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North Pasific diagnostic
circulation model*

V.I. Kuzin and V.M. Moiseev

Numerical diagnostic model, based on the finite element method [1] is presented
in the paper. Numerical experiments for the estimation of the role of wind and
thermohaline factors in the North Pacific basin were carried out by the model.
Diagnostic calculations both the integral stream function and 3-d baroclinic velocity
fields were done with the use of the wind-stress [2], temperature and salinity data
[3]. The one-two degree resolution was used for the basin, with the tropical zone
included until 30,5° S.

Numerical results and the comparison with the results of the papers [4, 5] are
presented.

1. Ocean circulation diagnostic model

System of equations for diagnostic calculations of the 3-d velocity fields by
the temperature and salinity fields prescribed has the form:

3U a U =
+(f - 6) VP+ £U3_+F (1)
L 4
divU + (;_w =0, (2)
oP
p = p(T,S). (4)

The equations (1)—(4) are written in coordinates (A, 8, z) on the sphere of the
radius a; A — longitude, @ = ¢ + 7/2, ¢ — latitude, z - vertical coordinate
with the positive direction from the surface to the center of the Earth.

= (u,v) ~ vector of horizontal velocity components, w — vertical velocity
component, m = 1/asin®, n = 1/a, a = 6.38 x 10%cm, f = 2wcosf -
Coriolis parameter, w = 0.73 x 10~ - angular speed of the Earth rotation,
po = const — standard density, p — density, P - pressure, v — vertical mixing

coefficient, T - temperature (°C), S - salinity (°/o0), k — unit vector by
z-direction, é = m cosfu,
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VP = (ma—)\,n——ag), divU = m(a)\ 6 )
au

F = 4;(mAU + (n? - m? cos? §)U — 2m”* cos § - k x a)\)

where A; is the horizontal mixing coefficient,

i) qu + 9 d n®dyp
3)\ 8\ 88 m 06’
0p _ 0y dy¢ dy dp
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Ap= —

Boundary conditions for (1)-(4) are as follows:

oU 7

at the surface (2 =0): w=0, Vo, = s (5)
at the bottom (z = H(A,9)):
au — (= 1 [H
w=U-VH, v =-FT, (U_ﬁj0 vds), (6)
at the cylindrical lateral boundaries (I' = [o UT}):
a) ‘solid’ boundary (Ip): %ZI =0, Un=0, (7)
b) ‘liquid’ boundary ([';): U= U°. (8)

In the relations (5)-(8) ¥ - wind-stress vector, R — bottom drag coefficient,
[, 7 - tangent and normal unit vectors of the lateral and normal directions to
the boundary I" accordingly. Index (°) marks the values, which are specified.
At the initial time values u° and v° are prescribed. Solution of the system of
equations (1)—(8) is carried out by traditional technique [6] by separating of
the external (barotropic) and internal (baroclinic) modes. For thls purpose
velocity field U is presented as a sum U = U + U', where U = £ [ Udz,
U'=U-T.

For the determination of the external mode component U the integral
stream function 9 is used. The equation for this function is derived from
(1) averaged by the vertical by applying the operation rot,. As a result the
integral vorticity equation in the term of the integral stream function can
be presented in the form:

%(v(%w)) + v(%w) —~ rot, (£"V) = — rot,(-mLH [o " Vpdz) -

1 [H , T _ 1
rotzﬁfo L(U')dz + 1ot~ + AV(VHE),  HE = v(zV¥), )
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where £* = E+{7 rot, § = (%9/% - gaa;f.-ql) rf (g1, ¢2), with the boundary
conditions:

10
atTy: $=9° £=¢° (10)
Equations for U’ have the form:
ou’ " = 1 1 (H o ou’
o T LU = ~—P—(VP— f VPdz) + 5ovo -
ou'’ ,
7 (v a—) 3 [ LW~ 1. (11)
Here .
ou’ au’ auv’ -
, = — - ’_
L(U)_mua)\ +nu—p +w +(f 8) - kxU
! 2 '] aU,
1 |mAU" + (n - m?cos’ O)U’ - 2m? cos Ok x x|

au

T
50 + mUu cosé.

I = mu'—U_+ nv’

Advective terms in (11) are transformed before discretization from gra-
dient to special divergent form with the using of some potential function

analogues
zZ z
ﬁ:-—j udz, ﬁz—/ vdz.
- Jo 0

Vertical velocity component can be determined from the relation

o 9 n,
w= m(a—}-l- %’%v)

With the using of these relations advective terms can be written as follows:

au’ au’ ou’
! —
BU' = muaA + nv T +wc?z
_ (3 out o “aU) (3 n U @ n,@U’)

"Mox ez T 8:"on/ T ™\ B6m" 8z ~ozm’ 00

2. Additional notations

Let us denote the 3-D domain of the basin by D, with the lateral boundary
I'. Then we denote the inner product for the scalar functions ¢, ¢
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dAdé

(00 = [ vpde da=T0

For vector functions F and Q (F = (F\, Fs), @ = (Qx,Q¢)) the inner
product will have the form ' ‘

at the domain @:  (F,Q)a = fﬂ (FxQx + FsQp) dQ = /ﬂ F-Qde,
at D=Qx[0,H]: (U,V) =j wdD, dD = dzdS.
D

Now we describe the discrete analogues of D and 2 which we denote Dk
and Q" corresponingly. For the boundaries T’ and S the notations I'* and
Sh are used.

Triangulation of the 2-D domain is carried out as follows: the uniform
grid with the steps AX = hy = 2°, A0 = hy = 1° is introduced. After
this the triangulation of the domain is made by the diagonals of the rect-
angular cells of positive and negative direction in turn. The distribution
of the triangles vertices forms the “chess” grid.
These nodes are associated with the fields T', S, P,
¥, The grid we will call the “main”. For denoting
the velocity components u, v the nodes are shifted
relatively the main grid on the half of the step.
This combination is the triangulated analog of the
E-grid by the Arakawa classification [7]. By the

s, @ @
0 ———-I-———\*:----I-—-

©®,." o, @

Figure 1. Main support:
o — scalar points; x — vector

points .
vertical direction 18 levels are introduced: T, S,
2 ! . P, u, v - are associated with the integer index
k-1 @ T * levels, while w - with the half-integer index levels.
~— ’H One can represent the domain as a combination of
b1 T the triangles. Summing all of the triangles with
pd X / the common vertex R gives the support (Figure 1).
x \:\_____,,4.-— Figure 2 represents the nodal distributions for the
L___ A . different values by the vertical 3D cells is the

S/ ‘ / combination of the prisms with the support (Fig-
1""1'\ ure 1) and the height AZ, = Zn+% -Z,_ 1 =
— (Zns1 — Zn-1)/2, where n is the number of the
Figure 2. 3-D cell level n =1, N.
In addition, the barycentric (B-) cells in the Qh are also used for the
“mass lumping” representation for some terms.

\
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3. FEM discretization of the integral stream
function equation

For the use of the Galerkin procedure for (9) discretization the weak form of

the problem is needed. For this purpose let us consider the integral relations
for ¥,& € W3 (R)

_9 (%vw, V@)ﬂ - ( R VY, V<I>) — (rot;(§*VY¥), @) =

at H?
1 T
_ mtz(m- ]D VPdz, @)Q + (rot, ;E"I’)n’ (12)
—_ 1 1
(HE, ®)g = (EW’ v«p)n, Vo € Wi(Q). (13)

Here £* = £/H + f. In the relation the influence of the vertically averaged
nonlinear term as well as horizontal mixing term were neglected. The coor-
dinate function ® for nodal point R is the piece-wise linear one, defined at
the support Qg. It is equal to one at the node R and has the support 0 in
any nodes of Q. ®(),0) can be presented in the form

HA— AR )8 — Or
ha he '

where (i) is the number of the triangles included to the support

D8 =1+af + 8%

Using these notations the function is presented as the linear combination
T
— ()
U= ZZ Vo) @,y (A, 6).
i=1 A
Here A; is the i-th triangle of Qg and g¢(?) is its vortices. Let us write out

the representation of the terms of equation (12) for the R node:

1. The first two terms have the form

1 1 ( ,0000p  ,0¥ %R
=VU, Vo) =[ = n?
(H R)m fgg H ( ax ox " 96 6 )dg

hy
2hy
(D(3) + DH)) Up + (3(4) + E(5)) Up + (F(5) + F(G)) U + ROwg,

RO =%"RY, i=T1p. ' (14)

1
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Let us consider, for example, the integral by the first triangle (Figure 1).
Here

AW = () [m® (1) e+ @m0 5],
A

B — (%)(1) [ﬁ(l)(gﬁ)zag)ag) + (nz/m)(z)ﬁg)ﬂg)], (15)
A

RO = _(A(l) +B(1)),

where bar marks the averaging by the triangle i.e., ¥ = glz Ja pds. A, B,
R - vertices of the triangle A;; A1), B R(1) are the coefficients values in
the vortices.

The coefficients for another triangles can be obtained in the same way.
The relation (15) is produced by the summation of the integrals for all
triangles.

The discrete form for the bottom drag term has the same form. In this
case the coefficient 1/H in (15) has to be changed by R/H.

2. Advective terms are combined with the planetary vorticity term. Let us
consider the relation

—rot; (pV¥) = —J (¢, ¥) = 7(¥, 9),
where
_n (V02 _ 200
J(¥,¢) = mn (6)\ 36 ~ 90 3)\)'

The associated integral relations have the form
(" rOtZ(‘PV‘I')! ‘Dﬂ)ﬂ'ﬁ = (_J(CP’ ‘11)1 q)R)Q’;i .

The discretization for the latter formula was carried
out with the use of the lumping procedure on the bari-
centric (B)-cell (Figure 3). This permits to construct
the up-stream mass-conserving scheme for the term
Figure 3. Barycent- [1]- Without presentation the details of this proce-
ric (B=) cell dure here, let us write out the final discrete operator,
which can be presented as follows:

(J(¢,9),8,),, = 4;%4+B;¥p+C;%0+D;Cp+E;¥s + F;¥p+R;¥p.

R
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_ A A
2 1

D* - |D7| E* - |E|
Dj==—=%— Bi=—7%
R; = (A;+ B +Cj+ Dj + Ej + Fy),
A=V -5® pBr=p®_zl cC*= 7@ — 53,

b = 0 B g0, =gl )

B* - |B*|
2 1

c*-|c|
2 ?

F* — |F*|
2

>
|

Bj = Cj=

F; =

Here &, is the piece-wise constant characteristic functions on the B-cell Q’,‘%.

3. The wind-stress forcing term is discretized on the B-cell.

(rot. (p:H) @R)m ;[ [(pDH) cos(l, A)+( H) cos(l,0)]dE s,

where I'g is the contour of fl , | is the tangent direction to I'r.
Denoting by 7°® = ¢, + (pb/ 2, and |ab| = meas(a. b) - the length of the
segment (a,b) one can write:

T\ 2 de T
(rOtz(—o“E)"I’)ﬁ,.=p—o‘ﬁ el - 2" abl+ 7 [ =22) 1sal +
(2 + )|f1+(p—H-—;—*H)“’|cd|—(—+— pel],  16)
7:0.3~/_. '

4. The forcing term, describing the joint influence of the baroclinic®y and
bottom relief is approximated in much the same manner as the wind-stress
term by substituting the vector (1/poH) [f Vpdz to (16) instead of vector
T/pH.

4. Discretization of the baroclinic velocity
equations
The integral relations for the problem (11) in accordance with the Galerkin

procedure by multiplying these equations by vector-functions and integrat-
ing by parts. As a result the integral relation for the node r has the form

8U' x "4 Fad ! 3 6U BQ
(G 8) +BU B+ (- 0F 0. 8) + [ v

f AL( ,0U' 8%,  ,0U' 0%,

- 2 _ m2?cos? O\U'S -
m =Y B +n' g )dD ./;)",‘AL(R m* cos* O)U'®,dD
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f 2A;m? cos 0k X —— UL =—9,dD = ——(VP— —f VPdz, & ) +F, (17)
B oA Po

!
F= /Ayp aUds+/

Coordinate vector-function ®, has the values (0,9,), (®,,0), where &,
is the piece-wise linear function, which has the value one at the node r and
zero at any other nodes. Let us note that the cells D} and QF are shifted
by direction on the value hy/2 relatively D% and Qb.

-(I1,9,).

z—O

A(9)
k172 - 7
k 5
ko172 - i
Z
Figure 4. 3D C-cell; ZX(Y)-section Figure 5. 3D C-cell; XY-section

1. Let us consider first the discretization of the advective terms represented
by the integral form (BU’,®,)ps. Up-stream FEM analog is constructed
with the lumping method on the circumcentric (C) - cell D} (Figures 4, 5).
For this purpose we denote piece-wise constant trial functions ®,, which is
equal to one at the C-cell D). Advective terms can be written in the form:

' 9,90 9,00 0..0n 3rﬂ£]
BU_m[(—aAUaz+ UBA)+( 557 5z U+6U68 U)

Then the integral relations for the advective terms can be written as follows:

(BU',®*) =~ INU, UM+ I°(U', U,

aU) + iU'm‘r]ii*aup _
0z

9z" ox
18, 0\ 8 ,00\] <
/- mUy [BA( 5:)* 7 (3,\)]‘I’ db,

P, Ut = fD [i(_yf?_c’i)Jr Il ( U)]@ dD -

A ! * 1
I (U,U)_. m[&\ ~U

« 00 8z m 0z 046
. dn - 9, .
U: [% -E%U) + ae( U)]@ dD,

where U* is the piece-wise constant function U* = 3 .cps U/ ®;. From the
latter relations with the use of the Green formula one can obtain
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-

MU, U = % ]r ;- U’)% dr = INU', U*),
Az

P, v = ';1—*‘ . U, - U’)%—I{dPE ', u).
8z

Here I'} ,, ['j, are the contours limiting the cell D} at the cross-sections
(A, 2), (0, z) accordingly. Positive directions of the integrating is counter-
clockwise.

Function U’ according to the up-stream technique is calculated by the
formula

U'= Y (UaXa—(1-32)Ua), da= (N5,
AeDp

where

A = {1, it dU/OA>0, o _ { 1, if 8/96(n/mU) >0,
A7 o, if aU/8x<0, A7 V0, if 8/88(n/mU)<o0.

Finally, the discrete form of the advective terms can be presented by the
relations:

MU', U*) = AjUY + DU} + R}U! (k — 1) + R)U! (k + 1) + R}U!(k),

! U! ! Uf
I{(U',U") = By 3'2* ¢ +FIUF; E L ROU! (k—-1)+RSU! (k+1)+ RSU (k),
_ 8ha —|84a| ke _ 8a — |8 he
=T P
8 a — |84 he 8" — |6"u| hg
Ao Tz P26 Az 172 170
By = 2 n’ R 2 n’

R} = —(A;r+ D1+ R} + R}),
d5(n/ma) — |8(n/md)| hy

_ &(n/ma) ~ |8(n/m)] hy

B[ — FI

2 m 2 m
R = 8 (n/md) — |8, (n/mi)| ﬁ;}_, R = &3 (n/mi) — |5§'(ﬂ/m‘f‘-)|h_4\,
2 m 2 m
R} = —(B; + Fr + RS + RY);
O\t = (figyrj2 = Bro1/2)im1/25 O\E = (g-1/2 — Bk 2)i41/2-

Here index k denotes the number of the vertical layer, where the central
node is situated.

2. Both evolution and Coriolis terms are approximated on the base of the
mass-lumping method at the C-cell:



22 V.1. Kuzin and V.M. Moiseev

au’ au] SA;
(Tat_’q'r)m. ~ ot AZ"% 3’

(f = K x U, @) pp = ((f =K x V"), Az Y %"‘—
i(r)

3. For the discretization of the vertical mixing term the lumping technique
with respect to the horizontal coordinate is used. That means that the
coordinate functions in this case are piece-wise linear by the vertical and
piece-wise constant by the horizontal coordinates. So, the discrete form is
as follows:

au’ 9%, ou’' 0%, Zryr QU' 00,
D;-VE 0z b = %/ Y9z 0z dD_%/,-/zk_l Y8z 0z ds

yk—l/Q 7 ’ uk+1f2 7 y) ]
= | ——L_(U1-Ui_y) — ———(Ups1—U, SA;,
[Azk—ll‘z( k k 1) AZk+1/2( k+1 k) %

k=T,N;, vij2=VN,4 =0

4. To obtain the discrete operator for the term, describing horizontal diffu-
sion the interpolating functions are chosen piece-wise constant by the vertical
and piece-wise linear by the horizontal coordinates

U 08,  ,0U' 9%
2 r 2 r _
/D¢AL(m axox " o0 aa)dD“

! !
ZAZkf AL(mzav 8%, +n23U a&,)dg’
i(r) ai

ax 9x a6 00

aU’ 9 aU' 9
2 r 2 r —
fA,.A'(m % ox ™ 8 a9 )m_

b O a0 i - 0P,
S“‘AL[m2 (EEU’@")B_AMZ(E@;U;@J’) 96 ]

where j has the values of the vortices of i-th triangle. As the result the
discrete operator for the diffusion term can be written as follows:

U 0%, LU’ 0%
2 r 2 r _
/D;‘AL("‘ ax ox " 56 08 )‘w‘

ALjZ)S‘-‘-*ZUJ‘["‘Z ﬁﬁ*"’ﬁhﬂ’
tr J
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Ap(n? — m? cos? 6)U'®,.dD =

D}
AL(n® = m? cos? 6), UL AZg1/2 Y 22,
i(r)
au’

2 >~ —_

/D? Arm©cosé EhY P,.dD =

——A SA; ,3‘1’5

ALAZ,,_ngmzcosﬁ 3 E(U 3_1\)’

i(r) 7(1)
k=T,Nz, AZ;=0,

5. Finally, let us come to the pressure gradient approximation. First of all
we remind that the nodes with which the pressure is associated are shifted on
the half of the step h relatively the velocity nodes. In this case the pressure
gradient operator will have a form of centered derivatives relatively node r.
Denoting the pressure nodes, surrounding the velocity node r by R, C, D,
-E, the operator can be written in the form

BP * ~"_I‘ PD"P,- aP * ~_rPC_Pl"
(ma,‘ﬁr)a.m S,.T, (naa,@r)~n —_

where S is the measure of the support of the quadrangle RCDE and the
overbar denotes the averaging over this support.
5. Realization with respect to time

Equations can be rewritten in the operator form

au!
(9tr + AcU: + AkU: + AyU: + ALU: =F,, (18)

where:

A¢ - the advective operator,
Ag - the Coriolis term,
A, — the vertical diffusion operator,
A - the horizontal diffusion operator,
F,. - the right-hand side of the equation.
The horizontal diffusion term is calculated by the explicit procedure at

the time level (p — 1) and the vertical diffusion term by implicit one at the
level (p). For the Coriolis term, the semi-implicit presentation is used [8)
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AU! = M[UIPD 4 o(UIP) — UHP=1), a0, 1]

After linearization relatively time level (p) advective operator is parti-
tioned into two parts, A¢ = A¥ + Ay, where AY is the operator acting along
the vertical direction and A} — along the horizontal directions. The first part
is attributed to the 1mphc1t time step, whereas the latter one is calculated
at the explicit time step. As a result (18) can be written in the form

BU’ "p) "(p=1)
1UP —[AL+AZ+ (- a)AJUPTH . (19)

The system of equations (19) is resolved by the matrix factorization
method.

6. Results of diagnostic calculations

6.1. Monthly averaged climatic integral stream function

Quasi-stationary solutions of (12) were obtained. Monthly averaged wind-
stress [2] is used as forcing. The solution for R = 0.5 cm/s is presented in
[9]. One can see that in the northern part of the basin the highest intensity
of the gyres is reached during the winter season and the lowest — in summer.
In the southern part, the distribution is opposite. This fact has been marked
in the works [2, 4, 5].

The reason of this behavior of the solution is the deeper extrema of
the wind-stress rotor in the northern hemisphere in winter. The centers
of the gyres of the integral stream function (ISF) correspond to the local
extrema of rot, 7 with the cyclonic circulation in the zones with minima of
ISF and anticycloni¢ rotation corresponding to the zones with the maximum.
Absolute values of the rot, 7 define the intensity of the gyres. The results
of the calculation show that in the Kuroshio region south of Japan the
highest values of the mass transport are reached in the winter time (appr.
30 Sv.), which is correlated with the wind-stress rotor. However this result
is notin agreement with the observations of the Kuroshio mass transport
being calculated by the sea level differences [4]. This fact indicates that
the reason of the annual variations of the Kuroshio mass transport is not
connected directly with the wind-stress distribution. On the other hand,
the inclusion of the integral influence of baroclinicity to the right- hand side
of the vorticity equation as an additional forcing term leads to the results
with the mass transport maximum in summer [9].

The decrease of the bottom friction causes some intensification of the
barotropic currents. The quantitative variations of the mass transport are
presented in the table with the comparison with the results [2], obtained by
Sverdrup’s relations.



North Pasific diagnostic circulation model 25

Integral mass transport by the western boundary currents

. R=5-10"'" | R=5-10"2
Month | latitude (2] cm/sek cm sek
January | 48° N | 50440 20 30
July 52N | 10 5 8
January 30° N 90+ 12 59 80
July 30° N 40 38 47
January 6°N |[50+14 27 40
July 11° N 30 8 18

Let us consider now the anomalies of the monthly averaged values of
ISF from the seasonal values, presented in Figure 6. The .résults are ob-
tained in the following way: seasonal values of the ISF are denoted by the
averaging over three months. The months for the seasons are as follows:
Winter (February-April), Spring (May-July), Summer (August-October),
Fall (November-January).

For the analysis of the results three zones are separated: A (30°N-
60° N), B (10° N-30°N), C (10°S-10° N). Then, the seasonal values of the
ISF were subtructed from the monthly values and the extrema of these
deviations were evaluated for each zone. The graphs presented in Figure 6
are drawn by these values. Let us consider the results for each zone.

Figure 6. The extrema value of anomalies (Sv) (monthly-seasonal):
1 - A-zone; 2 — B-zone; 3- C-zone

Zone A (Subpolar frontal zone). The most essential variations of the am-
plitude are observed in the winter months. In the spring time, the variations
decrease, and in summer they are small. The reason of nonstable circula-
tion in winter is connected with the transformation of the wind-stress field
which has the high activity in this zone of subpolar front and is causes by
the interaction between the Siberian High and the Aleutian Low which is
very intensive in this period.
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Zone B (Subtropical frontal zone). The transformation of the mass trans-
port during the seasons still exists, but is significantly weaker than in A-zone.
The fall-winter months also have the highest activity but the maximal val-
ues of the anomalies reach only 25 Sv. against 60 Sv. for the same period in
Zone A.

Zone C (Equatorial frontal zone). This zone is characterized by the mini-
mal values of the variations both in the summer and in the winter seasons.
ISF distribution is characterized by the dipole structure, the cyclonic gyre
- to the North of the equator and anticyclonic one — to the south. In spring
the anticyclonic circulation increases whereas cyclonic one decreases and in
fall — vise versa. In Figure 7 deviations in the A- and C-zones are positively
correlated and are in the antiphase with the deviations in B-zone.

sV

20
10

-10
-20
-30

Figure 7. The extrema value of anomalies (Sv) (seasonal-annual):
1 - A-zone; 2 — B-zone; 3 — C-zone

6.2. Diagnostic calculations of the 3D velocity field

Diagnostic calculations for the winter season on the basis of the temperature
and the salinity Levitus data were carried out. The calculations began with
the state of rest. In the first 5 days an abrupt increase of the kinetic energy
was observed. After this period the increase became weaker reaching 1 per
cent by the 7-th day. By that time all main components of the circulation
system were formed (Figures 8, 9). The mass transport in the Kuroshio
current attends the value of 45 sv. The results show two trajectories of the
current south of Japan. One of them passes along the shore of Japan and
the other branch goes round the Idzu ridge from the south.

The values of the velocity in the Kuroshio jet are about 45 cm/s. At the
depth 600 m the Kuroshio current changes direction and at the lower layers
countercurrent exists. In the equatorial zone the behavior of the velocity
field is very disordered, which is typical of diagnostic calculations.
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Figure 8. Diagnose. Barotropic velocity

In the upper 200 m, the analysis of the vertical velocity sign (Figure 10)
shows regular zones of the upwelling and downwelling connected with the
cyclonic and anticyclonic circulation of the main gyres. In the layer lower
than 600 m the picture of the vertical velocity component sign is not so
regular. This is connected with increasing the influence of the baroclinicity
and bottom relief, which began to play more important role in the lower
layers than the wind-stress forcing. This strong influence of the bottom
relief is also the reflection of the unbalanced temperature/salinity fields and
bottom relief.

Meridional heat flux (Figure 11), obtained by the diagnostic results gives
more or less correct direction to the north of the equator (to the North
Pole), but in the equatorial zone the unreally strong Ekman cell leads to
the unrealistic peaks in the heat flux. This fact also confirms the fact that
the diagnostic procedure is ill-posed in the mathematical and physical sense,
and the situation may improves with the integration of the whole system of
equations.

7. Conclusion

1. Barotropic circulation has mainly an adequate distribution by zones, but
when the forcing is determined only by the wind-stress, then the annual cycle
of the subtropical gyre is in antiphase with the observations. Including the
integral influence of the baroclinicity to the forcing term gives more realistic
distributions mass transport with respect to time. This indicates that the
annual variations of the baroclinic structure are more essential for the annual
mass transport than the direct wind forcing.
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Figure 9. Diagnose. Velocity field on: a) 50 m, b) 600 m

2. Analysis of the interseasonal variability of the integral stream function
shows that in the North Pacific there are both zones with a more stable
circulation structure and zones with the intensive inter seasonal variability
of the mass transport. The maximal variability of the subpolar and sub-
tropical frontal zones are reached in the fall-winter months. The phases of
the interseasonal variability are positively correlated in the subpolar and
equatorial frontal zones and they both are negatively correlated with the
variations with the subtropical frontal zone.

3. In the 3D diagnostic calculations the unbalance between the temperature,
salinity fields and the bottom relief leads to some inconsistency of the results,
espesially in the equatoral zone. The fields may be reduced to the balance
by the whole system time integration, for a certain period. After this period
the geostrophical adjustment processes may lead the system to the balance.
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Figure 10. Sign of the vertycal velocity: a) z=50 m, b) z=600 m
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Figure 11. Meridional heat flux
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