is the QueryInterface method of
IUnknown).

So for an IO, we can make calls in convenient style:

p.method(...). (2)

At the same time, a pointer to IO may be used as an IP if a conversion
is provided. In this case it may be used as a COM interface pointer from
any language, for instance like (1).

This allows the export of interface pointers from XDS programs. If both
the client and server are the same program, the (2) call form is preferable.
Remember that you never need to call AddRef or Release methods of IOs.

Another field of every IO is info: com.pITF_INFO which points to the
interface descriptor of specific interface. This allows the use of an 10 to query
for interface identifier and type descriptor of the Oberon-2 type implementing
the interface.

The values of both vtbl and info fields are set by the Init method which
must be called for every I0. Note that if an IO is created by a function from
the XDS-COM library, it is initialized automatically.

The variable dIFoo needs initialization (NEW and Init method call). This
may be done in the initialization part of module which declares IFoo.

2.3. GUID search table

XDS-COM uses a hash table mapping GUIDs to comUtil.EL records. This
table is implemented by the comUtil module. As the com.ITF_INFO type
inherits comUtil.EL, interface descriptors can be (and actually are) included
into the hash table. It allows one to find the interface descriptor the and run-
time type information of interface object type given an interface identifier.

2.4. Example

We declare the IqHello interface with 3 methods — get/put a hello message
and output the message on the console. We create an Oberon-2 module
qHello and declare the needed entities:

44 Timofei Kouzminov

CONST
IID_IgHellox* = com.GUID{OE8A9DOESH, 20F9H, 11DOH,
com.GUID_ARR{0OA5H, 003H, 008H, OO0OH,
02BH, OE6H, OCT7H, 056H}};
TYPE
pcIgHello_VTBL = POINTER ["C"] TO IgHello_VTBL;
ipIqHello* = POINTER ["C"] TO pclgHello_VTBL;
IgHello_VTBL* = RECORD (com.IUnknown_VTBL)
put_HelloMessage : PROCEDURE [com.STDMETHOD] (
this : ipIgHello;
(*[in] *) msg : BSTR
(* BSTR is "Unicode string with length" type which
is standard to COM x)
) : com.HRESULT; .
get_HelloMessage : PROCEDURE [com.STDMETHOD] (
this : ipIgHello;
(*[out, retvall *) VAR msg : BSTR
) : com.HRESULT;
SayHello : PROCEDURE [com.STDMETHOD] (
this : ipIqHello
) : com.HRESULT;
END;
PROCEDURE IP_IqHello*(ip: com.ipIUnknown): ipIqHello;
BEGIN
RETURN SYSTEM.VAL(ipIqHello, ip);
END IP_IqHello; -
PROCEDURE IgHello_ IP#(i: ipIgHello): com. ipIUnknown;
BEGIN
RETURN SYSTEM.VAL(com.ipIUnknown, i);
END IqHello_IP;
VAR dIqHello* : com.pITF_INFO;

In gHello we also declare a class identifier (see Subsection 4.2) of the
class of HELLO objects:

CONST
CLSID_gHello* = com.GUID{OE8A9DOEBH, 20FSH, 11DOH,
4 com.GUID_ARR{0A5H, 003H, 00SH, 000H,
02BH, OE6H, OC7H, 056H}};

Now we proceed to declarations of 10 type:

TYPE
IqHello* = RECORD (com.IUnknown) END;
pIgHello* = POINTER TO IgHello;

XDS-COM — a COM binding for Oberon-2 and Modula-2 45

(* Forward declaration to ensure proper (reverse) order
of methods *)
PROCEDURE [com.STDMETHOD] ~ (this : pIqHello)
SayHello*() : com.HRESULT;
PROCEDURE [com.STDMETHOD] - (this : pIqHello)
get_HelloMessage*(
(*[out, retvall *) VAR msg : BSTR
) : com.HRESULT;
PROCEDURE [com.STDMETHOD] ~ (this : pIgHello)
put_HelloMessage*(
(*[in] *) msg : BSTR
) : com.HRESULT;

Here we declare the basic variants of IgHello methods to allow the
IgHello type serve as an IHO (see Subsection 3.1):

PROCEDURE [com.STDMETHOD] ~ (this : pIgHello)
put_HelloMessage*(
(*[in] *) msg : BSTR
) : com.HRESULT;
VAR p : ipIgHello; '
BEGIN
[:= SYSTEM.VAL(ipIgHello, this.ip);
IF p <> NIL THEN
RETURN p~~.put_HelloMessage(p, msg);
END
END put_HelloMessage;
PROCEDURE [com.STDMETHOD] ~ (this : pIgHello)
get_HelloMessage*(
(*[out, retvall *) VAR msg : BSTR
) : com.HRESULT;
BEGIN :
p := SYSTEM.VAL(ipIqHello, this.ip);
IF p <> NIL THEN
RETURN p~~.get_HelloMessage(p, msg);
END
END get_HelloMessage;
PROCEDURE [com.STDMETHOD] ~ (this : pIgHello)
SayHello*() : com.HRESULT;
BEGIN
p := SYSTEM.VAL(ipIgHello, this.ip);
IF p <> NIL THEN
RETURN p~~.SayHello();
END

46 Timofei Kouzminov

END SayHello;
At last we proceed to the initialisation of interface descriptor:

CONST ThisModule = "qHello";
BEGIN

NEW(dIqHello);

dIqHello.Init(ThisModule, "IgHello", IID_IqHello);
END gHello.

3. COM clients

3.1. Interface handle objects

XDS-COM clients may use imported interface pointers through interface
handle objects (IHO) — a subset of interface objects which have an interface
pointer assigned to an ip: ipIUnknown field defined for every I0. This is
because methods which are generated for each IO type simply redirect the
calls to the ip if it is not NIL.

That means that each (2) call to an IHO is redirected to a (1) call to the
corresponding IP.

An THO for a given IP is created by the procedure comCli.Instance.
This procedure creates and initializes an interface object of the appropriate
type, assigns the value to the ip field and sets a finalizer to perform Release
on the IP when the IO is destroyed.

Note that AddRef is not performed on the IP pointer. The logic behind
this is that after you called

P := comCli.Instance(ip, dIFoo)

you do not need the ip value any more. The first parameter of
comCli.Instance is actually a VAR parameter and NIL will be assigned
to it on the function return. So the total number of references to an object
will not change.

The procedure comCli.Instance is an examle of usage of XDS run-time
support. It is essential that new objects may be created while the type of
these objects is specified is not known at compile-time.

3.2. Other client utilities

The comCli module provides helper procedures for standard COM mecha-
nisms to import IPs — search for a class factory, search for an object of
a given class etc. The difference between comCli procedures and standard
COM API calls is that comCli utilities accept pointers to interface descrip-
tors, not interface identifiers and return IO pointers, not IPs.

XDS5-COM — a COM binding for Oberon-2 and Modula-2 47

3.3. Example

The client module qHello_c imports qHello. In this module we can create
and use an IHO of a HELLO object:

VAR
r: com.HRESULT;
itf: com.pIUnknown;
h: gHello.ipIqHello;
s: com.BSTR;

r := comCli.CreateInstance(
gHello.CLSID_gHello, (* Object class *)
NIL,
objBase.CLSCTX_ALL,

NIL, (* A remote server may be specified here *)
qHello.qlqHello, (* Interface needed *)
itf (* Put result here *)

);

h := itf(qHello.pIqHello);

s := comUtil.ToBStr("Hello, Sun!");

h.put_HelloMessage(s);

comUtil.FreeBStr(s);

h.SayHello();

4., COM servers

4.1. Performing objects

Oberon-2 objects that wish to export COM interfaces must be implemented
as performing objects (PO) of type inheriting com.OREC. The notion of PO
does not belong to COM but rather to COM implementation in XDS.

If you wish to implement a COM interface to an object which must reside
in some other place in type hierarchy, the usual solution can be applied. Just
create an intermediate PO type inheriting com.OREC and place a pointer
to the actual object type somewhere in the PO.

All POs must be linked in a cyclic list of all objects living at a particular
server. Usually there is only one PO list in an .exe or .d11 COM server.
POs are included in the list when being initialized by the Init method, an
object already in the list must be specified as an argument of this method.

The basic PO type com.0OREC implements QueryInterface, AddRef and
Release methods as needed for the IUnknown interface. AddRef and
Release use a ref_count field which is kept equal to the total number
of references to this object through IPs (ipIFoo) both from inside and from

48 Timofei Kouzminov

outside the application. When this number reaches zero as the result of the
Release method, the PO is excluded from the list. If there are no other
references to the object, it is a subject for garbage collecting.

4.1.1. Interface lists for POs

Every PO has the field itf which points to the list of interface list objects.
The type of each interface list object corresponds to an interface of PO
and inherits some interface object type, i.e., IFoo. But only for IUnknown
interface this type is IUnknown itself. For any other interface IFoo of a PO
of type OBJ the type of the interface list object is IFoo_i_0BJ.

IFoo_i_0BJ inherits IFoo but does not add any fields or methods: It sim-
ply redefines the methods of IFoo (including the methods of any inherited
interface object type IBar except IUnknown) to redirect calls to correspond-
ing methods of OBJ.

To provide this each IO has the field orec: com.pOREC which is used
only by interface list objects and points to the PO owning the list.

The default implementation of QueryInterface for PO scans the inter-
face list objects from the beginning checking whether the interface inherits
needed interface. So if the IUnknowun interface is queried, the same interface
list object will always be found each time, just as COM requires.

The methods of IFoo_i_0BJ can be generated automatically if OBJ has
the methods with the same names and argument types as IFoo. But some-
times it is useful to modify automatically generated methods for instance to
perform some argument conversions. Some useful conversions are presented
in the following table:

| Arguments of IO methods | Arguments of PO methods B
interface identifier (com.GUID) interface descriptor (com.pITF_INFQ)
interface pointers (IP) interface object (I0) pointers
Unicode strings character arrays
(wTypes.OLESTR, objBase.BSTR)

Module comUtil provides necessary utilities for string conversion

Interface list objects must be created for each PO after PO creation and
initialization. This is done by repeatedly calling the AddInterface method
each time specifying a different interface descriptor as the argument. This
method uses the XDS facility of finding object types by name and creating
new objects using a run-time reference to type descriptor.

For objects which are created by class factories provided by the
XDS-COM interface lists are created automatically.

XDS-COM — a COM binding for Oberon-2 and Modula-2 49

4.1.2. Lock counting

Each PO has the method Locks returning the number of external references
to this object. For ordinary POs the value returned is equal to the reference
count of the object, but Locks may be redefined for other PO classes. The
Release method actually checks the Locks result and excludes a PO from
the list only if it is zero.

4.2. Class factories

In COM, the notion of class is replaced by the notion of class factory. A
class factory is an object with interface IClassFactory which provides the
CreateInstance method of creating new objects. Class factories are regis-
tered by their unique (com.GUID) class identifiers. _

COM does not fix any implementation of class factory. XDS-COM pro-
vides two standard PO types to implement class factories:

e single-use class factory comSrv.CF_SINGLEUSE;

* multiple-use class factory comSrv.CF_MULTIPLEUSE. “Multi-separate”
class factories introduced by COM are implemented as a particular
case of multiple-use ones.

Class factories of both types are created by corresponding methods of a
server object (see Subsection 4.5).

Class factory POs (CFs) are included both in the cyclic PO list and in
the hash table allowing to find a CF with the class identifier.

Just according to COM rules, a single-use CF is linked to a previously cre-
ated PO and always returns this very PO as the result of CreateInstance.

A multiple-use CF remembers the type of a PO and the list of necessary
interfaces. Each time CreateInstance is invoked, it creates a new object of
this type and supplies it with interface list objects.

4.2.1. Registration of class factories

A class factory may be registered with COM using API call
CoRegisterClassObject. When CF's are registered, the registration handle
returned by API call is stored in the reg field to provide unregistering.

As registration automatically increases the reference counter by one, CF
redefines the Locks method in such a way that the reference introduced by
registration is not counted. At the same time additional locks introduced by
the LockServer method of the IClassFactory interface are counted. So a
CF may be released if it has no external references except the one introduced
by registration and no additional locks.

For every CF a finalizer is provided which unregisters the class factory
if it was registered.

50 Timofei Kouzminov

4.3. Containment and aggregation

As there is no implementation inheritance in COM, two alternative methods
are used to provide the object code re-use. In both methods an object called
outer object contains among its data a reference to an inner object.

The first method is called containment. When this method is used, some
methods of the outer object are implemented using calls to methods of the
inner object. XDS-COM does not provide any special means to implement
containment as it can be done in a straightforward way.

Another method for the code re-use is called aggregation. When this
method is used, we say that the outer object aggregates the inner one.
When the outer object is queried for an interface possessed by the inner
object, it can return an IP of the inner object. In fact the inner object
impersonates the outer one in this particular interface. That means that
all methods of IUnknown inherited by this interface must be delegated to
corresponding methods of the outer object.

COM itself provides no special tools to implement aggregation except
when an object which must be aggregated is created by the CreateInstance
method of a class factory, an additional parameter specifies the IP of the
outer object.

XDS-COM automates aggregation and allows the objects implemented
using XDS-COM to be aggregated by and to aggregate objects implemented
without XDS-COM, for instance in C/C++. That means that all links be-
tween inner and outer objects must be IPs, not pointers to POs.

Each PO has a list of IPs of inner objects aggregated by it. For every
object in this list two interfaces base and derived are specified. Each inner
object is responsible (queried by the QueryInterface method of the outer
object) for the interfaces which inherit base and are inherited by derived.

When an inner object is added to this list its lock count is increased
by calling AddRef method of IUnknown interface. When an inner object is
queried for an interface provided by this object its QueryInterface method
is called. That means that IUnknown methods of the IP which is included
in the list of inner object must not be delegated to the outer object but
handled by the object itself. Such IPs are called controlling IPs and are
marked by a flag in an interface object.

If an object is aggregated, an IP to the outer object is stored in the
inner PO. When this IP is not NIL, the calls to the IUnknown methods of
all non-controlling interfaces of the object are delegated to the outer object.

By default, only interface objects created for IUnknown interface are
marked as controlling ones. So the common practice is to implement aggre-
gated objects is to provide two interfaces: controlling IUnknown and non-
controlling interface with the methods specific for this object.

The procedure com.Aggregate may be used to create links between ex-

XDS-COM — a COM binding for Oberon-2 and Modula-2 51

isting inner and outer objects. But the preferred way to create aggregated
objects is to let the class factories do it. A single-use class factory checks if
the object being accessed must be aggregated and calls Aggregate if neces-
sary. :

When a multiple-use class factory is initialized a list of class identifiers
of inner objects accompanied with base and derived specifiers may be cre-
ated. For every new object created by the class facrory a set of appropriate
inner object is created.

4.4. Non-standard object implementation

Certainly, anybody can use any other schemes of object implementation.
It is possible to have a linked structure of objects instead of a single PO
implementing different interfaces. It is possible to implement your own class
factories. XDS-COM allows this but provides a simple scheme described
above which guarantees that the somewhat complex COM rules are obeyed.

4.5. Server objects

A COM server is an executable program or a DLL. In both cases we need
a special object (usually only one in a server) to implement some function-
ality of the server itself. This object is named server object, has the type
comSrv.SERVER and is actually a PO. So a server object is included in the
same cyclic list as all other POs. This allows the use of server object as a
reference to the PO list when creating new POs.

4.5.1. In-process servers

The in-process server in COM is a DLL which is invoked when an object
of particular class is needed. Objects implemented by an in-process server
exist in the same address space as the client application.

Each in-process server must provide two functions: D11GetClassObject
— to obtain class factory for a given class identifier and D11CanUnloadNow —
to query whether there are no objects in use and the DLL may be unloaded.
Both functions are implemented using methods of the corresponding server
object comSrv.Server.

D11CanUnloadNow calls the Locks method of all POs in the cyclic list and
returns FALSE if any object answered with a positive value.
D11GetClassObject uses the hash table to find the CF for a given class
identifier.

4.5.2. Local and remote servers

Both local (run on the same computer but as a separate application) and
remote (run on another computer) COM servers are implemented as Windows

52 Timofei' Kouzminov

executables. There is no difference between local and remote servers from
the implementation point of view, all remoting stuff is transparently handled
by the operating system.

XDS-COM provides necessary functionality of executable COM servers
through methods of server an object. This functionality includes:

e Registering the server as a COM application when run with the switch
/RegServer.

o Registering and unregistering class factories.

e Executing the message loop and stopping it when it is time to unload
the server (method Serve).

If an executable server is run with an /Embedding switch (as it is run
automatically by COM), it is unloaded when all its objects report Locks ()=0.
If the server is run manually, without the switch, one extra reference is
counted for the server object itself thus avoiding automatic unloading.

4.6. Example

Module gHello_s implements an executable (local or remote) COM server.
First, it declares a PO class HELLO inheriting com.OREC, initialisation meth-
ods for this class and methods implementing interface functions:

TYPE
HELLO* = RECORD (com.OREC)
msg : BSTR;
END;

pHELLO* = POINTER TO HELLO;
PROCEDURE (this : pHELLO) Init#(list: com.pOREC);
BEGIN
this.Init"(list);
this.msg := comUtil.ToBStr("Hello, world!");
END Init; '
PROCEDURE (VAR this : HELLO) put_HelloMessage*(
(*[in]*) msg : BSTR
) : com.HRESULT;
BEGIN
OleAuto.SysReAllocString(this.msg, msg);
RETURN Windows.S_0K;
END put_HelloMessage; .
PROCEDURE (VAR this : HELLO) get_HelloMessage*(
(*[out, retval] *) VAR msg : BSTR
) : com.HRESULT;
BEGIN

XDS-COM — a COM binding for Oberon-2 and Modula-2 53

msg := UleAuto.SysAllocString(this.msg);
RETURN Windows.S_OK;
END get_HelloMessage;
PROCEDURE (VAR this : HELLQ) SayHellox*() : com.HRESULT;
BEGIN
comUtil.PrintBStr(this.msg);
RETURN Windows.S_OK;
END SayHello;

Then, a class for interface list objects is declared with all needed methods.

TYPE

IgHello_ i HELLO* = RECORD (gHello.IqHello) END;

pIgHello_i_HELLO* = POINTER TO IgHello_i_HELLO;
PROCEDURE [com.STDMETHOD] (this : pIqHello_i_HELLO)
put_HelloMessagex*(

(*[in] *) msg : BSTR

) : com.HRESULT;
BEGIN

RETURN this.orec(pHELLU).put_HelloHessage(msg);
END put_HelloMessage;
PROCEDURE [com.STDMETHOD] (this : pIqHello_i_HELLO)
get_HelloMessage*(

(*[out, retval] *) VAR msg : BSTR

) : com.HRESULT;
BEGIN

RETURN this.orec(pHELLU).get"HelloHessage(msg);
END get_HelloMessage;
PROCEDURE [com.STDMETHOD] (this : pIgHello_i_HELLD)
SayHello*() : com.HRESULT;
BEGIN

RETURN this.orec(pHELLO).SayHello();
END SayHello;

Then, we create a CF object for HELLO class:

VAR

c¢f : comSrv.pCF_MULTIPLEUSE;
CONST

ThisModule = "gHello_s";
BEGIN ‘

g-CF := comSrv.Server.NewCF_MULTIPLEUSE(
gHello.CLSID_gHello, (* CLSID of objects to produce *)
ThisModule, "HELLO", (* Name of PO type *)
nn ’ llll’ llll’ ""’ (* versioning info *)

54 Timofei K ouzminov

FALSE (* Not a multy-separate server *)
);
g-CF.WillHaveInterface(qHello.dIgHello);

At last, the server is run:

‘comSrv.Server.Serve;

5. Problems to solve

5.1. Technical problems

5.1.1. Interface naming

When specific interfaces are passed as parameters to XDS-COM utilities,
pointers to interface descriptors are used to designate interfaces. At the
same time, an IO type is created for every interface in use. It seems logical
to place a pointer to an interface descriptor into type descriptor provided by
XDS run-time support for an IO type, as there already is a reserved field.

But this is not enough because we need access to run-time interface type
information even if there are no IOs of this type. A language extension would
be convenient which allows the use of names of object types as constants
of “type descriptor” type (oberonRTS.Type). This will allow one to get rid
of interface descriptor names such as dIFoo and use type names like IFoo
instead.

5.1.2. Threading

At present XDS-COM is used in single-threaded COM servers. We need more
investigations about using it with different COM threading models — namely
apartment threading model with multiple threads each having an isolate set
of objects and free threading model where every object must maintain its
integrity while being used by multiple threads and no message dispatch loop
is needed.

5.2. Automatic generation

5.2.1. Automatic generation of interface definitions

Microsoft implementation of COM provides a language to define COM inter-
faces. This language is an extension of IDL, a well-known language used to
define RPC and CORBA interfaces. The Microsoft midl translator converts
IDL definition into a C/C++ header file. All standard COM interfaces are
defined in IDL and corresponding headers to be included in Windows.h are
generated by midl.

XDS-COM — a COM binding for Oberon-2 and Modula-2 55

There is another language to define COM interfaces — the binary lan-
guage of type libraries (.t1b files). In Microsoft implementation, this lan-
guage is interoperable with IDL: a type library may be generated from an
IDL file which, in turn, may import definitions from a type library.

From another side, IDL is not an essential part of COM and some imple-
mentations can do without it. For instance Delphi takes a declaration of an
Object Pascal object and constructs all necessary COM stuff.

There are the following methods to provide necessary functionality in
XDS-COM:

e Not to use IDL at all. Instead, modify the compiler to allow specifica-
tion of more COM-specific details in declarations of IO types, methods
and method arguments, for instance in brackets, like

TYPE IFoo = RECORD ["uuid(...)", "hidden", ...]
END;

Generate type libraries using compiler output or dynamically, using
run-time type information. In the latter case, this information must
be more detailed and include method names and parameter types.
Generation of IDL may also be needed to generate to provide exporting
custom COM interfaces to programs written in C/C++.

e To write a converter from IDL into Oberon-2 definitions or directly into
sym-files, analogous to midl. To become free of Microsoft utilities,
provide generation of type libraries from IDL.

5.2.2. Marshalling

Using local and remote servers in COM requires marshalling — converting
method calls into a format suitable to transfer between address spaces. Stan-
dard marshalling is performed by so-called proxy/stubs DLLs. The C/C++
sources of such DLLs are generated by midl from IDL definitions. At present,
XDS-COM implementation can use proxy/stub DLLs generated by midl and
compiled by Visual C.

In XDS-COM we should either generate Modula-2/Oberon-2 code from
interface definitions or provide an unified prozy/stub DLL which uses run-
time type information to accomplish its task. In the latter case run-time
type information must be significantly enriched.

6. Conclusion

Even not mentioning distributed programming, implementation of COM is
necessary for any Windows-targeted development system because Windows-

56 Timofei Kouzminov

compatible programs should support OLE and more API functions are im-
plemented using COM (for example DirectX).

XDS run-time environment appeared to be suitable for COM implemen-
tation because of the following features:

e XDS supports static and partially run-time type information which
allows to automate many of the COM functions. In particular, the
possibility to assign a type value to a variable and use this value for
typechecks and object creation is used in generic implementation of
IUnknown and IClassFactory interfaces.

e XDS fully supports dynamic linking and DLL creation, including ini-
tialization and finalization code. This allows to create in-process COM
servers and compile Oberon-2 interface definitions into DLLs used both
by client and server. '

e XDS allows direct specification of type attributes. That means, in
particular, that a pointer in a Oberon-2 program can be marked as
"C" one to circumvent garbage collection.

At the same time, proper implementation of COM under XDS requires
creation of additional tools analogous to Microsoft midl compiler. This is
the topic of further work.

References

[1] XDS On-Line Documentation, http://www.xds.ru/xds.

[2] Kraig Brockschmidt. What OLE Is Really About, Microsoft Corporation, July
1996,
http://www.microsoft.com/oledev/olecom/aboutole.htm.

[3] The Component Object Model Specification (draft), Microsoft Corporation,
October 1995,

http://www.microsoft.com/oledev/olecom/title.htm.
[4] OLE Programmer’s reference, Microsoft Win32 SDK Online Books.

[5] Direct-To-COM Compiler. Technical Documentation and Overview, Oberon mi-
crosystems, Inc.,
http://www.oberon.ch/prod/dtcqocu.html.

[6] Implementing COM Objects with the Direct-To-COM Compiler, The Oberon
Tribune, Vol 2, No 1, January 1997.

