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Background for formalisation of complex systems*

M. V. Korovina, O.V. Kudinov

Based on notions of computability for operators and real-valued functionals, a background for formalisation of
complex systems is introduced. We propose a recursion scheme which is a suitable tool for formalisation of complex
systems, such as hybrid systems. In this framework the trajectories of continuous parts of hybrid systems can be
represented by computable functionals.

1. Introduction

Recently more attention is paid to the problems of exact mathematical formalisation of complex
systems such as hybrid systems. By a hybrid system we mean a network of digital and analog devices
interacting at discrete times. An important characteristic of a hybrid system is that it incorporates
continuous components, usually called plants, as well as digital components, i.e. digital computers,
sensors and atuators controlled by programs. These programs are designed to select, control, and
supervise behaviour of the continuous components. Modelling, design, and investigation of behaviours
of hybrid systems have recently become areas of active research in computer science.

The main subject of our investigation is behaviour of the continuous components. In [23], the set
of all possible trajectories of the plant was called a performance specification.

We propose a background for formalisation of hybrid systems based on Domain Theory.

Our approach differs from the previous ones in the following: we can characterise the continuous
and discret parts, as well as interactions between them in the same algebraic model, with the help
of finite formulas. We propose a general approach to formalisation of a hybrid system based on the
theory of computability over the reals.

At present, new applications of Domain Theory to computations over various spaces are being
developed. Domain Theory was independently introduced by Dana Scott [26] as a mathematical
theory of computation in the semantics of programming languages and by Yu.L. Ershov [7] as a
theory of partial computable functionals of finite type.

A domain is a partially ordered set equipped with the notions of limit and finite approximation;
the partial order corresponds to information on the elements.

Given a computation based on an algorithm, each of the sets of input and output forms a domain.
The program which carries out the computation is represented as a function between these domains.
Every new step in the computation results in an element of the domain of output which provides more
information and better approximation to the ultimate result.

A continuous function is one which preserves the information order (so that more input information
gives more output information) and the limits of infinite computations in the domain (so that the total
information obtainable as output from an infinite sequence of input elements with refining information
is the sum of all information obtained from each input element).

There are a number of categories of domains according to various additional properties that they
satisfy (algebraic domains [1, 29, 30], continuous domains [26, 27, 5, 6, 10, 33, 34, 35, 24], and so
on). Below, to construct computational models for real-valued functions and Functionals, we will use
continuous domains. The continuous domain (more precisely, the interval domain) for the reals was
first proposed by Dana Scott [26] and later was applied to mathematics, physics and real-number
computation in [5, 6, 34, 35, 24] and others.

*This reseach was supported in part by the RFBR (grants N 99-01-00485, N 00-01-00810) and by the Siberian Division of RAS
(a grant for young reseachers, 2000)




Background for formalisation of compler systems 41

In this article we propose continuous domains named function domains to construct a computa-
tional model of operators and a real-valued functional defined on the set of continuous real-valued
functions.

In Section 2, we recall basic definitions and tools from [6] and introduce new ones to construct our
computational model. We introduce effective function domains which are w-continuous Scott domains.
Based on the notion of computability of mapping between two domains, we propose computability
of operators and functionals defined on continuous real-valued functions. The main feature of this
approach is related to the fact that computable operators and functionals defined on continuous real-
valued functions are continuous on their domain w.r.t. the standard topology induced by the uniform
norm. Moreover, we propose a semantic characterisation of computable operators and functionals via
validity of finite X-formulas.

Then, in Section 3, we give characterisations of computable functions and functionals in logical
terms via the definability theory. Also we propose a recursion scheme which is a suitable tool for
formalisation of complex systems such as hybrid systems. Modelling, design, and investigation of the
behaviour of hybrid systems have recently become active areas of research in computer science (for
example, see [12, 13, 17, 20, 23]).

In the framework proposed in this paper the trajectories of continuous parts of hybrid systems
(performance specifications) can be represented by computable functionals.

For more details we would like to refer to the full version of this paper on
http://inet.ssc.nsu.ru/ rita/complex.ps.

2. Basic notions

To propose the notions of computability of operators and real-valued functionals, we, following the
paper [6], recall the definitions of the continuous domain for the reals (the interval domain) and
computable functions and introduce functional domains.

2.1. Terminology

Throughout the article, < R,0,1,+,-, <> is the standard model of the reals, denoted also by R,
where + and - are regarded as predicate symbols. We use the language of strictly ordered rings, so
the predicate < positively occurs in formulas.

Let R~ denote RU{—o0}, R denote R U {+00}, N denote the set of natural numbers and Q
the set of rational numbers.

2.2. The effective interval domain for the reals

The interval domain for the reals was first proposed by Dana Scott [26, 27] and later was applied to
mathematics, physics and real number computation (see, for example, [5, 6, 24, 33, 34, 35]). By the
interval domain for the reals we mean the set of compact intervals of R, partially ordered with the
reversed subset inclusion. The real line is obtained as the set of maximal elements in this continuous
domain.

We recall the definition of the interval domain I proposed in [6]:

Z=A{[a,)] CR|a,beR, a<bfU{L}.

The order is the reversed subset inclusion, i.e. L C I for all I € Z and [a,b] C [¢,d] iff a < ¢ and
d < b in the usual ordering of the reals. One can consider the least element | as the set R. Directed
suprema are filtered intersections of intervals. The way-below relation is given by I < J iff J C int(I),
where int(I) denotes the interior of I. For the relation < we have the following properties: 1 < J for
all J € 7 and [a,b] < [¢,d] if and only if a < ¢ and b > d. The maximal elements are the intervals [a, a]
denoted as {a}. Note that Z is an effectively given w-continuous domain. An example for a countable
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basis is the collection Zy of all intervals with rational endpoints together with the least element L.
Similarly, we can define the interval domain Zj, ;; for an interval [a, b].

Definition 2.1. Let Zy = {bg, ..., by, ...} be the effective enumerated set of all intervals with rational
endpoints endowed with the least element 1.

A continuous function f : T — T is computable, if the relation by, < f(by) is computable enumerable
in n, m, where by, b, € Iy.

Definition 2.2. A function f : R — R is computable if and only if there is an enlargement g : T — T
(i.e., g({z}) = {f(z)} for all x € domf ) which is computable in the sense of Definition 2.1.

Denote the class of computable total functions as F and the class of computable functions defined on
an interval [a, b] as Fla,b].

2.3. The effective function domain

In this section we introduce effective function domains which are w-continuous Scott domains. Based
on the notion of computability of mapping between two domains, we propose computability of opera-
tors and functionals defined on continuous real-valued functions. Sufficiency of this approach follows
from the fact that computable operators and functionals defined on continuous real-valued functions
are continuous on their domain w.r.t. the standard topology induced by the uniform norm. Moreover,
we propose a semantic characterisation of computable operators and functionals via validity of finite
Y-formulas.

We consider the set of functions f : [a,b] — Z defined on a compact interval [a,b] which are
continuous in the following sense.

Definition 2.3. A function f :[a,b] — T is said to be continuous in xy if
f(zo) = L or f(zg) = [c,d] and Ve1e236 (|z — zo| < 6 — f(z) > [c —€1,d + €]).
A function is continuous on [a,b] if it is continuous in every point of [a,b).

Note that a continuous function f : [a,b] — Z can be represented by the pair of a lower semicontinuous
map and an upper semicontinuous map.

Definition 2.4. A function f:[a,b] = R™ is said to be lower semicontinuous if the set Yy =
{z|f(x)# — 0o} is open w.r.t. the standard topology and

(Yzo € Yy) (Va < f(z0)) 36 (Jzo — x| < 6 = a < f(z)).

A function f :[a,b] - R is said to be upper semicontinuous if the set Yy = {z|f(z)# + oo} is
open w.r.t. the standard topology and

(Vzo € Yy) (Va > f(x0)) 36 (Jxo — x| <6 = a > f(x)).

For the classical theory of semicontinuous functions the reader should consult some textbook (e.g.
[3]). The reader can also find some properties of computability on continuous and semicontinuous real
functions in [36]. It is easy to see that a continuous function f : [a,b] — Z is closely related to the
pair of functions (f!: [a,b] - R, f%: [a,b] — RT), where fl(z) = inf f(z) is lower semicontinuous
and f2(z) = sup f(z) is upper semicontinuous (see [6, 24]). The function f! is called as lower bound
of f and f? is called as upper bound of f.

Below we denote Y; = {z|f(z) # L} for f : [a,b] = Z and Y; = {z|f(z) # Foo} for f : [a,b] — R.
For upper and lower semicontinuous functions these sets are open w.r.t. the standard topology by
definition. To introduce our notions of computable operators and real-valued functionals, we introduce
functional domains which are w-continuous Scott domains.
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Definition 2.5. A function domain Zf([a,b]) is the collection of all continuous functions
f i la,b] — T with a least element L,y partially ordered by the following relation: f T g iff
(V2 € [a,8]) (f() C g(x)) and Liyp C T for all T € Ty ([a, ).

To denote that a subset A C Z¢([a,b]) is directed and has the least upper bound z, we write VA =z
The way-below relation < is defined in the standard manner: f < g if for every directed subset
A C Ifla,b] with g T VT A there exists a € A with f C a.

Proposition 2.6. For each compact interval [a,b] the functional domain I¢([a,b]) is an effectively
given w-continuous Scott domain.

Proof. The existance of \/T A for each directed subset A C Z¢([a,b]) follows from the properties of
semicontinuous functions. Indeed, /T A = <sup real L inf feA f2>, where f! is the lower bound and
f? is the upper bound of f.

Let us prove that \/7T (4 f) for f € Zf([a,b]), where | f denotes the set {g € Z¢([a,b])|g < f}. Let
U be open and clU = U C Y. The set | f contains all functions of the type g7, = (af;, cf;), where

o (z) = —00 if x&U,
UM inf,ep fl(2) -1 ifz e,

7

o (z) = { 400 if x¢U,

sup,cp f2(2) + 1 ifzeU,

By the properties of semicontinuous functions, VI {gi|U C Y, n €w} = f,so vl f=f.

It is obvious that the function domain Z([a, b]) is w-continuous. An example for a countable basis
is the set Ty o([a,b]) = {bn}new U {Lies}, where the lower bound by, and the upper bound b, of by,
satisfy the following conditions: there exist a = ag... < a; < ... < a, = b such that

1. for all # € (a;,a;11) bl(7) = —c0 and b2 (z) = +oc0 or bl (z) = ajz + B; and b2 (z) = vz + (i3

2. if for z € (aj,ai11)U(ait1,ai12) bh and b2 are finite then b (a;11) = qaip1+B;i = aiy1ai41+Pis1
and by (ai11) = Yi@it1 + G = Yir10ir1 + Cig;

3. if bl and b2 are infinite on (a;, a;11) then b} (a;) = b} (a; 1) = —oo and b2 (a;) = b2 (a;11) = +oo,
where a;, o;, Bi, vi, ¢ € Q.

Using the standard numbering of the set of piecewise linear functions with rational coefficients, it is
easy to prove that Zro([a,b]) is countable and effective. O

In the same way we can construct an interval domain Z([a,b]") for n € w.

Corollary 2.7. For each compact n-cube [a,b]" the interval domain Z¢([a,b]™) is an effectively given
w-continuous Scott domain.

Proof. 1t is similar to the proof of Proposition 2.6. O

Now we consider a useful property of the way-below relation <. Thus, f < ¢ if and only if these
functions are separated.

Definition 2.8. Let f and g be lower semicontinuous functions, clY; C 'Y, and f < g. The functions
[, g are said to be separated if there exists a continuous on Yy function h such that f(z) < h(z) < g(z)
for all x €Y.

Let f and g be upper semicontinuous functions, c1Yy C Yy and f < g. The functions f and g are
said to be separated if there exists a continuous on Yy function h such that f(x) < h(z) < g(x) for all
x € Yf.

Let f: R = T and g : R — T be continuous. The functions f and g are said to be separated if
their lower bounds f', g' and their upper bounds f2, ¢° are separated.
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Proposition 2.9. Let f and g be lower semicontinuous and clYy CY,, f < g. The following assertions
are equivalent.

1.f and g are separated;

2.there exists a step upper semicontinuous function h such that
f(z) < h(z) < g(x) for x €Yy;

3.there exists an upper semicontinuous function h such that
f(z) < h(z) < g(z) for z € Yy;

4.(Vo € Yy)AU, (3t > 0)(Vz,w € Uy)(9(z) > f(w) + tz), where U, denotes some neighbourhood
of x.

Proof. We prove nontrivial passages.

1 — 2. It follows from the fact that each continuous function is approximated by a step upper
semicontinuous functions (see [3] ).

2 — 1. See [31].

2 — 3. Obviously.

3 — 4. Let h : [a,b] = R be upper semicontinuous and f(z) < h(z) < g(z) for z € Y,. For z € Y, put
7 = g(z)—h(z) and € = £. According to upper semicontinuity of i and lower semicontinuity of g, there
exists a neighbourhood U, of x such that for all z, w € U, : f(z) < h(z) < h(z)+e€ and g(w) > g(z)—e.
We have g(w) > g(z) — € = h(z) + 27 > h(2) + T > f(z). For t, = % assertion 4 holds.

4 — 2. Let {Uyz}zeay; have the following property: for all z,w € U, g(z) > f(w) + tz. Since clYy is
compact, we can construct a finite set {Uy, }i<, such that:

1. Uy, is closed;
2. Uy, N UI]. is one-element or empty;
3. Yy C Uign Uxi‘

Put h(z) = sup{yly > f(2) A Gile € Up) Aly < inf  g(2) — ta)}.
2€U,,NelYy

By the properties of lower semicontinuity of g, the function A is a required one. O

Proposition 2.10. Let f and g be upper semicontinuous and clY, C Yy, f < g. The following
assertions are equivalent.

1.f and g are separated;

2.there exists a step lower semicontinuous function h such that
f(z) < h(z) <g(x) for x € Yy;

3.there exists a lower semicontinuous function h such that
f(z) < h(z) <g(x) for x € Yy;

4.(Vo € Y§)3U,(3t, > 0)(Vz,w € Uz)(g(2) > f(w) + t;), where U, denotes some neighbourhood
of x.

Proof. Tt is similar to the proof of Proposition 2.9. O

Lemma 2.11. Let A be a directed set of lower semicontinuous functions and limge 4 a(z) = g(z). For
a compact V' and some ¢ € R the following assertion holds. If g(x) > ¢ for all z € V', then there exists
a € A such that a(z) > c for allz € V.

Proof. Clearly, for all z € V there exists a; € A such that a,(xz) > ¢. By the definition of lower
semicontinuity, there exists a neighbourhood U, of z with (Vz € U,) (a;(z) > ¢). The set {U,}zev
covers the compact V, so we can extract a finite subcovering {U,, }ign- For all z € U,, we have
az,(z) > c. By the definition of a directed set, there exists a function a € A such that a(z) > ag,(z)
for all x € V. This is a required function. O
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Theorem 2.12. Continuous functions f : [a,b] = Z and g : [a,b] — T are separated if and only if
f<ag.

Proof. Let f and g be separated and f!, ¢g' be their lower bounds. We show that for a directed set
A C Ifla,b] with g C VTA there exists a € A such that f T a. It is sufficient to prove that there
exists a with the lower bound a' such that a'(z) > f!(z) for = € [a,b]. By Proposition 2.9 we have
cdYp C Y A (Vo € Y)3U,(3te > 0)(Vz,w € Uy)(g'(2) > f'(w) + t;), where U, denotes some
neighbourhood of z.

From the set {Ux}xgyg1 which covers clYy1 we can extract a finite set {Uy, }i<, such that clYy C

{Ug, }i<n. Moreover, it is easy to construct {U,, }i<m which covers clY}1, where U, is compact. For
i < m we define ¢; = sup{yly < (ianGUzi gt(z) —tz)}-

Clearly, g'(z) > ¢; > f!(x) for all x € U,,. From Lemma 2.11 we have that there exists a; with
the lower bound a! such that a!(z) > ¢; > f!(z) for all z € U,,. Since A is directed, there exists
a 3 a; for all 7+ < m. This function is a required one.

Let f < g. We show that clYp1 C Y1 A (Vo € Yju)3U,(3t, > 0)(Vz,w € Uy)(g'(2) > fH{w) + to),
where U, denotes a neighbourhood of z and f', ¢' denote the lower bounds of f and g. For the upper
bounds the corresponding assertion is proved by analogy. Obviously, Yy C Y, and f C g. Suppose
the contrary. There exists z € Y, such that YU, Vt, (3z,w € U,) g'(2) < f'(w) + t,. Let us define
{Un }new by the following rule:

Uy = (z—Lz+1) ifze(ab),
U, = [a,a+ %) if z = a,
U, = (b— 1,0 if 2 = b.

There exists ng such that for all n > ng we have U,, C Yg1 and there exists w,, € U,, withinf 5 g'(2) <
I (wy)+ % We construct an increasing sequence of lower semicontinuous functions such that the limit
of this sequence is ¢g', but there is no n such that a,(y) > f'(y) for all y € [a, b].
Put
7ll(y) _ { gl(y) ) . %nyUn,
inf, 7 g (2) — = ify € Up,

a

where U, is the closure of U,. It is easy to see that HILHO% al(y) = g'(y) for all y € [a,b]. For y # =

n
it is obvious. We consider the nontrivial case when y = z. Suppose the contrary: there exists ¢ such
that a;(z) < ¢ < g'(x). By lower semicontinuity of g, there exists N with inf, 5 g'(2) > ¢+ % So

inf, 5 ¢'(2) = ajy(x) > c. This is a contradiction.

On the one hand, nlglgo al(y) = g'(y) for all y € [a,b] and, on the other hand, there is no n such

that a,(y) > f'(z) for all y € [a,b] because for all n al(w,) < f'(wy,). This is a contradiction with
the assumption [ < g.

Let us prove that clY; C Y,. Suppose the contrary. There exists a sequence {z,, },e., such that for
all n z, € Yy C Yy, but xlgglo T, =z €Y, ie. g(z) = L. We can extract a subsequence {zp,, }ncw

such that |z, —z| < % We define a sequence of lower semicontinuous functions in the following way:
o (x) = g'(y) ifly—z[> &,
—oo ifly—z| < L.

On the one hand lim al(y) = g'(y) for all y € [a,b] and on the other hand —oco = a) (2, ) <

fY(xm,) # —oco. This is a contradiction with the assumption f < g.
O

Now we introduce the notions of computable operators and computable functionals defined on total
continuous real-valued functions. Below we use the standard notion of continuity of a total operator
F :Z¢([a,b]) = Z¢([c,d]) w.r.t. the Scott-topologies on Z¢([a,b]) and Z¢([c,d]).
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Definition 2.13. Let Z¢([a,b]), Z¢([c,d]) be some function domains and Zso([a,b]) = {b;}icw,
Tro(le,d]) = {citicw be their effective bases constructed as in Proposition 2.6. A continuous total
operator F' : Z¢([a,b]) = Z¢([c,d]) is computable, if the relation c,, < F(by) is computable enumerable
in n and m, where b, € Lro([a,b]) and cn € Lyo([c,d)).

Definition 2.14. An operator F : Cla,b] — C|c,d] is computable, if dom F is open and there exists
a computable operator F* : I¢([a,b]) — Zs([c,d]) such that

F(f) =g F*(f) = g, where f(z) = {f(x)}, §(=) = {g(=)}.
Definition 2.15. A functional F : Cla,b] x [c,d] — R is computable, if there ezxists a computable
operator F* : Cla,b] — Cle,d]) such that

F(f,z) =y < F(f)(z) =y.

Proposition 2.16. Computable operators and functionals defined on continuous real-valued functions
are continuous w.r.t. the standard topology induced by the uniform norm.

Proof. 1t follows from the definition and continuity of corresponding operator
F* : T¢([a,b]) — Z¢([c,d]). O

To introduce computability of a functional of the type F' : C[a,b] x R — R, we use an effective
sequence of domains {Z¢([—n,n])}ne. with conforming bases in the following sense. We consider a
sequence of bases {Z7o([—n,7]) }necw = {{b} }icw }new with the homomorphisms res, ,, : Zf([—m,m]) —
Z¢([-n,n]) of restrictions for m > n defined by the natural rules resp, »(b") = b"|_, ) = b and
resm,n(J-[—m,m}) = J—[—n,n}-

Definition 2.17. A sequence {Fy}rc, of computable operators of the type
Fy : It[a,b] — Z[—n,n] is uniformly computable if {{k,n,m) |Fy(bk) > bF,} is recursively enumerable
in k, n and m.

Definition 2.18. A sequence {F} }re,, of computable operators of the type
Fy : Cla,b] — C[—n,n] is uniformly computable, if there exists a uniformly computable sequence of
computable operators {F}}rew of the type Fy, : Ly[a,b] — Zg[—n,n] such that

Fi(f) = g & Fi(f) = §, where f(2) = {f(2)}, §(=) = {9()}, k € w.

Definition 2.19. A functional F : Cla,b] x R — R is computable, if there exists a uniformly com-
putable sequence {F} }re, of computable operators of the types Fj} : Cla,b] — Cl—k, k] such that

F(f,x) =y < Vk(z € [=kk]) = (FL(f)(z) = y).

Note that for m > n the condition res, ,, (F; (f)) = F,;(f) holds by construction.

Proposition 2.20. A computable functional F : Cla,b] x R — R is continuous w.r.t. the standard
topology induced by the uniform norm.

Proof. 1t follows from the definition and continuity of the corresponding operators Fy' : Z¢([a,b]) —
Ts([—k,k]) for k € w. O

In the same way we can define computability of functionals of the type F' : Cla,b] x R" — R.
Corollary 2.21. A computable functional F : Cla,b] x R™ — R is continuous.

Proof. 1t follows from the definition and continuity of the corresponding operators Fy' : Z¢([a,b]) —
Te([—k,k]") for k € w. O
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3. Definability of computable functions and functionals

To semantically characterise computable real-valued functions, operators and functionals via validity of
finite formulas, we use comparative analyses with real-valued majorant-computable functions proposed
in [14, 15] and generalised computable operators and functionals introduced below.

The computation of real-valued function is an infinite process that produces approximations closer
and closer to the result. The class of majorant-computable real-valued functions has clear and exact
classifications in logical and topological terms.

3.1. Majorant-computable function and generalised computable operators and
functionals

To recall the notion of majorant-computability and to introduce generalised computability, let us con-
struct the set of hereditarily finite sets HF (M) over a model M. This structure is rather well studied
in the theory of admissible sets [2] and permits us to define the natural numbers, to code and store
information via formulas.

Let M be a model whose language oy contains no function symbols and whose carrier set is M.
We construct the set of hereditarily finite sets, HF (M), as follows:

1. So(M) & M, Spi1(M) = Pu(Sn(M)) US,(M), where n € w and for every set B, Py(B) is
the set of all finite subsets of B.

We define HF (M) as the following model:

HF(M) = <HF(M)7 M, o9, Darm), EHF(M)> ;

where (Z)HF(M) and the binary predicate symbol €xp) has the set-theoretic interpretation. Below
we will use the notations € and (). Denote o = op U {€, 0}. The notions of a term and an atomic
formula are given in a standard manner.

The set of Ag-formulas is the closure of the set of atomic formulas in the language o un-
der A,V,—,(3z € t) and (Vz € t), where (3z €t) ¢ denotes Jz(z € t A ¢) and (Vz €t) ¢ de-
notes Vz(x € t — ). The set of X-formulas is the closure of the set of Ay formulas un-
der A,V,(Jz € t), (Vz € t), and 3. We define II-formulas as negations of Y-formulas.

Definition 3.1. 1.A set B C HF(M) is X-definable , if there exists a X-formula ®(x) such that
z € B+ HF(M) | &(x).
2.A function f: HF(M) — HF(M) is X-definable, if there exists
a X-formula ®(x,y) such that f(x) =y < HF(M) = ®(z,y).

In a similar way, we define the notions of II-definable functions and sets. The class of A-definable
functions (sets) is the intersection of the class of X-definable functions (sets) and the class of
[T-definable functions (sets).

Note that the sets M and M"™ are Ag—definable. This fact makes HF (M) a suitable domain for
studying functions from M* to M. Below, when we say about definability, we mean definability in
HF(R). To introduce the definition of majorant-computability, we use a class of 3-, TI-definable sets
as the basic classes. So, we recall some usefull properties of X-, II-definable subsets of R".

Proposition 3.2. Let R be the reals with the language op = (0,1, 4, -, <).

1.The set HF(0) and the predicate of equality on HF (D) are ¥-definable.

2.The set {(n,r)| n is a Godel number of a X-formula ®, r € R, and
HF(R) = ®(z)} is X-definable.
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3.A set B C R"™ is X-definable if and only if there exists an effective sequence of formulas in the lan-
guage oo with existential quantifiers over the reals, {®s(x)}scw, such that © € B + R |

Vsew Ps(7).
4.A set B C R" is Il-definable if and only if there exists an effective sequence of formulas
in the language oy with universal quantifiers over the reals, {®s(x)}scw, such that © € B +

R ): /\sz (I)S(I)

Proof. The claim immediately follows from the properties of the set of hereditarily finite sets ( see
8, 15]). O

Let us recall the notion of majorant-computability for real-valued functions proposed and inves-
tigated in [14, 15]. We use the class of - and II-definable sets as the basic classes. A real-valued
function is said to be majorant-computable if we can construct a special kind of nonterminating process
computing approximations closer and closer to the result.

Definition 3.3. A function f : R" — R is called majorant-computable if there exists an effective
sequence of X-formulas {®(x,y)}sew and an effective sequence of II-formulas {Gs(x,y) }scw such that
the following conditions hold.

1.For all s € w, x € R", the formulas ®5 and G4 define nonempty intervals < ag,Bs > and
< Ogyys >

2.For all x € R™, the sequences {< ag, Bs >}sew and {< ds,7vs >}secw
decrease monotonically and < ag, Bs >C< §4,7vs > for all s € w.

8.For all x € dom(f), f(x) =y > Nsew < as,Bs >= {y} and
Myew < 575 >= {y} holds.

The sequence {F;}sc, in Definition 3.3 is called a sequence of X-approzimations for f. The sequence
{Gs}sew is called a sequence of II-approzimations for f. As we can see, the process which carries
out the computation is represented by two effective procedures. These procedures produce ¥-formulas
and II-formulas which define approximations closer and closer to the result.

The following theorem connects a majorant-computable function with validity of finite formulas
in the set of hereditarily finite sets, HF(R).

Proposition 3.4. For all functions f : R" — R the following assertions are equivalent:
1.The function f is majorant-computable.
2.There exist X—formulas A(x,y), B(x,y) such that A(x,-) < B(x,-) and
f(X) =y (A(Xa) <y< B(Xa') A
{z] Ax,2)} U{z | B(x,2)} = R\ {y}).

Proof. —)Let f : R™ — R be majorant-computable. By Definition 3.3 , there exist a sequence {Fj}sc.,
of Y-approximations for f and a sequence {G;}se,, of II-approximations for f. Put

Ax,y) = (3s € w) (y €< 0,75 > N (Fz €< g, Bs >) (y < 2))

and
B(x,y) = (s € w) (y €< 0s,7vs > N (Fz €< a5, Bs >) (y > 2)) .

By construction, A and B are the sought formulas.
+) Let A and B satisfy the requirements of the theorem. Let us construct approximations in the
following way.
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Fi(x,y) = 323w (A(x,2) A B(x,v) Ay € (z,0) ANv— 2z < 1/s),
Gs(x,y) = Vz (A(x,2) > 2z —y < 1/s) AVz(B(x,2) >y — 2z < 1/s).
a
As a corollary we note that a total real-valued function is majorant-computable if and only if its

epigraph and ordinate set are X-definable (i.e. effective sets). The same proposition holds for a total
function f : [a,b]” — R for some compact n-cube [a, b]".

Definition 3.5. A real-valued function f is said to be shared by S-formulas 1, @9 if

f|[x1,:c2} >c HF(R) |: QOl(l’l,l’Q,C),
f|[ac1,1:2] <c HF(R) ): (102(I17I27c)‘

Proposition 3.6. A real-valued function is majorant-computable if and only if it is shared by two
Y -formulas.

Proof. The claim immediate follows from Proposition 3.4. O

Theorem 3.7. The class of computable real-valued functions coincides with the class of majorant-
computable real-valued functions.

Proof. Without loss of generality we consider a function f : R — [0,1]. Let f*: 7T — Zj ) be

computable and f*({z}) = {f(z)}. For n € w, we define 4, = {z € R | u(f*({z})) < 1}, where
p is the natural measure defined on Zjg ). It is easy to see that A, is a X-definable open set, and

dom(f) = nnew Ay
Because each X-definable subset of R is an effective union of open intervals, we can denote A; =

Uigw(aiw@i)7 where Qg /Bz € Q and o; < /Bz
The following formulas satisfy the conditions of Proposition 3.4 :

Alz,z) =2 € AN (FaeQ)(FeQ)(Tye Q) (z € (a,b) Ay > 2z A
[,y +1] < f*([a, b]),

B(z,z) =2z € AN (FaceQ)(IeQ)(TyeQ)(z € (a,b) Ay < zA
[,y +1] < f*([a, b])

By Proposition 2.13, f is majorant-computable.

Let f be majorant-computable and A and B satisfy the properties from Proposition 3.4. We
construct a computable function f* : Z — 7 such that f*({z}) = {f(z)}.

Put f*([a,b]) = Uzelay f **(x), where the auxiliary function f** is defined in the following way:

f*([a,b]) = N{[u,v] |u,v e Q, <z,u>€ A, <z,v>€ B} ifsuch u and v exist
" L otherwise

It is easy to see that f is continuous and the set F =< a,b,c,d >| a,b,c,d € Q, [c,d] < f*([a,b]) is
Y -definable by the following ¥-formula

dz € (a,b) (< z,¢c >€ AN < z,d >€ B).

So the function f is computable.
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To introduce generalised computability of operators and functionals, we extend the language o by
two 3-ary predicates U; and Us.

Definition 3.8. A total operator F* : T¢la,b] — If[c,d] is said to be shared by two X-formulas ¢q
and @y if the following assertions hold. If F*({u',u?)) = (h', h?) then

h'1|[fr1,frﬂ > 2 HF(R) |: ‘,01(U1, UQ,Il,IQ,Z);
h2|[$1,$2} <z HF(R) |: (702(U17 U27I17I27Z)7

where Uy (z1,x2,c) = u1|[$1,$2} > ¢, Uy(z1,m9,¢) = u2|[$1’x2} < ¢ and the predicates Uy and Us posi-
tively occur in @1, p2.

Definition 3.9. An operator F : Cla,b] — Cle,d] is said to be generalised computable, if there
exists an operator F* : ZIfla,b] — ZIflc,d] which is shared by two X-formulas and F(f) =

F*(f), where f(z) = {f(x)}.

Definition 3.10. A functional F : C[a,b] X [c,d] — R is said to be generalised computable, if there
exists a computable operator F* : Cla,b] — Clc,d] such that F(f,z) = F*(f)(z).

Definition 3.11. A functional F : Cla,b] xR — R is said to be generalised computable, if there exists
an effective sequence of computable operators {F; }ney of the types F* : Cla,b] — C[—n,n] such that

F(f,r) =y Vn(—n<z<n-—F,(f)(z)).

Theorem 3.12. An operator F : Cla,b] — Clc,d] is computable if and only if it is generalised com-
putable.

Proof. Let F : Cla,b] — C[e, d] be computable. To show generalised computability of its corresponding
operator F* : Z¢[a,b] — Z¢[c,d]|, we construct two X-formulas ¢q, o satisfying the conditions of
Definition 17. Let Z7([a,b]) = {bi}ico and Zfo([c,d]) = {ci}icw be effective bases constructed as in
Proposition 2.6 for Z([a, b]) and Z([c, d]).

Suppose F*(u) = h. By Proposition 3.4 and Corollary 3.6 the relation b, < u is definable by
Y-formulas with positive occurrences of Uy and Uy, where Uy (ry,72,¢) = u1|[r1’r2] > ¢, Us(ry,re,c) =
Uy, ro] < ¢ Therefore the set {(n,m)[u > cn A F*(by) > by} is definable by some E-formula
®(n,m,Uy,Us). Then F*(u) > ¢, < HF(R) = In®(n,m, U, Us).

Put

01 (U1, Uz, 21,22, 2) = ImIn (b71n|[11,l2] > Z) A ®(n,m,Uy,Us),

0o (U1, Uz, 21,2, 2) = ImIn (b%l|[ifl,$2] < Z) A®(n,m,Uy,Us).

Clearly, 1, 2 are required formulas.

Let F : Cla,b] — Clc,d] be generalised computable. We prove computability of its corresponding
operator F* : T¢a,b] — Z¢[c,d]. Monotonicity of F* follows from positive occurrences of U; and Us
in the formulas ¢ and .

Because Z¢[a,b] and Zy|c,d] are w-continuous domains, it is enough to prove that F* preserves
suprema, of a countable directed set.

Let A = {< ul,u2 >}leo and VT A =< w',u? >. Put Up,(z1,20,¢) = Up, |5y o] > € and
Uon(z1,29,¢) = u%“th] < cforn € wand Uy(z1,x2,¢) = U1|[x1,x2] > ¢, Us(z1,29,¢) = u2|[x1,$2] <ec.

By Lemma, 11, if U1|[:p1,z2] > ¢ then there exists n such that u711|[m,m2] > ¢, and if U2|[:p1,z2] > ¢ then
there exists n such that U72L|[:c1,x2] <e.

So Ui(z1,22,¢) = Vyew Uin (21, 22, ¢) and Us(z1, 2, ¢) = Vpew Uan (21, 22, €).

By the properties of 3-formulas and positive occurrences of U; and Us in ¢; and o,
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@1(U17U27$17$27C) And VnEw ‘Pln(UIaU%xl,f%C),
(;02(U17U27$17$27C) And VnEw 90271(U17U27I17I27C)-

Hence it is clear that F*(\/T A) = \/T F*(A).
Now we show that the set {(n,m)|F*(b,) > ¢n} is X-definable and, as a consequence, is com-
putable enumerable in n and m. Let F*(< bl b2 >) =< h',h? >. Since b, b2, c. and ¢, are

n'-n m
piecewise linear, it is obvious that the sets b717,|[1:1,12] > ¢, b%“mm] < ¢ and C¢1n|[:r1,:r2} > ¢, 072n|[:r1,:m} <c

are Y-definable. As is evident from the definition of F™*, the sets h1|[m,x2] > ¢, h2|[x1,x2] < c are
Y-definable too. By Proposition 2.9, there exist step upper semicontinuous functions s' and s? such
that ¢}, (z) < s'(z) < h'(z) and c2,(z) > s?(x) > h%(z) for z € [c, d).
As one can see, the following Y-formula
Jzo ... Iz Tyr .. Fyn T2 .. Tz Nigy, ((Crln|[xi,xi+1] < yi) A (h1|[zi’zi+1] > yi) A
(C%l“Ii,IiJrl] > zl) A (h2|[l’i,ri+ﬂ < ZZ)

defines the set {(n,m)|F*(bn,) > cm}. As a consequence this set is computable enumerable in n
and m. 0O

Note that using the previous theorem one can elegantly prove computability of such functions as
SUPge[ay ] f(z), infyeiz, o,) () and Riemann integral on [z1, z2].

Corollary 3.13. A functional F : Cla,b] X [¢,d] — R is computable if and only if it is generalised
computable.

Proof. The claim follows from generalised computability of its corresponding operators. O

Corollary 3.14. A functional F : Cla,b] x R — R is computable if and only if it is generalised
computable.

Proof. The claim follows from the property of ¥- formulas: an effective sequence of ¥-formulas is

equivalent to a Y-formula. O

3.2. Semantic characterisation of computable functions and functionals

After the mentions of the main properties of majorant-computable real-valued functions and gener-
alised computable operators and real-valued functionals, we pass to computable ones.

Corollary 3.15. For a function f : R™ — R the following assertions are equivalent:.

1.The function f is computable.
2.There exist Y—formulas A(x,y) and B(x,y) such that A(x,-) < B(x,-) and

fx) =y & (Ax,-) <y <B(x,-) Mz | Alx,2)} U{z | B(x,2)} = R\ {y}).
Proof. The claim follows from Proposition 3.4 and Theorem 3.7. O
Corollary 3.16. A real-valued function is computable if and only if it is shared by two X-formulas.
Proof. The claim follows from Proposition 3.6 and Theorem 3.7. O
Proposition 3.17. Let f be a computable function such that [a,b] C domf and g be a computable
function such that [b,c] C domg and f(b) = g(b). Then the function h(x) = { g((;:)) ZZJJ:;:;Z’

computable.
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Proof. From Theorem 26 in [6] (cf. [16] ) it follows that there exists an effective modulus of continuity
wy for f and an effective modulus of continuity w, for g. In other words, for every s € w for all
z1, T2 € [a,b] and z3,z4 € [c,d] we have

o =22l <wp3) = |f(@) = flaa)| < 1 and

[V VR I

o — a1l < wy(5) > lgtan) — g(an)] < -

Put wy,(€) = min{wy(€),wy(€)}. The following 3-formula defines the epigraph of the function h.

y>h(x) < (x<bAy> f(z)) V(e >bAy > g(x))V
(3¢ € Q"] (j2 — b| < wn(e) A (13 < | — t] < wn(e) Ay > £(2) + )

Analogously, the ordinate set of h is Y—definable. By Corollary 3.16, the function h is computable. O

Corollary 3.18. A functional F : Cla,b] x [¢,d] — R is computable if and only if there exists an

operator F* k Tfla,b] — If[c,d] which is shared by two X-formulas and F(f,z) =y < F*(f)(z) =
{y}, where f(z) ={f(z)}.

Proof. 1t follows from Theorem 3.12. O

Corollary 3.19. If a computable operator F : Cla,b] — Cle,d] is defined in a computable function f,
then the function F(f) is computable.

Proof. We only note that if a function u is computable, then the following relations u1|[x1,x2] > z and
u2|[ < z are Y-definable. This follows from Proposition 3.6. O

x1,z2]

Corollary 3.20. A total computable operator F : Cla,b] — Clc,d] maps computable functions to
computable functions.

Proof. Tt follows from Corollary 3.19. O
Corollary 3.21. The composition of computable operators is computable.
Proof. The claim follows from the properties of 3-formulas and Theorem 3.12. O

Now we introduce a useful recursion scheme which permits us to describe the behaviour of complex
systems such as hybrid systems.

Let F : Cla,b] x C[0,1] x R — R and G : Cla,b] x [0,1] — R be computable functionals. Then
F : Cla,b] x [0,400) — R is defined by the following scheme:

F(f,t)liepo, = G(f,1),
F(fat)|t€(n,n+1} = f(fataF(fay +n— 1))

Proposition 3.22. If F' is continuous then F is computable, with F defined above.

Proof. We prove that there exists an effective sequence of generalised computable operators F) :
Cla,b] — C[0,n]. For this we state that for each k there exist two ¥-formulas 71 and 72 which share
Fy. Clearly, on the m-th step of computation via the recursion scheme, we obtain a computable
functional where ¢ ranges over the interval [m, m + 1]. Hence, there exist two effective sequences of ¥-
formulas {7"}new and {75 }mew such that for m < z1 < 9 < m+1and F*(< u',u? >) =< h',h? >
we have
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h1|[I1,$2] > C > T{n(UlaU%xlax?aC)a
h?|(m1, 3] < ¢ < 75" (Un, Us, 21, 2, ¢),

where Uy(z1,292,¢) = U1|[x1,z2} > ¢, Uy(ry1,22,0¢) = U2|[x1,x2] < ¢ and the predicate U; and Us
positively occur in ¢; and 9. The required formula 7 can be defined as follows:

(U1, Uz, 1, 22,¢) = (Fiy,j EN(i <z <i+1)A(<z2<j+1)A
(Th (U1, Us,z1,i+ L,e) A\ (U1, Uzymym + 1,¢) At (U1, Us, j, 2,¢)) V
i+1<m<j—1
FeNG<zm<j+1)A A 7"U1,Uz,mm+1c)A
0<m<j—1

Tf(Ul,UQ,j,xQ,C)) V(@i eN@Gi<z <i+1) AT%(Ul,UQ,i,JJl,C) A
A UL Umm+Le)v N\ (U, Usymym + 1,c).

i<m<n—1 0<m<n—1

The required formula 72 can be defined in the similar way. O

We would like to note that the recursion scheme is a useful tool for formalisation of hybrid systems.
Indeed, in this framework the trajectories of the continuous component of hybrid systems (the perfor-
mance specifications) can be represented by computable functionals which can be constructed by the
specifications SHS of hybrid systems proposed in [17].

Also we pay attention to the following property. Every continuous total operator F' : Cla,b] —
Cla,b] has a continuous extension to the functional domain. This means that there is a continuous
operator F* : T¢([a,b]) — Z¢([a,b]) such that

F(f) =g & F*(f) = g, where f(z) = {f(z)}, §(z) = {g(=)}.
To prove this fact, we will use the following notion.

Definition 3.23. Let f be a lower semicontinuous function defined on [a,b] and g be an upper con-
tinuous function defined on [a,b]. A sequence {hs}scw of continuous functions defined on [a,b] is said
to be closely approzimating to (f,g) € I¢([a,b]) if

Ve > 0ANVYn > N (hy, € (f —e,9 +¢)) .

Theorem 3.24. Every continuous total operator F : Cla,b] — Cla,b] has a continuous extension to
the functional domain.

Proof. 1t is enough to define the operator F™* : IJQ([a, b)) = If([a,b]), where IJQ([a, b]) denotes the set
{h € (I;([a,b])|h : [a,b] = I\ L} which is an w-continuous Scott domain. Indeed, the operator F**
can be extended to F** : I¢([a,b]) = If([a,b]) by the rule:

F*(h) if h € IP([a,b]),

Liag otherwise,

F**(h) = {

Note that the set I}]’O([a, b)) = {(f,9)|f,g € Cla,b]} can be considered as a basis for I}]([a, b)).

Let us denote Uy = {(z,t)|F(f)(z) > t} and U;(f) = {(z,t)|F(f)(z) < t} for a continuous
function f.

We first define an auxiliary operator F defined on the set T Jg’o([a, b]) of strips with continuous
bounds and then extend it to an operator defined on I Jg([a, b)).

For (f', f) € It([a,b]), where f! and f? are continuous, we define two open sets U~ < U™ by the
following rules.
We define (z,t) € U™ if and only if there exists ¢ > 0 such that for each sequence {hy,},e, which is
closely approximating to (f', f?) we have:
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AN (Vn > N) B((,1),¢) C Up, )

where B((z,t),¢) is the ball of the radius e centered at (z,t).
By analogy, (z,t) € U" if and only if there exists ¢ > 0 such that for each sequence {hy, }ne, Which is
closely approximating to (f!, f?) we have:
3N (¥n > N) B((z,t),e) C U, 5

where B((z,t),¢) is the ball of the radius e centered at (z,t).

Let us define g'(z) = supU~ () and ¢?(z) = inf U ().

Put F({fL, f?)) = (g',¢?). Since g' is lower semicontinuous and g¢? is upper semicontinuous, the
operator F is well-defined. For F we denote U~ as Ur FLLP2Y) and U™ as U F(L2)

We show that F((f, f)) = (F(f), F(f)). Indeed, a sequence {hy, }ncn, which is closely approximat-
ing to (f, f), uniformly converges to f. By continuity of the operator F', the sequence {F(hy,)}necw
uniformly converges to F'(f). So Urr.ry = Ur(y and U+(( ”m= U;(f).

Monotonicity of the operator F follows from the definitions of U FUL2)) and U FUILF2)" Let

A = {(uh,u2) e be a monotonic directed set and V' A —< ul,u? >. We check that if

ub,u2, u' and u? are continuous, then \/TF((u} u2>) = F((ut 2)) By monotonicity of F,

ny “n n’ -'n

F({u',u >) 3 F({u), n)) for all n € w. Hence F((u!,u?)) 3 VT]—"(( ut,u2)). To prove the inclusion
il .7-"(( ul,u2)) 3 F((ut,u?)), it is enough to check that for (z,t) such that (z,t) € UZ((ut u2y) there
exists n € w with (z,t) € U;«u}”u%)). Suppose the contrary. For some (z,1), (z,t) € U.;((ul,u2>)’ but for
all n € w we have (z, t)QU* L2y Let us find € > 0 such that the condition (z,t) € Ur((ut w2y For
Ups n> and B((z, )aE)ZUE(hnm)
for infinitely great m. From the set {h}, }ncw mew We can extract a sequence {7, }ne, which is closely
approximating to (u',u?) and B((z,1), e)ZUE(Tn) for n € w. This is a contradiction with the choice

of €.
Now we define F* for (f!, f2?) € I})([a, b]) by the following rule: F*((f', f2)) = VI F({f}, f2)),

all n we have a sequence {hm}mew which is closely approximating to (u)

where \/T(fL, f2) = (f', f?) and f!, f2 are continuous, n € w. Let us prove correctness of
this definition. Suppose VT (fl, f2) = VI (u}, %) (f',f?). For a fix n we have <u1 u?)

VI (fa, fa) and (un tin) = V' g.Lb.((fhs f2) s (upsup)). By the property of F, F((uy,u;))
VTF(g'l'b'(<fkvfk> < Up,up))). By monotonicity of F, 7(9-l-b-(<fkafk> (un,uz))) © F((fr fi))-

So F({uh,u2)) TV F(fL, f2)). Asa consequence A ]-"(( uZ)) VI FSE ).
Slmllarly we can check inclusion \/T F((u}, u2)) 3 VT F(( f/,c , fk>). Monotonicity of F* follows from

monotonicity of 7. Now we prove continuity of F*. Let the sequence {(f!, f2)},c. be monotonic,
and V' (fp, f2) = (f',f?) for (f',f?) € I}(fa,b]). By the property of bases, (f5,fa) = V' &}
where &7 € TP ([a,b]). Put lu b {nm} = M. Then (fL, f2) = VT A™ and A7+ > A", We have

VARGAN A EAVARVAP YO
Let us check that \/T F*((f}, f2)) = F*(VT (£, 2)). We have F*(\/! <fn,fn>) F*(\/T VADVORES
VIVEF () > VTR () = FH(VTAR) = F((fL, £2))- So VT F*((fh, f2)) T F* (VT (fh, f2)-
Moreover, F*(\/T(f}, f2)) = VI VI F « (A\™) and F « (A) C F « ((f}, f2)). So V! F*(<fn,fn>) 3
F*(\/T( ) f3>) Continuity of F'* is proved, and so F* is a required one.

"II M

O

References

[1] J. Blanck, Domain representability of metric space, Annals of Pure and Applied Logic, 83, 1997, 225-247.
[2] J. Barwise, Admissible sets and structures, Berlin, Springer—Verlag, 1975.
[3] A. Brown, C. Pearcy, Introduction to Analysis, Springer-Verlag, Berlin, 1989.



[25]
[26]

[27]
[28]
[29]
[30]

31]
32]
[33]
[34]

[35]

[36]

Background for formalisation of compler systems %)

L. Blum and M. Shub and S. Smale, On a theory of computation and complexity over the reals: NP-completeness,
recursive functions and universal machines, Bull. Amer. Math. Soc., (N.S.) , 21, No 1, 1989, 1-46.

A. Edalat, Domain Theory and integration, Theor. Comput. Sci., 151, 1995, pages 163-193.

A. Edalat, P. Siinderhauf, A domain-theoretic approach to computability on the real line, Theoretical Computer
Science, 210, 1998, pages 73-98.

Yu. L. Ershov, Computable functionals of finite types, Algebra and Logic, 11, No 4, 1996, 367—437.
Yu. L. Ershov, Definability and computability, Plenum, New York, 1996.
H. Freedman and K. Ko, Computational complexity of real functions, Theoret. Comput. Sci. , 20, 1982, 323-352.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, A Compendium Of Continuous
Lattices, Springer Verlag, Berlin, 1980.

A. Grzegorczyk, On the definitions of computable real continuous functions, Fund. Math., No 44, 1957, 61-71.

T.A. Henzinger, Z. Manna, A. Pnueli, Towards refining Temporal Specifications into Hybrid Systems, Lect. Notes
Comput. Sci., 736, 1993, 36-60.

T.A. Henzinger, V. Rusu, Reachability Verification for Hybrid Automata, Lect. Notes Comput. Sci., 1386, 1998,
190-205.

M. Korovina, Generalized computability of real functions, Siberian Advance of Mathematics, 2, No 4, 1992, 1-18.
M. Korovina, O. Kudinov, A New Approach to Computability over the Reals, SibAM, 8, No 3, 1998, 59-73.

M. Korovina, O. Kudinov, Characteristic Properties of Majorant-Computability over the Reals, Proc. of CSL’98,
Lect. Notes Comput. Sci., 1584, 1999, 188-204.

M. Korovina, O. Kudinov, Computability via Approximations, Bull. of Symbolic Logic, 5, No 1, 1999

M. Korovina, O. Kudinov, A Logical approach to Specifications of Hybrid Systems, Proc. of PSI’99, Lect. Notes
Comput. Sci., 1755, 2000, 10-16.

M. Korovina, O. Kudinov, Computability over the reals without equality, Proc. of Mal’sev Conf. on Mathematical
Logic, Novosibirsk, p. 47, 1999.

Z. Manna, A. Pnueli, Verifying Hybrid Systems, Lect. Notes Comput. Sci., 736, 1993, 4-36.

R. Montague, Recursion theory as a branch of model theory, Proc. of the 3d Intern. Congr. on Logic, Methodology
and the Philos. of Sc., 1967, Amsterdam, 1968, 63—86.

Y. N. Moschovakis, Abstract first order computability, Trans. Amer. Math. Soc., 138, 1969, 427-464.

A. Nerode, W. Kohn, Models for Hybrid Systems, Automata, Topologies, Controllability, Observability, Lect. Notes
Comput. Sci., 736, 1993, 317-357.

Pietro Di Gianantonio, real-number computation and domain theory, Information and Computation, No 127, 1996,
11-25.

M. B. Pour-El, J. I. Richards, Computability in Analysis and Physics, Springer-Verlag, 1988.

D. Scott, Qutline of a mathematical theory of computation, 4th Annual Princeton Conf. on Information Sci. and
Systems, 1970, 169-176.

D. Scott, Continuous lattices, Lect. Notes Math., 274, Toposes, Algebraic geometry and Logic, 1972, 97-136.
E.Schechter, Handbook of Analysis and Its Foundations, Academic Pressbook, 1996.
V. Stoltenberg-Hansen and J. V. Tucker, Complete local rings as domains, J. of Symbolic Logic, 53, 1988, 603—624.

V. Stoltenberg-Hansen and J. V. Tucker, Effective algebras, Clarendon Press, Handbook of Logic in Comput. Sci.,
4, 1995, 375-526.

H. Tong, Some characterizations of normal and perfectly normal space, Duke Math. J., N 19, 1952, 289-292.
B.A. Trakhtenbrot, Yu.Barzdin, Finite automata: Behaviour and Syntheses, North-Holland, 1973.
K. Weihrauch, Computability, EATCS Monographs on Theor. Comput. Sci., Springer, Berlin, 8, 1987.

K. Weihrauch, A simple introduction to computable analysis, Informatik Berichte 171, FernUniversitat, Hagen,
1995, 2-nd edition.

C. Kreitz, K. Weihrauch, Complexity Theory on real-numbers and Functions, Lect. Notes Comput. Sci.,
145, 1983, 165-175.

K. Weihrauch, X. Zheng Computability on Continuous, Lower Semi-Continuous and Upper Semi-Continuous real
Functions, Lect. Notes Comput. Sci., 1276, 1997, 166—186.



