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Fixed points on abstra
t stru
tures

without the equality test

M. V. Korovina

In this paper, we present a study of the de�nability properties of �xed points of

e�e
tive operators on abstra
t stru
tures without the equality test. In parti
ular, we prove

that the Gandy theorem holds for the reals without the equality test. This provides a useful

tool for dealing with re
ursive de�nitions using �-formulas.

1. Introdu
tion

The aim of the paper is to present a study of the de�nability properties of

�xed points of effe
tive operators on abstra
t stru
tures without the equality

test. The question of de�nability of �xed points of �-operators on abstra
t

stru
tures with equality was �rst studied in [1, 6, 5℄. One of the most fun-

damental theorems in the area is the Gandy theorem whi
h states that the

least �xed point of any positive �-operator is �-de�nable. This theorem

allows us to treat the indu
tive de�nitions using �-formulas. The role of

indu
tive de�nability as the basi
 prin
iple of general 
omputability is dis-


ussed in [9, 13℄. In some 
ases it is natural to 
onsider a stru
ture in the

language without equality. For example, in all e�e
tive approa
hes to exa
t

real number 
omputation via 
on
rete representations [7, 8, 14℄, the equality

test is unde
idable. This is not surprising, be
ause in�nite amount of infor-

mation should be 
he
ked in order to de
ide that two given numbers are

equal.

Until now there has been no Gandy-type theorem known for su
h stru
-

tures. Let us note that in all proofs of the Gandy theorem that have been

known so far it is the 
ase that, even when the de�nition of a �-operator

does not involve equality, the resulting �-formula usually does. In this paper

we show that it is possible to over
ome this problem. In parti
ular, we show

that the Gandy theorem holds for the real numbers without the equality

test.

The 
on
ept of �-de�nability is 
losely related to the generalised 
om-

putability on an abstra
t stru
ture [1, 6, 12, 15℄, in parti
ular, on the real

numbers [10, 11, 15℄.

The notions of �-de�nable sets or relations generalise those of 
om-

putable enumerable sets of natural numbers and play a leading role in the
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spe
i�
ation theory that is used in the higher order 
omputation theory on

abstra
t stru
tures.

In this paper, we investigate de�nability of the least �xed points of �-

operators on abstra
t stru
tures without the equality test. The paper is

organised as follows. In Se
tion 2, we introdu
e the basi
 notations and def-

initions. We provide the ba
kground information ne
essary to understand

the main results. Se
tion 3 presents the Gandy theorem for stru
tures with-

out the equality test. In Se
tion 4, we give an appli
ation of our result to

the real numbers without the equality test. We end with a dis
ussion of our

future work.

2. Ba
kground

Here we introdu
e the basi
 notations and de�nitions. Let us 
onsider an

abstra
t stru
ture A in a �nite language �

0

without the equality test.

In order to do any kind of 
omputation or to develop a 
omputability

theory, one has to work within a stru
ture ri
h enough in information to be


oded and stored. For this purpose, we extend the stru
ture A by the set

of hereditarily �nite sets HF(A).

The idea that the hereditarily �nite sets over A form a natural domain

of 
omputation is quite 
lassi
al and is developed in detail in [1, 6℄.

Note that this or very similar extensions of stru
tures with equality are

used in the theory of abstra
t state ma
hines [2, 3℄ and in query languages

for hierar
hi
 databases [4℄.

We will 
onstru
t the set of hereditarily �nite sets over the model with-

out equality. This stru
ture permits us to de�ne the natural numbers and

to 
ode and store information via formulas.

We 
onstru
t the set of hereditarily �nite sets, HF(A), as follows:

1. HF

0

(A) 
 A; HF

n+1

(A) 
 P

!

(HF

n

(A)) [HF

n

(A); where n 2 ! and

for every set B, P

!

(B) is the set of all �nite subsets of B.

2. HF(A) =

S

n2!

HF

n

(A):

We de�ne HF(A) as the following model:

HF(A)
 hHF(A); U; S; �

0

; ;;2i
 hHF(A); �i ;

where the 
onstant ; stands for the empty set and the binary predi
ate

symbol 2 has the set-theoreti
 interpretation. We also add the predi
ates

symbols U for urelements (elements from A) and S for sets. Let us denote

S(HF(A))
 HF(A) n A.
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The natural numbers 0; 1; : : : are identi�ed with the (�nite) ordinals in

HF(A), i.e. ;; f;; f;gg; : : :, so in parti
ular, n+ 1 = n [ fng and the set !

is a subset of HF(A).

We use variables subje
t to the following 
onventions:

r; r

1

; : : : range over A (urelements),

x; y; z; s; w; f; g; : : : range over S(HF(A)) (sets),

n;m; l; : : : range over ! (natural numbers) and

a; b; 
 : : : range over HF(A).

We use the same letters to denote elements from the 
orresponding stru
-

tures and �r to denote r

1

; : : : ; r

m

.

The notions of a term and an atomi
 formula are given in the standard

manner.

The set of �

0

-formulas is the 
losure of the set of atomi
 formulas un-

der ^;_;:, and bounded quanti�ers (9a 2 s) and (8a 2 s), where (9a 2 s) 	

denotes 9a(a 2 s ^ 	) and (8a 2 s) 	 denotes 8a(a 2 s! 	).

The set of �-formulas is the 
losure of the set of �

0

formulas under ^,_,

(9a 2 s), (8a 2 s), and 9.

We are interested in �-de�nability of sets on A

n

whi
h 
an be 
on-

sidered as generalisation of re
ursive enumerability. The analogy between

�-de�nable and re
ursive enumerable sets is based on the following fa
t.

Consider the stru
ture HF = hHF(;);2i with the hereditarily �nite sets

over ; as its universe and membership as its only relation. In HF the �-

de�nable sets are exa
tly the re
ursively enumerable sets.

The notion of �-de�nability has a natural meaning also in the stru
ture

HF(A).

De�nition 1.

1. A set B � HF(A) is �-de�nable, if there exists a �-formula �(a) su
h

that b 2 B $ HF(A) j= �(b):

2. A fun
tion f : HF(A) ! HF(A) is �-de�nable, if there exists

a �-formula �(
; d) su
h that f(a) = b$ HF(A) j= �(a; b):

Lemma 1.

1.The predi
ates R(a) 
 a 2 A, S(a) 
 a is a set, and n 2 ! are

�

0

-de�nable.

2.The following predi
ates are �

0

-de�nable: x = y, x = y\ z, x = y[ z,

x =< y; z >, x = y nz (re
all that all variables x; y; z range over sets).

3.A fun
tion f : !

n

! !

m

is 
omputable if and only if it is �-de�nable.

4.Let Fun(g) mean that g is a �nite fun
tion
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g = fhx; yi j for every x there exists a unique y g:

Then the predi
ate Fun(g) is �

0

-de�nable.

5.If HF(A) j= Fun(g) then the domain of g, denoted by Æ

g

, is �

0

-

de�nable.

Proof. Proofs of all properties are straightforward ex
ept (3) whi
h 
an be

found in [6℄. 2

For �nite fun
tions Fun(f), let us denote f(x) = y if hx; yi 2 f .

The following proposition states that we have a full 
olle
tion on HF(A).

Proposition 1. (Colle
tion.) For every formula � the following holds: if

HF(A) j= (8a 2 x) 9b�(a; b), then there is a set z su
h that

HF(A) j= (8a 2 x) (9b 2 z)�(a; b) ^ (8b 2 z) (9a 2 x)�(a; b):

Proof. This follows from the de�nition of HF(A). Indeed, if x 2 HF(A)


onsists of k elements a

1

; : : : ; a

k

and for ea
h of these a

i

there is an b

i

su
h

that �(a

i

; b

i

) holds. Then all b

1

; : : : ; b

k

o

ur in HF

n

(A) for some element

n, hen
e fb

1

; : : : ; b

k

g 2 HF

n+1

(A). 2

3. The least �xed points of e�e
tive operators

Now we re
all the notion of a �-operator and prove the Gandy theorem for

stru
tures without the equality test.

Let �(a

1

; : : : ; a

n

; P ) be a �-formula, where P o

urs positively in � and

the arity of P is equal to n.

We think of � as de�ning a �-operator � : P(HF(A)

n

) ! P(HF(A)

n

)

given by

� (Q) = f�aj (HF(A); Q) j= �(�a; P )g;

where for every set B, P(B) is the set of all subsets of B.

Sin
e the predi
ate symbol P o

urs only positively, we have that the


orresponding operator � is monotone, i.e. for any sets A � B implies

� (A) � � (B).

By monotoni
ity, the operator � has the least (w.r.t. in
lusion) �xed

point whi
h 
an be des
ribed as follows.

We start from the empty set and apply the operator � until we rea
h

the �xed point:
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�

0

= ;; �

�+1

= � (�

�

); �




= [

�<


�

�

; (1)

where 
 is a limit ordinal.

One 
an easily 
he
k that the sets �

�

form an in
reasing 
hain of sets:

�

0

� �

1

� : : :. By set-theoreti
al reasons, there exists the least ordinal 


su
h that � (�




) = �




. This �




is the least �xed point of the given operator

� .

In order to study the least �xed points of arbitrary �-operators (without

the equality test), we �rst 
onsider �-operators of the type

� : P(S(HF(A))

n

)! P(S(HF(A))

n

):

Then we will show how the least �xed points of arbitrary �-operators 
an

be 
onstru
ted using the least �xed points of su
h operators. Note that,

as S(HF(A)) is 
losed under pairing, S(HF(A))

n

� S(HF(A)) for n > 0.

Moreover, S(HF(A))

n

is a �-de�nable subset of HF(A). So, without loss of

generality, we 
an 
onsider the 
ase n = 1.

Let us formulate some properties of �-operators whi
h we will use below.

The following proposition states that ea
h element from the value of a �-

operator on a �-set 
an be obtained as an element of the value of this

operator on a �nite subset of the set.

Proposition 2. If Q is a �-de�nable subset of S(HF(A)) and w 2 � (Q),

then there exists p 2 S(HF(A)) su
h that p � Q and w 2 � (p).

Proof. We prove the proposition for the more general 
ase where we allow

parameters from S(HF(A)) to o

ur into the formula de�ning our operator.

Let �(

�

b; x; P ) be a�-formula de�ning our operator � , where

�

b = b

1

; : : : ; b

n

are parameters from S(HF (A)). And let Q be a �-de�nable subset of

S(HF (A)) and w 2 � (Q). We need to prove that there exists p 2 S(HF (A))

su
h that p � Q and w 2 � (p).

We prove the 
laim by indu
tion on the stru
ture of �.

If �(

�

b; x; P ) 
 P (x) and (HF(A); Q) j= P (w), then the set p 
 fwg is

a required one.

If � is an atomi
 formula whi
h does not 
ontain P , then the set p
 ;

is a required one.

For the indu
tion step, let us 
onsider all possible 
ases.

1. Suppose �(

�

b; x; P )
 (8a 2 b

j

)	(a;

�

b; x; P ) and

(HF(A); Q) j= (8a 2 b

j

)	(a;

�

b; w; P ):

By indu
tion hypothesis,
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(HF(A); Q) j= (8a 2 b

j

)9s

�

	(a;

�

b; w; P )

�

P (t)

t2s

^ s � Q:

Using Proposition 1, we �nd an element q su
h that

(HF(A); Q) j= (8a 2 b

j

) (9s 2 q)

�

�

	(a;

�

b; w; P )

�

P (t)

t2s

^ s � Q

�

^

(8s 2 q) (9a 2 b

j

)

�

�

	(a;

�

b; w; P )

�

P (t)

t2s

^ s � Q

�

:

Let p
 [q.

By de�nition, for all a 2 b

j

there exists s � p su
h that

(HF(A); s) j=

�

	(a;

�

b; w; P )

�

P (t)

t2s

:

So we have

(HF(A); p) j= 	(a;

�

b; w; P ) for all a 2 b

j

:

In other words,

(HF(A); p) j= (8a 2 b

j

)	(a;

�

b; x; P ):

By 
onstru
tion, the set p is a required one.

2. The 
ase �(

�

b; x; P ) 
 (9a 2 b

j

)	(a;

�

b; x; P ) is similar to the 
ase

above.

3. Suppose �(

�

b; x; P )
 9a	(a;

�

b; x; P ) and

(HF(A); Q) j= 	(b

0

;

�

b; w; P ):

By indu
tion hypothesis, there exists p

0

� Q su
h that p

0

2 S(HF(A))

and

(HF(A); p

0

) j= 	(b

0

;

�

b; w; P ):

The set p
 p

0

is a required one.

4. Suppose �(

�

b; x; P )
 	

1

(

�

b; x; P ) ^ 	

2

(

�

b; x; P ) and

(HF(A); Q) j= 	

1

(

�

b; w; P ) ^ 	

2

(

�

b; w; P ):

By indu
tion hypothesis, there exist p

1

� Q and p

2

� Q su
h that

p

1

2 S(HF(A)), p

2

2 S(HF(A)) and

(HF(A); p

1

) j= 	

1

(

�

b; w; P )

and

(HF(A); p

2

) j= 	

2

(

�

b; w; P ):

The set p
 p

1

[ p

2

is a required one.

5. The 
ase �(

�

b; x; P ) 
 	

1

(

�

b; x; P ) _ 	

2

(

�

b; x; P ) is similar to the 
ase

above. 2
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Proposition 3. Let � : P(S(HF(A))) ! P(S(HF(A))) be a �-operator.

The relation x 2 � (y) is �-de�nable.

Proof. Let �(z; P ) be a �-formula whi
h de�nes the operator � . Suppose

x 2 � (y). By de�nition,

x 2 fzj (HF(A); y) j= �(z; P )g:

It means that

(HF(A); y) j= �(x; P ):

So we have

(HF(A)) j= (�(x; P ))

P (t)

t2y

:

It is easy to see that the relation x 2 � (y) is de�ned by�-formula �(x; P )

P (t)

t2y

.

2

Now we are ready to prove the Gandy theorem for �-operators of the

type

� : P(S(HF(A)))! P(S(HF(A))):

Theorem 1. Let � : P(S(HF(A)))! P(S(HF(A))) be a �-de�nable oper-

ator. Then the least �xed-point of � is �-de�nable.

Proof. We will prove that the least �xed point of the operator � is �

!

,

where �

!

is de�ned as follows: �

0

= ;, �

n

= � (�

n�1

) for a �nite ordinal

n, and �

!

=

S

m<!

�

m

.

Let us show �-de�nability of �

n

for every �nite ordinal n.

For this purpose, we introdu
e the following family of �nite fun
tions:

X

0

= f< ;; ; >g;

X

n

= ff jFun(f) and Æ

f

= n+ 1; f(0) = ;; f is monotoni


and for any m � n the following is true:f(m) �

[

l<m

� (f(l)g

where n > 0, and S

j

is the domain of the fun
tion.

From the de�nitions X

n

and � , it follows that X

n

is �-de�nable for all

n 2 !, moreover there exists a �-formula  (n; x) su
h that

HF(A) j=  (n; x)$ x 2 X

n

:

Below we will use the following useful properties of the families X

n

:

1. Let w be a �nite subset of X

n

. Let us de�ne f

�

(m) 
 [

f2w

f(m) for

all m � n. Then f

�

2 X

n

.
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2. If f 2 X

n

and m � n. Then f � (m+ 1) 2 X

m

.

3. Let f 2 X

m

and m � n.

De�ne a fun
tion

f

�

(l) =

�

f(l); if l � m

f(m); if m < l � n:

Then f

�

2 X

n

.

4. Let f 2 X

n

and b 2 � (f(m)), where m � n.

De�ne a fun
tion

f

�

(l) =

�

f(l); if l � n

fbg; if l = n+ 1:

Then f

�

2 X

n+1

.

Using these properties, let us show that:

x 2 �

n

i� HF(A) j= 9f (f 2 X

n

^ x 2 f(n)) (2)

by indu
tion on n. For n = 0 we have �

n

= ; and therefore (2) holds.

Assume that (2) holds for n. Let us prove that (2) holds for n+ 1.

To prove from left to right, let us 
onsider x 2 �

n+1

= � (�

n

). By

indu
tion hypothesis, we have that x

1

2 �

n

i� 9g (g 2 X

n

^ x

1

2 g(n)) : So

the set �

n

is �-de�nable. By Proposition 2, it follows that there exists

y 2 S(HF(A)) su
h that y � �

n

and x 2 � (y).

By indu
tion hypothesis and the 
ondition y � �

n

,

HF(A) j= (8z 2 y)9g (g 2 X

n

^ z 2 g(n)) :

Using Proposition 1, we �nd an element w su
h that

HF(A) j= (8z 2 y) (9g 2 w) (g 2 X

n

^ z 2 g(n)) ^

(8g 2 w) (9z 2 y) (g 2 X

n

^ z 2 g(n)) :

Starting from the �nite subset w � X

n

, we de�ne the fun
tion g

0

as follows:

g

0

(l) = [

g2w

g(l); l � n:

By Property (1) of X

n

whi
h is mentioned above, g

0

2 X

n

. It is easy to


he
k the following in
lusion: y � g

0

(n). Indeed, if z 2 y, then there exists

g 2 w su
h that z 2 g(n) � g

0

(n).

De�ne a fun
tion
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f(l) =

�

g

0

(l); if l � n

fxg; if l = n+ 1:

From Property (4) of X

n

, it follows that f 2 X

n+1

and, moreover, x 2

f(n+ 1) holds by the de�nition of f . So f is a required one.

To prove from right to left, let us suppose that there exists f su
h that

(f 2 X

n+1

^ x 2 f(n+ 1)) : By the de�nition of X

n+1

, x 2 � (f(m)) for

some m � n.

Let us 
he
k the in
lusion : f(m) � �

m

. For this purpose we 
onsider

f

1

= f � (m+1). From Property (2) of X

m

, it follows that f

1

2 X

m

. So, for

all y 2 f

1

(m) we have HF(A) j= 9f (f 2 X

m

^ y 2 f(m)) : By indu
tion, it

means that f

1

(m) = f(m) � �

m

.

The operator � is monotone, so we have

x 2 � (f(m)) � � (�

m

) �

[

m<n+1

� (�

m

) = �

n+1

:

Thus we have proven that �

n

is �-de�nable for all n 2 !. Consequently,

x 2 �

!

$ 9n9f (f 2 X

n

^ x 2 f(n)) (3)

is �-de�nable.

To 
he
k that �

!

is a �xed point, i.e. � (�

!

) � �

!

let us 
onsider

x 2 � (�

!

). From (3) it follows that �

!

is �-de�nable. From Proposition 2

it follows that there exists y 2 S(HF(A)) su
h that y � �

!

and x 2 � (y).

It is easy to 
he
k that y � �

m

for some m 2 !. From this we have that

x 2 � (�

m

) � �

!

. By monotoni
ity of � , the set �

!

is the least �xed point.

So the least �xed point of the operator � is �-de�nable. 2

Now we 
onsider arbitrary �-operators on the stru
ture A without the

equality test.

Theorem 2. Let � : P(HF(A)

n

)! P(HF(A)

n

) be an arbitrary �-operator.

Then the least �xed-point of � is �-de�nable.

Proof.

Without loss of generality, let us 
onsider the 
ase n = 1. For simpli
ity

of notation, we will give the 
onstru
tion only for that 
ase, sin
e the main

ideas are already 
ontained here. Let �(r; P ) de�ne the operator � . We


onstru
t a new �-operator F : P(S(HF(A)))! P(S(HF(A))) su
h that

r 2 �

n

 ! 9x (x 2 F

n

^ r 2 x) :

For this purpose we de�ne the following formula with a new unary pred-

i
ate symbol Q:
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	(x;Q) = (8r 2 x) (�(r; P ))

P (t)

9yQ(y)^t2y

:

It is easy to see that 	 indu
es a �-operator F given by

F (D) = fxj(HF(A);D) j= 	(x;Q)g:

Let us show that

r 2 �

n

$ 9x(x 2 F

n

^ r 2 x) (4)

by indu
tion on n. For n = 0 we have �

n

= F

n

= ; and therefore (4) holds.

Assume that (4) holds for n. Let us prove that (4) holds for n + 1. In

other words, we need to prove that

(HF(A); �

n

) j= �(r; P ) $

(HF(A); F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x) (�(r

0

; P ))

P (t)

9yQ(y)^t2y

�

:

Sin
e the �rst formula does not 
ontain Q and the se
ond formula does

not 
ontain P , it is suÆ
ient to 
onsider one stru
ture (HF(A); �

n

; F

n

) and

prove that

(HF(A); �

n

; F

n

) j= �(r; P ) $

(HF(A); �

n

; F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x) (�(r

0

; P ))

P (t)

9yQ(y)^t2y

�

:

To prove from left to right, let us 
onsider r 2 HF(A) su
h that

(HF(A); �

n

; F

n

) j= �(r; P ):

Consider the formula (�(r; P ))

P (t)

9yQ(y)^t2y

. Then by indu
tion hypothesis we

have that

(HF(A); �

n

; F

n

) j= 8r

0

�

P (r

0

)$ 9x(x 2 Q ^ r

0

2 x)

�

(5)

and therefore (by repla
ement lemma) we have

(HF(A); �

n

; F

n

) j= (�(r; P ))

P (t)

9yQ(y)^t2y

:

Now it is easy to 
he
k that

(HF(A); �

n

; F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x)

�

�(r

0

; P )

�

P (t)

9yQ(y)^t2y

�

taking x = frg.

To prove from right to left, let us 
onsider r 2 HF(A) su
h that

(HF(A); �

n

; F

n

) j= 9x

�

r 2 x ^ (8r

0

2 x)

�

�(r

0

; P )

�

P (t)

9yQ(y)^t2y

�

:

From this we have that



Fixed points on abstra
t stru
tures without the equality test 113

(HF(A); �

n

; F

n

) j= (�(r; P ))

P (t)

9yQ(y)^t2y

and from (5) (by the repla
ement lemma) we obtain that

(HF(A); �

n

; F

n

) j= �(r; P ):

Now, from Theorem 1, it follows that the least �xed point of the operator

F is �-de�nable and therefore the least �xed point of the operator � is also

�-de�nable.

2

4. The least �xed points of e�e
tive operators on

the real numbers without the equality test

In this se
tion, we 
onsider the standard model of the real numbers hIR; 0; 1;+;

�;�; <i, denoted also by IR, where +, � and � are regarded as the usual arith-

meti
 operations on the reals. We use the language of stri
tly ordered rings,

so the predi
ate < o

urs positively in formulas. This allows us to 
onsider

�-de�nability as generalisation of 
omputable enumerability. Indeed, in all

e�e
tive approa
hes to exa
t real number 
omputation via 
on
rete repre-

sentations, we need only �nite amount of information in order to show that

one number is less than another. The following is an immediate 
orollary of

Theorem 2.

Corollary 1. Let � : P(HF(IR)

n

) ! P(HF(IR)

n

) be an arbitrary �{operator.

Then the least �xed-point of � is �-de�nable.

5. Future work

One of the appli
ations of the Gandy theorem in the 
ase of stru
tures with

equality is that it allows us to de�ne universal �-predi
ates. It leads to a

topologi
al 
hara
terisation of �-relations on IR. Thus the sets B � IR

n

that

are �-de�nable in HF(IR) with equality are exa
tly the e�e
tive unions of

semialgebrai
 sets.

We think that the Gandy theorem 
an be used in this way for the stru
-

tures without equality, but for this we need more evolved arguments. Also we

think that it is possible to show that the sets B � IR

n

that are �-de�nable

in HF(IR) without equality are exa
tly the e�e
tive unions of open semial-

gebrai
 sets.
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