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Fixed points on abstract structures
without the equality test

M. V. Korovina

In this paper, we present a study of the definability properties of fixed points of
effective operators on abstract structures without the equality test. In particular, we prove
that the Gandy theorem holds for the reals without the equality test. This provides a useful
tool for dealing with recursive definitions using ¥-formulas.

1. Introduction

The aim of the paper is to present a study of the definability properties of
fixed points of effective operators on abstract structures without the equality
test. The question of definability of fixed points of X-operators on abstract
structures with equality was first studied in [1, 6, 5]. One of the most fun-
damental theorems in the area is the Gandy theorem which states that the
least fixed point of any positive X-operator is X-definable. This theorem
allows us to treat the inductive definitions using X-formulas. The role of
inductive definability as the basic principle of general computability is dis-
cussed in [9,13]. In some cases it is natural to consider a structure in the
language without equality. For example, in all effective approaches to exact
real number computation via concrete representations [7, 8, 14], the equality
test is undecidable. This is not surprising, because infinite amount of infor-
mation should be checked in order to decide that two given numbers are
equal.

Until now there has been no Gandy-type theorem known for such struc-
tures. Let us note that in all proofs of the Gandy theorem that have been
known so far it is the case that, even when the definition of a X-operator
does not involve equality, the resulting X’-formula usually does. In this paper
we show that it is possible to overcome this problem. In particular, we show
that the Gandy theorem holds for the real numbers without the equality
test.

The concept of X-definability is closely related to the generalised com-
putability on an abstract structure [1,6,12,15], in particular, on the real
numbers [10, 11, 15].

The notions of X-definable sets or relations generalise those of com-
putable enumerable sets of natural numbers and play a leading role in the
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specification theory that is used in the higher order computation theory on
abstract structures.

In this paper, we investigate definability of the least fixed points of X-
operators on abstract structures without the equality test. The paper is
organised as follows. In Section 2, we introduce the basic notations and def-
initions. We provide the background information necessary to understand
the main results. Section 3 presents the Gandy theorem for structures with-
out the equality test. In Section 4, we give an application of our result to
the real numbers without the equality test. We end with a discussion of our
future work.

2. Background

Here we introduce the basic notations and definitions. Let us consider an
abstract structure A in a finite language oy without the equality test.

In order to do any kind of computation or to develop a computability
theory, one has to work within a structure rich enough in information to be
coded and stored. For this purpose, we extend the structure A by the set
of hereditarily finite sets HF(A).

The idea that the hereditarily finite sets over A form a natural domain
of computation is quite classical and is developed in detail in [1, 6].

Note that this or very similar extensions of structures with equality are
used in the theory of abstract state machines [2, 3] and in query languages
for hierarchic databases [4].

We will construct the set of hereditarily finite sets over the model with-
out equality. This structure permits us to define the natural numbers and
to code and store information via formulas.

We construct the set of hereditarily finite sets, HF (A), as follows:

1. HFy(4) = A, HF 11 (A) = P,(HF,(A)) UHF,(A), where n € w and
for every set B, P, (B) is the set of all finite subsets of B.
2. HF(A) = U, ., HF,(A).

new

We define HF (A) as the following model:
HF(A) = (HF(A)a Ua Sa 00, Q)a E> = (HF(A)a U) )

where the constant () stands for the empty set and the binary predicate
symbol € has the set-theoretic interpretation. We also add the predicates
symbols U for urelements (elements from A) and S for sets. Let us denote
S(HF(A)) = HF(A) \ A.
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The natural numbers 0, 1,... are identified with the (finite) ordinals in
HF(A), i.e. 0, {0,{0}},..., so in particular, n + 1 = n U {n} and the set w
is a subset of HF(A).

We use variables subject to the following conventions:

r,T1,... range over A (urelements),
z,y, 2, 8,w, f,g,... range over S(HF(A)) (sets),
n,m,l,... range over w (natural numbers) and

a,b,c... range over HF(A).

We use the same letters to denote elements from the corresponding struc-
tures and 7 to denote rq,..., 7.

The notions of a term and an atomic formula are given in the standard
manner.

The set of Ag-formulas is the closure of the set of atomic formulas un-
der A, V, =, and bounded quantifiers (Ja € s) and (Va € s), where (Ja € s) ¥
denotes Ja(a € s A ¥) and (Va € s) ¥ denotes Ya(a € s — ).

The set of X-formulas is the closure of the set of Ay formulas under A,V,
(Ja € s), (Va € s), and 3.

We are interested in X-definability of sets on A™ which can be con-
sidered as generalisation of recursive enumerability. The analogy between
XY-definable and recursive enumerable sets is based on the following fact.
Consider the structure HF = (HF(0), €) with the hereditarily finite sets
over ) as its universe and membership as its only relation. In HF the Y-
definable sets are exactly the recursively enumerable sets.

The notion of Y-definability has a natural meaning also in the structure
HF(A).

Definition 1.
1. A set B C HF(A) is X-definable, if there exists a X-formula @(a) such
that b € B <> HF(A) = ¢(b).
2. A function f : HF(A) — HF(A) is X-definable, if there exists
a Y-formula &(c,d) such that f(a) = b+ HF(A) |= &(a,b).

Lemma 1.

1.The predicates R(a) = a € A, S(a) = a is a set, and n € w are
Ag-definable.

2.The following predicates are Ay-definable: t =y, x =yNz, z =yUz,
x=<y,z >, x=1y\z (recall that all variables x,y,z range over sets).

3.A function f:w"™ — w™ is computable if and only if it is X -definable.

4.Let Fun(g) mean that g is a finite function
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g = {(z,y) | for every x there exists a unique y }.

Then the predicate Fun(g) is Ay-definable.

5.1f HF(A) = Fun(g) then the domain of g, denoted by d4, is Ao-
definable.

Proof. Proofs of all properties are straightforward except (3) which can be
found in [6]. O

For finite functions Fun(f), let us denote f(z) =y if (z,y) € f.
The following proposition states that we have a full collection on HF(A).

Proposition 1. (Collection.) For every formula @ the following holds: if
HF(A) = (Va € z) 3bP(a,b), then there is a set z such that

HF(A) = (Va € z) (3b € 2) &(a,b) A (Vb € 2) (Fa € x) P(a,b).

Proof. This follows from the definition of HF(A). Indeed, if z € HF(A)

consists of k elements aq,...,a; and for each of these a; there is an b; such
that ®(a;,b;) holds. Then all by,..., b occur in HF,, (A) for some element
n, hence {by,...,bp} € HF 11 (A). O

3. The least fixed points of effective operators

Now we recall the notion of a X-operator and prove the Gandy theorem for
structures without the equality test.
Let &(aq,...,ay, P) be a X-formula, where P occurs positively in ¢ and
the arity of P is equal to n.
We think of @ as defining a X-operator I' : P(HF(A)") — P(HF(A)"™)
given by
I'(Q) = {al (HE(4),Q) = (a, P)},

where for every set B, P(B) is the set of all subsets of B.

Since the predicate symbol P occurs only positively, we have that the
corresponding operator I' is monotone, i.e. for any sets A C B implies
I'(A) C I'(B).

By monotonicity, the operator I has the least (w.r.t. inclusion) fixed
point which can be described as follows.

We start from the empty set and apply the operator I' until we reach
the fixed point:
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r'=p, ré*t=prre), r=ug.Ir’, (1)

where v is a limit ordinal.

One can easily check that the sets I'? form an increasing chain of sets:
'Y C I'" C .... By set-theoretical reasons, there exists the least ordinal
such that I'(I"") = I'. This I'" is the least fixed point of the given operator
r.

In order to study the least fixed points of arbitrary X-operators (without
the equality test), we first consider X-operators of the type

I' : P(S(HF(A))") — P(S(HF(A))").

Then we will show how the least fixed points of arbitrary X-operators can
be constructed using the least fixed points of such operators. Note that,
as S(HF(A)) is closed under pairing, S(HF(A))” C S(HF(A)) for n > 0.
Moreover, S(HF(A))" is a X-definable subset of HF (A). So, without loss of
generality, we can consider the case n = 1.

Let us formulate some properties of X-operators which we will use below.
The following proposition states that each element from the value of a .-
operator on a X-set can be obtained as an element of the value of this
operator on a finite subset of the set.

Proposition 2. If Q is a X-definable subset of S(HF(A)) and w € I'(Q),
then there exists p € S(HF(A)) such that p C Q and w € I'(p).

Proof. We prove the proposition for the more general case where we allow
parameters from S(HF(A)) to occur into the formula defining our operator.

Let &(b, z, P) be a X-formula defining our operator I", where b = by, ..., b,
are parameters from S(HF(A)). And let @ be a X-definable subset of
S(HF(A)) and w € I'(Q)). We need to prove that there exists p € S(HF(A))
such that p C Q and w € I'(p).

We prove the claim by induction on the structure of &.

If (b,z, P) = P(z) and (HF(A), Q) = P(w), then the set p = {w} is
a required one.

If @ is an atomic formula which does not contain P, then the set p = ()
is a required one.

For the induction step, let us consider all possible cases.

1. Suppose @(b, z, P) = (Va € bj) ¥(a,b,z, P) and

(HF(A),Q) = (Ya € b;) ¥(a, b, w, P).

By induction hypothesis,
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(HF(A),Q) F (Va € b)) 3s (¥(a,b,w, P)) 11V As C Q.
Using Proposition 1, we find an element g such that
(HF(A4),Q) = (Va€ebj)(3s€q) ((!P(a,l_),w,P))i(? AsC Q) A
(Vs € q) (Fa € b)) ((!P(a,l_),w,P))i(? Ns C Q) .
Let p = Ug.
By definition, for all a € b; there exists s C p such that
(HF(A), ) | (#(a,b,w, P)) 1"

So we have B
(HF(A),p) E ¥(a,b,w, P) for all a € b,.

In other words,
(HF(A),p) E (Ya € bj) #(a,b,z, P).

By construction, the set p is a required one.

2. The case &(b,z, P) = (3a € bj)¥(a,b,z, P) is similar to the case
above.

3. Suppose &(b, z, P) = Ja¥(a,b, z, P) and

(HF(A),Q) = oV, b,w, P).

By induction hypothesis, there exists pg C @ such that py € S(HF(A))
and B
(HF(A)ap(]) |: g'/(b’, ba w, P)

The set p = py is a required one. B
4. Suppose @(b, z, P) = Wy (b, z, P) AWy (b, z, P) and

(HF(A), Q) & ¥ (b,w, P) AW (b, w, P).

By induction hypothesis, there exist p1 C @ and po C @ such that
p1 € S(HF(A)), po € S(HF(A)) and

(HF(A)apl) ): !171(1_),w,P)

and
(HF(A)ap2) ): WQ(I_)/U%P)'

The set p = p1 Upg is a required one. B
5. The case &(b,z, P) = W(b,z, P) V Y5(b,x, P) is similar to the case
above. O



Fized points on abstract structures without the equality test 109

Proposition 3. Let I' : P(S(HF(A))) — P(S(HF(A))) be a X-operator.
The relation x € I'(y) is X-definable.

Proof. Let &(z, P) be a X-formula which defines the operator I". Suppose
x € I'(y). By definition,

z € {z| (HF(A),y) |= ®(z, P)}.

It means that
(HF(A),y) | &(z, P).

So we have
(HF(4)) |= (8(z, )1y .

P(t)

It is easy to see that the relation z € I'(y) is defined by X-formula @(z, P);c,’

a

Now we are ready to prove the Gandy theorem for X-operators of the

type
I' : P(S(HF(A))) — P(S(HF(A))).

Theorem 1. Let I' : P(S(HF(A))) — P(S(HF(A))) be a X-definable oper-
ator. Then the least fized-point of I' is X -definable.

Proof. We will prove that the least fixed point of the operator I' is ',
where ' is defined as follows: I'* = (), I'" = I'(I"™~!) for a finite ordinal
n,and I =J,, ., I'™.

Let us show X-definability of I'"™ for every finite ordinal n.

For this purpose, we introduce the following family of finite functions:

Xy = {< @,@ >},

X, = {f|Fun(f)and 6f =n+1, f(0) =0, f is monotonic
and for any m < n the following is true:f(m) C U rifiny
I<m

where n > 0, and S; is the domain of the function.
From the definitions X,, and I', it follows that X,, is X-definable for all
n € w, moreover there exists a X-formula 1(n, z) such that

HF(A) = ¢(n,z) < z € X,,.
Below we will use the following useful properties of the families X,,:

1. Let w be a finite subset of X,,. Let us define f*(m) = Upey f(m) for
all m < n. Then f* € X,,.
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2. If fe X, and m <n. Then f | (m+1) € Xp.
3. Let f € X;, and m < n.
Define a function
e f), ifi<m
/ (l)_{ f(m), ifm<I<n.
Then f* € X,,.
4. Let f € X, and b € I'(f(m)), where m < n.
Define a function

* f), ifli<n
f(l):{ (b}, ifl=n+1.

Then f* € Xpy1.
Using these properties, let us show that:
ze I it HF(A) E3f (f € X, Az € f(n)) (2)

by induction on n. For n = 0 we have I'"™ = () and therefore (2) holds.

Assume that (2) holds for n. Let us prove that (2) holds for n + 1.

To prove from left to right, let us consider z € I'"t!' = I'(I™). By
induction hypothesis, we have that z; € I'" iff 3g (¢ € X,, Az1 € g(n)) . So
the set I'™ is X-definable. By Proposition 2, it follows that there exists
y € S(HF(A)) such that y C I'™ and = € I'(y).

By induction hypothesis and the condition y C I,

HF(A) [= (Vz € y)3g (9 € Xn Az € g(n)).

Using Proposition 1, we find an element w such that

HF(A) E (Vz€y)(Fg€w) (g€ Xy Az € g(n)) A
(Vgew)(3z€y) (g€ XnAz€Egn)).

Starting from the finite subset w C X,,, we define the function gq as follows:

go(l) = Ugewg(l), 1 < n.

By Property (1) of X,, which is mentioned above, gy € X,,. It is easy to
check the following inclusion: y C go(n). Indeed, if z € y, then there exists
g € w such that z € g(n) C go(n).

Define a function
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[ ), ifi<n
f(l)_{ g?x}, ifl=n+1.

From Property (4) of X,, it follows that f € X, and, moreover, z €
f(n+ 1) holds by the definition of f. So f is a required one.

To prove from right to left, let us suppose that there exists f such that
(f € Xpt1 Az € f(n+1)). By the definition of X,,11, z € I'(f(m)) for
some m < n.

Let us check the inclusion : f(m) C I'™. For this purpose we consider
fi=f 1 (m+1). From Property (2) of X,,, it follows that f; € X,,. So, for
all y € fi(m) we have HF(A) = 3f (f € X, Ay € f(m)). By induction, it
means that fi(m) = f(m) C I'™.

The operator I' is monotone, so we have

zel(fm)crrmc |J ram=r~.
m<n+1

Thus we have proven that I'™ is Y-definable for all n € w. Consequently,
z €I« Indf (f € X, Az € f(n)) (3)

is X/-definable.

To check that ' is a fixed point, i.e. I'(I'™) C I'* let us consider
xz € ['(I'). From (3) it follows that I'“ is X-definable. From Proposition 2
it follows that there exists y € S(HF(A)) such that y C I' and z € I'(y).
It is easy to check that y C I'™ for some m € w. From this we have that
x € I'(I'") C I'. By monotonicity of I, the set I'* is the least fixed point.
So the least fixed point of the operator I" is X-definable. O

Now we consider arbitrary X-operators on the structure A without the
equality test.

Theorem 2. Let I' : P(HF(A)™) — P(HF(A)") be an arbitrary X-operator.
Then the least fized-point of I' is X -definable.

Proof.

Without loss of generality, let us consider the case n = 1. For simplicity
of notation, we will give the construction only for that case, since the main
ideas are already contained here. Let @(r, P) define the operator I'. We
construct a new X-operator F : P(S(HF(A))) — P(S(HF(A))) such that

rel+«—3z(ze F"Arez).

For this purpose we define the following formula with a new unary pred-
icate symbol Q:
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(2,Q) = (vr € 2) (B(r, P)LY e, -

It is easy to see that ¥ induces a X-operator F' given by
F(D) = {«|(HF(4), D) = ¥(z,Q)}.
Let us show that
rel™ « Jzx(x e F" Ar € 1) (4)

by induction on n. For n = 0 we have I' = F" = () and therefore (4) holds.
Assume that (4) holds for n. Let us prove that (4) holds for n + 1. In
other words, we need to prove that
(HF(A), ™) = &(r, P)

(HF(A),F") |= 3z (7“ exAVr ex) (P, P))gy(tQ)(y)/\tEy> )

Since the first formula does not contain () and the second formula does
not contain P, it is sufficient to consider one structure (HF(A), I, F™) and
prove that

(HF(A), I, F") |= &(r, P)
(HF(A), '™, F") = 3z (r ex AV €x) (P, P))gy(tQ)(y)/\tEy> :

To prove from left to right, let us consider » € HF(A) such that
(HF(A),I", F") |= &(r, P).

Consider the formula (®(r, P))gy(tQ)(y) ntey- Then by induction hypothesis we
have that
(HF(A), I, F") =Vr' (P(r') +» 3z(z € Q AT’ € 1)) (5)

and therefore (by replacement lemma) we have

(HF(A), I, F") |= (P(r, P))i,(g(ywey-

Now it is easy to check that

(HF(4), 1", F") (=32 (r e s A (9 €2) (00", P) SO e,)

taking z = {r}.
To prove from right to left, let us consider r € HF(A) such that

P
(HF(A), '™, F") = 3z (r cx AV ex) (@(r',P))ay(g(y)Mey) )

From this we have that
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P(t)

(HF(A), I, F") |= (2(r, P)) 3,0 atey

and from (5) (by the replacement lemma) we obtain that
(HF(A), I, F") |= &(r, P).

Now, from Theorem 1, it follows that the least fixed point of the operator

F is X-definable and therefore the least fixed point of the operator I is also
X-definable.

O

4. The least fixed points of effective operators on
the real numbers without the equality test

In this section, we consider the standard model of the real numbers (IR, 0, 1, +,
-, —, <), denoted also by IR, where +, - and — are regarded as the usual arith-
metic operations on the reals. We use the language of strictly ordered rings,
so the predicate < occurs positively in formulas. This allows us to consider
XY -definability as generalisation of computable enumerability. Indeed, in all
effective approaches to exact real number computation via concrete repre-
sentations, we need only finite amount of information in order to show that
one number is less than another. The following is an immediate corollary of
Theorem 2.

Corollary 1. Let I' : P(HF(IR)") — P(HF(IR)") be an arbitrary X —operator.
Then the least fixed-point of I' is X'-definable.

5. Future work

One of the applications of the Gandy theorem in the case of structures with
equality is that it allows us to define universal X-predicates. It leads to a
topological characterisation of X-relations on IR. Thus the sets B C IR" that
are Y-definable in HF(IR) with equality are exactly the effective unions of
semialgebraic sets.

We think that the Gandy theorem can be used in this way for the struc-
tures without equality, but for this we need more evolved arguments. Also we
think that it is possible to show that the sets B C IR" that are X-definable
in HF(IR) without equality are exactly the effective unions of open semial-
gebraic sets.
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