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Modeling of Stoneley wave generated
by seismic vibrators

V.V. Kovalevsky

The paper deals with mathematical problems of physical phenomena, connected
with generation, long-distance propagation, and interaction of the acoustic and the
seismic waves from powerful vibrational sources operating on the interface of the
elastic Earth-atmosphere. Three problems of mathematical modeling are consid-
ered: modeling of acoustic waves radiation of a vibrational source, modeling of
the long-distance propagation of acoustic waves in a low velocity near- surface air
channel, and modeling of an acoustoseismic induction process. The conditions of
the resonance increase on the amplitude of the induced surface seismic wave are
determined.

1. Introduction

Experimental survey with the use of powerful seismic vibrators has allowed
us to learn the processes of radiation and interaction of the acoustic and
seismic fields generated by powerful vibroseismic low-frequency sources. The
excitation effect of acoustic waves and subsequent induction of surface waves
from powerful vibrational sources at large distances between a radiator and
a receiver was experimentally detected. When operating powerful seismic
vibrators, an infrasonic acoustic wave is radiated simultaneously with seis-
mic waves. In the presence of the near-surface sound channel, this wave
can propagate to a distance of tens kilometers and induce surface seismic
waves. These waves are recorded by seismic receivers together with radiated
seismic waves from vibrators. The propagation of acoustic waves of infra-
sonic frequencies (6-7 Hz) up to distances of 20-50 km is possible due to the
phenomenon of refraction of sonic waves in the atmosphere and occurrence
of a near-surface wave channel.

When studying acoustoseismic effects, caused by operation of power-
ful seismic vibrators, one can distinguish the following three interrelated
processes: 1) radiation of acoustic waves by a vibrational source on a free
surface, 2) propagation of acoustic waves from a vibrational source to long
distances over the Earth’s surface, and 3) excitation of surface seismic waves
by a harmonic acoustic wave coming to the recording point [1, 2].
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2. Modeling of the acoustic waves radiation
by a vibrator

A variety of papers are devoted to the modeling of the infrasonic waves ra-
diation into the atmosphere while the vibrational sources are running [3, 4].
Two homogeneous (elastic and gas) media, contacting along a plane bound-
ary, are taken as a model. The dynamic elasticity equations with constant
characteristics (density and velocities of longitudinal and transverse waves)
are solved for an elastic half-space, and the wave equation with a constant
density and the sound speed are solved for a gas medium. Boundary con-
ditions are the equality of the normal components of stresses and velocities
at the interface between the two media. A point harmonic force that acts
normally to the interface is considered as a source. The asymptotics of the
acoustic and the seismic body waves in the far zone and the corresponding
radiation powers were found in [4]. The solution is given in the form of
integral representations, and for some relations between parameters of the
media, it admits the following analytical representation:
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where P is the amplitude of the force, p is the frequency, ¢ and ¢ are the
density and the speed of sound in the gas, and p;, V;, and V; are the density
and the velocities of longitudinal and transverse waves in the elastic half-
space. The formulas are valid for the velocity relations V,, = V3V, = 3c.

The relation between the powers of seismic and acoustic waves does not
depend on frequency and W,/W, = 0.0186, that is, approximately only 2%
of the total radiation power is transferred by acoustic waves. Numerical
- values for a vibrational source with the amplitude of force P = 100 tons,
the density and the sound speed in the gas p = 1.2 kg/m? and ¢ = 340 m/s,
and the density and the velocity of longitudinal waves in the ground p; =
2000 kg/m® and V, = 588 m/s are W, = 94 W and W, = 2.1 W with a
frequency of 6 Hz, and W, = 261 W and W, = 5.8 W with a frequency of"
10 Hz, respectively.

A beam pattern of the acoustic radiation of vibrational source consider-
ably changes if a low-velocity air layer occurs near the surface, which takes
place in the atmosphere in the case of temperature inversion and occurrence
near the surface of a cool air layer with a velocity lower the sound speed.
Let us consider the formation of a beam pattern of a point source near the
surface in the ray approximation.

Let a gas medium with a low-velocity layer 0 < z < h of thickness h
and the velocity of sonic waves cl be above an elastic half-space z < 0 of a
cylindrical system of coordinates r, ¢, z. Above the gas medium, let there



Modeling of Stoneley wave generated by seismic vibrators 71

T\ L

/c

T
-" M
.

1

Figure 1. Acoustic rays propagation with a near-surface
low-velocity air level

be a half-space with the velocity of sonic waves co. The gas density in the
entire gas medium, p, is the same (Figure 1). The point source at the point
z=pr=0.

In the ray approximation, a wave field is formed of the rays originating
from the source and the rays refracted and reflected from the media inter-
faces. It is known that in the presence of a low-velocity layer, there is an
angle of limiting reflection, and all the rays below this angle have a complete
internal reflection in the layer. The value of this angle is determined from
the Snell’s law, and depends on the relation between the velocities ¢; and c,.
The acoustic field at large distances from the source is formed of waves with
a slip angle less than critical. They have the complete internal reflection
in the layer. The passed waves are inhomogeneous with a real wave vector
in the radial direction and an exponential decrease in the amplitude along
z-axis. The part of acoustic energy getting into the wave channel is deter-
mined in the ray approximation by the ratio between the solid angle in which
waves have a supercritical reflection and the solid angle of the hemisphere:

We —’L =sina ~ —-—2(62 = cl), (2)
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where W, and W;, are the total power of the acoustic radiation and the
radiation power kept in the wave channel, and Ry is a radius from the origin
of coordinates to the point of contact of the wave of the critical reflection
angle of the layer upper boundary. It is seen from (2) that the value of wave
energy in the layer does not depend on its thickness, but is determined only
by the relation between the sound speeds.

In spite of the fact that with an insignificant difference in the sound
speeds the coefficient in (2) is small, the presence of a wave channel has an
effect on amplitudes of the acoustic wave at large distances from the source.
If we compare the amplitude of the acoustic wave at the distance R in the
half-space without channel with its amplitude in the channel, then, with
allowance for the cylindrical symmetry in the channel, we will obtain:
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Here Ay is the acoustic wave amplitude at the distance R in the half-space,
Ay, is the amplitude of the wave in the channel at the distance R, and R is
a radius to the channel formation point.

Table 1
AT,°C ¢z, m/s h, m a,° Wi /Wa Ro, m Ar/Ao
5 334 10 7.8 0.13 75 19.9
5 334 25 7.8 0.13 188 12.6
5 334 50 7.8 0.13 376 8.9
5 334 100 7.8 0.13 752 6.3
10 337 10 11 0.19 53 23.6
10 337 25 11 0.19 133 14.9
10 337 50 11 0.19 267 10.5
10 337 100 11 0.19 534 7.4

The numerical values of velocities, the relations between the powers and
amplitudes at a distance of 30 km from the source for the temperature
differences in the layer of 5 and 10°C, and three values of layer thickness of
25, 50, and 100 m are presented in Table 1. The temperature coefficient of
the sound speed in the air is 0.59 m/s-deg, and the velocity c; at 0 degrees
is 331 m/s. It is seen from the table that with a temperature variation of
5-10 degrees, the angle of limiting reflection is 8-11 degrees, and the wave
channel can include from 13% to 20% of the acoustic radiation power. This
is essential if we take into account the fact that this power is retained in the
channel. It follows from the geometry of the problem and expressions (1)
that the acoustic power value in the layer does not depend on its thickness.
It is determined from a difference in velocities (or temperatures). It should
be noted that the ratio between the amplitudes at the recording point in
the presence or absence of the wave channel has larger values at a smaller
thickness of the layer. This is explained by the fact that the smaller the
layer thickness, the shorter the distance to the channel formation point
(Ro). Therefore, at smaller distances the law of a decrease in amplitudes
that corresponds to the cylindrical geometry of the channel (1/v/R) becomes
valid, instead of 1/R for the spherical geometry without channel. This
explains the well known from acoustics fact of a rapid appearance of a near-
surface wave channel with insignificant cooling at the surface. The same
fact is observed in the experiments with the above presented vibrators.
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3. Modeling of acoustic wave propagation
in a near-surface wave channel

The propagation of acoustic waves from a vibrator to large distances is
associated with the existence of waves in a channel that conserve their energy
without radiation into the above half-space. The problem of modeling is
simplified by the fact that at large distances from the source the spherical
wave field is locally plane and admits 2D modeling.

We consider a plane problem for the above model of a gas half-space
with a low-velocity layer on a rigid half-space. The gas medium occupies
the upper half-space 0 < z and contains a low-velocity layer 0 < z < h of
thickness h. The velocity of sonic waves in the layer is ¢;, and in the half-
space above the layer ¢y, and the gas densities in the layer and half-space
are the same, p.

The wave equations for the pressure in the layer and the half-space,
as well as the relation between the velocities and the pressures have the
following form:
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where p;(z,z,t) and pa(z,z,t) are the pressure in the layer and the half-
space, and (2, z,t) and (2, z,t) are the velocity vectors in the layer and
the half-space. Boundary conditions are as follows: the equality to zero
of the normal velocity at the boundary with the rigid half-space; and the
equality of pressures and normal velocities in the first and the second media:

©(z,2,t)| 0 =0,
u741(z’ m’ t)lz:h = uzz(z’ z) t)lz:h’ (5)
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where u,1(z,2,t) and u,2(2,z,t) are the vertical velocity components.

The solution can be represented in the form of the superposition of two
plane homogeneous waves in the layer with real wave vectors and an inhomo-
geneous wave in the upper half-space with a real wave vector in the direction
of z-axis and an exponential decrease in the amplitude along z-axis:

p1(z,z,t) = exp(iwt — ikz) (a3 exp(—ik1z) + az exp(ik12)) ;

6
p1(z,z,t) = by exp(iwt — ikz) exp(—az), (©)
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where a; and a; are the plane waves amplitudes in the layer, b; is the
amplitude of the wave in the half-space h < z, w is frequency, k is the
projection of the wave vector to z-axis, k; is the projection of the wave
vector to z-axis, and a is the attenuation coefficient in the direction of the
z-axis in the upper half-space.

From wave equations (4), with allowance for the boundary conditions
(5), and the form of the solution, we obtain the relation between the wave
vectors and the frequency (the dispersion equations being typical of wave
channels):

w? ' w? k1
— =k* + k2, — =k —d?, T = ctg k1 h. (1)
c (& w?(eg—ci) k2

c2c2 1

Equation (7) is numerically solved. The results of calculations for the
parameters of the layer from Table 1 and a frequency of 6 Hz are presented
in Table 2.

Table 2
AT, °C c2 h, m k1, m™1 a, m™! 7/k1, m 1/a, m
5 334 10 0.015 0.002 417 441
5 334 25 0.014 0.005 440 188
5 334 50 0.012 0.008 506 113
5 334 100 0.009 0.012 681 82
10 337 10 0.021 0.004 300 225
10 337 25 0.019 0.009 330 102
10 337 50 0.015 0.014 408 67
10 337 100 0.010 0.018 595 53

It is seen from Table 2 that a nearly plane wave is formed in the layer
with small velocity differences. The values of the wave number k; and
the attenuation coefficient o are much smaller than the horizontal wave
number k = 0.113 m~!, and are close in magnitude to each other. The
corresponding wavelengths and typical sizes also significantly differ. On
the whole, the following regularities are observed: the higher the velocity
difference in the layer and space and the thicker the layer, the less the
penetration of an inhomogeneous wave into the half-space (the parameter
1/a). The quantitative estimates show that with the considered temperature
variations of 5-10 degrees, the acoustic field energy is concentrated in an
area of 100-200 m above the Earth’s surface, in the low-velocity layer, and
in the half-space near the layer interface. The maximum energy density
is concentrated in the low-velocity layer, and the maximum amplitude of
pressure in the acoustic wave is attained at the lower boundary of the layer
on the elastic half-space surface.
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4. Modeling of the acoustoseismic induction
process

Solution (6) shows that a nearly plane wave propagates in the low-velocity
layer with the velocity close to the sound speed in the air. The sonic wave
action in the layer on the underlying elastic half-space implies that a pressure
wave runs along the interface z = 0 (see (6)), thus causing a deformation
wave. The problem of excitation of a surface seismic wave in an elastic
half-space under the action of the acoustic wave in the air can be considered
in the elastic half-space model with a free boundary, at which the normal
stresses in the form of a running pressure wave are specified 5]

Let us consider a plane problem for a homogeneous isotropic elastic half-
space z > 0, with the parameters ), u, and p. The acoustic wave that
propagates along the boundary in the direction of z-axis is taken into ac-
count in the form of the boundary conditions for normal stresses on the
surface of the elastic half-space (z = 0), and the harmonic acoustic wave
with a constant velocity ¢, equal to the sound speed in the air, is described
by the amplitude of the pressure p and the frequency w.

Let us solve the Lame equations with the boundary conditions

32
(A+p)grad-divu+pAu—pa—g=0, (8)
tozl,m0 =0,  tu|,_o = pexpi(wt — kz), (9)

where k = w/c is the wave number of the acoustic wave.

The solution to problem (8) with boundary conditions (9) can be rep-
resented in the form of plane waves. With the notation Y = vs/vp and
6 = c/vs, we can write down the solution for the components of the dis-
placement field u, and u, in the following form:

up = —ikC[(2 - 62)e~+V1-70_
2v/1-02 m e—kz\/T—Tf] ¢ilwt—kz) (10)
U, = kcm[(Oz - 2)e_kzm + 2e‘k’m] ei(“t_k“’),
where

C=t s RO)=@-0?-4/1-ve2/i-®, (1)
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The solution (10) depends on the relation between the velocities of lon-
gitudinal and transverse waves in the solid Earth and the velocity of the
acoustic wave. We can distinguish three domains of parameters that deter-
mine different types of solutions.

Domain I. 0 < ¢ < v,, 78 < 8 < 1 is the acoustic wave propagation above
a half-space with greater velocities of longitudinal and transverse waves than
the sound speed in the air. In this case, a surface wave is induced in the half-
space, which propagates with the acoustic wave velocity. The amplitudes
of the displacement field exponentially decrease at z > 0, and there is no
energy flow in the direction of the axis z > 0. The induced surface wave is
elliptically polarized. In this domain of parameters, there are values of v,
and vp, at which the sound speed coincides with the velocity of the surface
Rayleigh wave. The solution (10) has a singularity at this point, because
the Rayleigh function in the denominator of the coefficient C' becomes equal
to zero. As the parameters of the half-space approach these values, an
unlimited increase in the amplitude of the displacement field takes place.
Physically, this corresponds to the resonant excitation of the surface wave
with a constant energy replenishment from the acoustic wave.

Domain IL v, < ¢ < vp, 70 < 1 < 6: the wave number ky, is real.
The solution (10) is the superposition of the following two wave processes:
a surface wave that propagates with the velocity ¢ along z-axis and has
exponential attenuation of amplitude with depth, and a transverse wave of
constant amplitude with the wave vector (k, ky,) that moves downward. The
polarization at the surface of the half-space remains elliptic with a variable
inclination of the ellipse.

Domain III. v, < ¢, 1 < 78 < 6: the wave numbers k,, and ky, are
real, and the solution (10) is a superposition of the longitudinal and the
transverse waves of constant amplitudes with the wave vectors (k, ky,;) and
(k, ky.), which propagate at different angles to the free surface and transfer
the energy in the direction of the wave vectors. The polarization of the
displacement field on the half-space surface represents degenerate ellipses
with a variable inclination.

It can be concluded that as the acoustic wave propagates above a “rigid”
half-space (with high values of the velocities of longitudinal and transverse
waves with respect to the velocity c), a surface wave propagating with the
sound speed in the air is induced. For a half-space with the velocity value
of the Rayleigh wave equal to the sound speed in the air, the resonant ab-
sorption of the acoustic wave energy and resonant swinging of the amplitude
of the surface wave propagating along z-axis, take place. In the case of a
“soft” half-space (with low values of v, and v, with respect to c), both the
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Figure 2. Polarization curves in the air with a low-velocity layer near the surface
and inside the elastic half-space

surface wave and the waves propagating at an angle to the free surface and
transferring the energy from the acoustic wave to the half-space are induced.

Polarization curves in the air with a low-velocity layer on the surface
obtained from the solution (6) and in the elastic half-space obtained from
the solution (10) for the three considered domains of the relation between the
sound speed in the layer and the velocities of longitudinal and transverse
waves are shown in Figure 2. A plane wave with the linear polarization
propagates in the low- velocity layer. In the upper half-space, polarization
is elliptic with a small value of Z-axis of ellipses and the exponential vertical
attenuation. In the elastic half-space, polarization changes from elliptic
(Domains I and II) to linear (Domain III). Only Domain I corresponds to
the stationary wave in the direction X. It can be considered as a version of
the Stoneley wave in the presence of a low-velocity gas layer at the boundary
of the elastic half-space. In the two other regions, there are plane waves
propagating downward at different angles.

In conclusion, it should be noted that the superposition of the solutions of
the inhomogeneous system of equations with a non-zero right-hand side and
the homogeneous one with a zero right-hand side is the solution to problem
(8) with the boundary conditions (9). The solution of the inhomogeneous
system is given above. It describes an induced surface wave propagating
with the sonic wave speed c along the surface. It is known that the Rayleigh
wave is the solution to the homogeneous system of equations.
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Thus, in the general case, of the interaction of the acoustic wave with

the elastic half-space one can expect the occurrence of two waves, that is,
an induced wave with the sound speed ¢ in the air and a Rayleigh wave
with the velocity V. This result of modeling is confirmed by experimental
data by recording the surface waves induced by the acoustic radiation of a
vibrator.
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