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Global attractors for the Lorenz model
~on the sphere*

V.N. Krupchatnikov

The Lorenz model of baroclinic flows on two-dimensional sphere is considered
in this article. The existence of a global attractors of the model is established.

Introduction

Meteorologists consider simultaneous weather states for large enough time,
to infer “climate” of the atmosphere. The qualitative theory of differential
equations offers strong tools that we are able to state precisely the meaning
of “climate” {3, 4, 5, 8, 9]. The introduction of global attractors in atmo-
sphere dynamics and their name are motivated in the hope that attractors
would exist for the climate dynamics equations and that they would be able
to describe the climatic regimes. Global attractors are compact sets that
exponentially attract all orbits of a dissipative dynamical system.

In this article we address the case, which is very important for atmo-
sphere dynamics of the Lorenz model equation on the sphere S2. The exis-
tence of global attractors of this model is established.

1. Lorenz model equations on two-dimensional
sphere '

Consider the spherical coordinate system (), ) on S2, in which A € (0, 2m),
@ € (=m/2,m/2) and p = sinyp. We can then write the Lorenz model
equation for baroclinic atmosphere on §2

ngé +J (1, DY+ 2u) + J (1, A7) = k(2A7 — AY) + vA%Y, (1.1)
% +J(r, A%+ 20) =V (2u0VX) = —k(2AT — AY) -k AT + vA?r, (1.2)

9
?Tt +J(¥,60) — 0Ax = hé, — h,0 + vA?, (1.3)

A8 =V (2uoVT), (1.4)
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where

J(¢1X) = ¢AX# - ¢#xl\$
—_ 1 — 2
Vx = ('—\/1=_?—,-XA, Vi-# Xu)s
Ax = ((1- F2)Xu).u) +(1- ﬂz)_er\/\’

where g = sin ¢, x — velocity potential, ¢ — stream function, 8 — potential
temperature.
This system has the following conservation law:

dA+K) _

ot 0,

where

A = 1[5 0%ds - available potential energy,
K = [o[(V¥)? + (VT)?]ds - kinetic energy.

2. Functional Spaces on S?

Let L?(S), (p € [1,00)) be the Banach space with the norm

¥l = ( [ 1wras)"”

We assume that ¢ € (0, T),Q = (0,T) x S? and X is the function space with
the norm [|#||x. Let X be the function spaces H®, H§ or L,(S). The space
Hj§ here is defined by

Hy={peH': [opdS?=0}.

The stream function formulation of atmosphere dynamics equations is con-
sidered in this article.

Given T > 0, denote by L,(0,T; X) the Banach space of all measured
functions g(t), ¢ : (0,T) = X on interval (0,T) with values in X and the
norm (f7 |\g|x?)'/? =||gllz,(0;T;x) < co. We assume that s € Ry, and -A -
the Laplace-Beltrami operator (LB), Y, = PJe(sin @)e'™=* —eigenfunctions
of the Laplace-Beltrami operator, where Py - associated polynomials,
Aa = ng(ne+1) — eigenvalues (multiplicity 2n,+1),0 £ A < 27, |p| < 7/2.

The operator —A is unbounded, self-adjoint linear operator with com-
pact inverse and with domaine D(—A) = H}, using the spectrum of —A,
we can define its power &§* = (—A)*/2. §* : HP** — HJ" is an isomorphism
and : :
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#o= Y N¢aYa

alal>1

Operator (—A) creates the scale Hilbert spaces Hg (Sz), o € R, with
scalar production .

(£,9)a = (£, 9)ngs) = (- ~Dy 2 fi(-8)*),
. wpr VM2
1flla = I lmg(s) = N(=2)**fll = (2 PR
. n=l|m|<n
Denote by HZ(S)’ the dual space of H§(S). It is easy to see that
(H3(S))' = Hg®(S),. a20.
Lemma 2.1. Let a > B, f € HZ(S?) and Ay be the first eigenvalue of
LB-operator, then '
Q_;,é
1) flle =A% s .
2) MIFIP < IVAR=1=2)717  f€Hs(S);
3) 1l < 2401 ks - 19 £l Gs):
~ The Hilbert space V, and its dual space, which is used later, are defined
by ’
Vo = H(S) x H§(S),
V] = (B3(S) x H§(S)) = Hy*(S) x Hg*(S) = V-
U= (u1,ug) € Va

It is easily seen that

252
”u"Va 2 "\1 “U||V5, o> ﬁ:
and
LCcVhcWicVoCcV{CV,C

where imbedding operators are compact and continuous.

Definition 2.1. The function Z € H® is called general derivative "¢ of
function ¥ € H®, if V¢ € C*(S)

(Z,9)s = (¥,8"9)s-
Lemma 2.2. Let s € R, r € Ry, then
vZ € Hy* ||Zll < 27212 )losr.
Corollary 2.1. The following norms are equivalent:

€N rre ~ 1AV He ~ [[0llgos2 ~ IVl rotr-
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3. Absorbing sets and attractors

We can reduce system (1.1)~(1.4) to the Cauchy problem for nonlinear equa-
tions of evolution in the space H

lij
-6; = F(u), ’ult=0 = Ug. (3.1)

We can define the operators S(t) : ug — u(t), these operators enjoy
the standard resolving semigroup properties for system (3.1) and they are
continuous operators

u(t) = S(t)uo. (3.2)

We assume that the set X is an invariant set, if S(t)X = X.

Definition 3.1. Denote by

w(4) = U S@®)4,

>0t>7
the w-limit set of A.

Let Ussy, S(£)A (A # 0, to > 0) be relatively compact in H, then w(A)
is invariant, compact set [9].
We need to define absorbing sets and attractors [3].

Definition 3.2. The set B, is called absorbing for semigroup S(t), if for
all bounded set B C H there exists to(B) that S(t)B C B, for t > to(B).

Definition 3.3. The set A C H is called global attractor for semigroup
S(t),t>0,if:
1. Ais a compact invariant set;

2. A attracts every bounded set B C H, i.e., disty(S(t)B, A) = 0,
t — oo.

There exist conditions such that resolving semigroup S(¢) will obtain a
global attractor [1, 9). We consider in this article the Babin-Vishik theorem,
used later on, which gives us such conditions.

Theorem 3.1 (Babin-Vishik [1]). Let S(t) be a semigroup and let S(t)
satisfy the following conditions (H - the Banach space):

1) there ezists the compact absorbing set B, € H,
2) operators S(t) : H — H are continuous for t > 0,
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3) the semigroup S(t) is uniformly bounded in H, i.e., VR > 0 AC(R),
that ||S(t)ully < C(R), if |ullg < RVt > 0.

Then the semigroup S(t) has a global attractor in H.

Lemma 3.1. The trilinear form (J(¢,€), Ax), where (+y+) - inner product
between J(1,€) and Ay, satisfies the following inequality:

[(J(,€), AX)| < IV¥llLscs) - VEllLscs) - 1AXI-
Lemma 3.2 [7]. Vi € H} we have that
1¥llLegsy < Ko(llwl) ~*(IV4l1)*,
where Ko = max{2,p/2}°, a=1-2/p, p € [2,).
Let % € Loo(0, T; HS) N Lap(0, T; HY), then

¥ e Ly(Q),
and
(I¥llzecs)) < KA wlP* < Cllwliz,
hence
1¥llzr@) < C”@””LPQ(O,T;HDL).

Lemma 3.3 [7]. Let f € L,(0,T; X), %{ € L,(0,T; X), then f - continuos
function [0, T] =+ X (may be after correction of f on a zero-measure set).

Lemma 3.4 [7]. Let
BO C B C Bl?

be the Banach spaces and there exists the compact mapping By — B. Con-
sider the space

W={v: ve L,(0,T;By), v € L, (0,T;By)},
T <ooandl < p; < oo,
ollw = V]l (0,7:80) + 1Vll Ly, (0,781

then the imbedding operator W — L, (0, T; B) is compact.
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Now we set

V= ("lb! T)v Y= 4#‘0/“9
-A 0 (A 0
t6=(7 S4) m=(0 aly)

A _(—kA 2kA ) A _(A2 0)
2=\ kA —(2k+ko+vy)A+hy) T N0 A%
B(v,v) = (J(¥, AY+2p) + J (1, A7), J (Y, AT —y7) + I (T, ¥ + 2u)),
then we can rewrite system (1.1)—(1.4) in the form

A],%% = —B(v,v) + Asv + Azv + F. (3.3)

Definition 3.4 (General solution). The function
v = (¢, 7) € L(0,T; H2 N L(0, T; HY)
is called a general solution (3.3), if Yw € L2(0,T; H})?, the following equal-

ities hold:

oY
v(0) = vy, (3.5)

_(Aia” ) + (B(v, v),0) + (Az9,0) + v(A4* A5, Af%) = (Fw), 3.4)

where vy € HZ.

Lemma 3.5. Let v be a solution of (3.4)-(3.5), then

b(v, v) € L(0,T; HyY), a‘;:” € L,(0,T; HyY),
and 9
(—3‘;’ € L;(0,T;HY), veC(0,T; HY).

Theorem 3.2. Let F € Hy'(S?), v > 0 and vo € H}(S?), then there ezists
a unigue solution v of (3.4)-(3.5) and resolving semigroup has a unique global
attractor in H}(S?).

Proof. Uniqueness. Let v; and v, be different solutions of (3.4)-(3.5). Put
8v = v, — vg. Furthermore, by Lemmas 3.1 and 3.2 and by the Gelder
e-inequality, we have ' :

Ib(v1, v1) — b(oz, va)] < Sl A60]* + Co|V60]”

Therefore, Adv satisfies
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10]|Adv||? v
LA 4 wpasoll < Ljadol? + Curllolfs,,
2° ot ~ 2
or a 6
A
Jﬂf_u < 2Cwl|6v]l3,,
- M
(e IIAJv”Al) < 0,
ot -
hence, we obtain
||Adv|| 4, = 0,

with ||Adv||4,(0) =0
Existences. Let W, € H{ be basis ([3], Lemma 6.5) and we define ap-
proximate solution in the form

N
=Y N (O)Wo. (3.6)

a>0

Now, we solve (3.4)—(3.5) by the standard Galerkin method, then system
(3.4)—(3.5) is reduced to the system of ordinary differential equations

N
(02 ) + (0™, M), w0) + (A0, )

+ (A2 AN AL Pw,) = (F,wa), (3.7)
with initial conditions
vM(0) = o, ||Avl — AyvollL, = 0. (3.8)

From the theory of ordinary differential equation, we can conclude that there
exists a unique solution vV on interval [0, #"]. Furthermore, we consider the
inner product between (3.7) and gV and does summation over a, because
trilinear form in this case is equal to zero, then we obtain

190|v

Nj2 ,
5—&'”‘ +vag(v" (8), vV (1) + a2(oV (1), 0V (1)) = (F, 0N (), (3.9)

which implies that

16|le§,, 1/2, N 1/2, N 1/2, N
27 T v||As" v o+ ol Ay ‘v |lo < ||A v" |lo + CF||F|| -1,

and
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t t
o1, @)+ [ 145 6N ar < 11, +2Ck [ 1Pl < G (3.10)

We have that A;" ?vN is bounded in
Ly(0,T; Hy) N Loo (0, T; Ly).

Now, we replace wo by —A;!w, in (3.7) and repeat calculations, then we
obtain the following estimates:

t
420N |13 (t) + /0 145" lhdr < G, (3.11)

and we can take T as tV. As in the proof of Theorem 6.1 in [7] and by the

applicaton of Lemma 3.2 we obtain that %”TN is bounded in L,(0,T; Hgy')
and using (3.10) and (3.11), we can conclude that there exists subsequence

AY2om of sequence ALYV, that

o AY*om 5 A}y weakly in L,(0,T; H}),
A;mu" — A;lzv *-weakly in Ly (0,T; Ls),
o AY?vm o AV in L5(0,T; L),

aAlf?ﬂ,‘ 8‘41/21’ . -1
35— — —4— weakly in Ly(0,T; Hy").

We infer from the first and the fourth points that Aéﬂv”(o) — A;ﬁv(O)
weakly in H;! and A;nv(ﬂ) = A;lzvo. By Lemmas 3.1 and 3.2, we obtain
that the bilinear form b(v,v) € Ly(0,T; Hy', hence, using the first point,
we obtain that

[ T(b(vN, wg), vV )dt — ] T(b(v, wa), v )dt. (3.12)
0 0

Now, we have that (3.7) converges to (3.4) as n — oo Vw, and hence,
Yw € Lz(O,T; H&).

A priori estimates. We consider the inner product between (3.3) and v,
and we obtain

19]vl13,
2 ot

As the trilinear form has the antisymmetrical property, hence the term
Js(B(v,v),v)dS is equal to zero. Hence, we obtain

18)Jvll3,
2 Ot

By the Gelder e-inequality and Lemma 2.1, from (3.14), we have the follow-
ing inequalities:

- /S (B(v, v),v)dS+ js (Agv,v)dS + V]| Av], = ]S (F,v)dS. (3.13)

+ /S (Azv,0)dS + vl|Av|l}, = L (F,o)dS.  (3.14)
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ol : |
sl <R, @)

llola, < lloll, (0)e™ +1*I2,/(2Mp) - (1 = e™%),  (3.16)

where v > 0. Then we can easily see that 3p2,
lloll, < of, (3.17)

Vt > t;. Now, we consider the inner product between (3.3) and Av and
repeart calculations, then we obtain following estimate: '

loll%, < llvll, (0)e2" + [16%]2, /(2\p) - (1 — €72, (3.18)
where v, > 0. Therefore, Jp?, such that

lvli%, < o3, (3.19)

vVt > t,. - :
Then there exists 3¢3, that (3.18) and (3.19) are simultaneously satisfied.
By the application the Babin—Vishik theorem, we obtain the existence of a
global attractor for resolving semigroup S(t) of system (1.1)—(1.4) in H}(S 2).
* . : U
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