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Ba
kground for formalisation of 
omplex systems

�

M.V. Korovina, O.V. Kudinov

Based on notions of 
omputability for operators and real-valued fun
tionals, a ba
kground for formalisation of


omplex systems is introdu
ed. We propose a re
ursion s
heme whi
h is a suitable tool for formalisation of 
omplex

systems, su
h as hybrid systems. In this framework the traje
tories of 
ontinuous parts of hybrid systems 
an be

represented by 
omputable fun
tionals.

1. Introdu
tion

Re
ently more attention is paid to the problems of exa
t mathemati
al formalisation of 
omplex

systems su
h as hybrid systems. By a hybrid system we mean a network of digital and analog devi
es

intera
ting at dis
rete times. An important 
hara
teristi
 of a hybrid system is that it in
orporates


ontinuous 
omponents, usually 
alled plants, as well as digital 
omponents, i.e. digital 
omputers,

sensors and atuators 
ontrolled by programs. These programs are designed to sele
t, 
ontrol, and

supervise behaviour of the 
ontinuous 
omponents. Modelling, design, and investigation of behaviours

of hybrid systems have re
ently be
ome areas of a
tive resear
h in 
omputer s
ien
e.

The main subje
t of our investigation is behaviour of the 
ontinuous 
omponents. In [23℄, the set

of all possible traje
tories of the plant was 
alled a performan
e spe
i�
ation.

We propose a ba
kground for formalisation of hybrid systems based on Domain Theory.

Our approa
h di�ers from the previous ones in the following: we 
an 
hara
terise the 
ontinuous

and dis
ret parts, as well as intera
tions between them in the same algebrai
 model, with the help

of �nite formulas. We propose a general approa
h to formalisation of a hybrid system based on the

theory of 
omputability over the reals.

At present, new appli
ations of Domain Theory to 
omputations over various spa
es are being

developed. Domain Theory was independently introdu
ed by Dana S
ott [26℄ as a mathemati
al

theory of 
omputation in the semanti
s of programming languages and by Yu. L. Ershov [7℄ as a

theory of partial 
omputable fun
tionals of �nite type.

A domain is a partially ordered set equipped with the notions of limit and �nite approximation;

the partial order 
orresponds to information on the elements.

Given a 
omputation based on an algorithm, ea
h of the sets of input and output forms a domain.

The program whi
h 
arries out the 
omputation is represented as a fun
tion between these domains.

Every new step in the 
omputation results in an element of the domain of output whi
h provides more

information and better approximation to the ultimate result.

A 
ontinuous fun
tion is one whi
h preserves the information order (so that more input information

gives more output information) and the limits of in�nite 
omputations in the domain (so that the total

information obtainable as output from an in�nite sequen
e of input elements with re�ning information

is the sum of all information obtained from ea
h input element).

There are a number of 
ategories of domains a

ording to various additional properties that they

satisfy (algebrai
 domains [1, 29, 30℄, 
ontinuous domains [26, 27, 5, 6, 10, 33, 34, 35, 24℄, and so

on). Below, to 
onstru
t 
omputational models for real-valued fun
tions and Fun
tionals, we will use


ontinuous domains. The 
ontinuous domain (more pre
isely, the interval domain) for the reals was

�rst proposed by Dana S
ott [26℄ and later was applied to mathemati
s, physi
s and real-number


omputation in [5, 6, 34, 35, 24℄ and others.

�
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In this arti
le we propose 
ontinuous domains named fun
tion domains to 
onstru
t a 
omputa-

tional model of operators and a real-valued fun
tional de�ned on the set of 
ontinuous real-valued

fun
tions.

In Se
tion 2, we re
all basi
 de�nitions and tools from [6℄ and introdu
e new ones to 
onstru
t our


omputational model. We introdu
e e�e
tive fun
tion domains whi
h are !-
ontinuous S
ott domains.

Based on the notion of 
omputability of mapping between two domains, we propose 
omputability

of operators and fun
tionals de�ned on 
ontinuous real-valued fun
tions. The main feature of this

approa
h is related to the fa
t that 
omputable operators and fun
tionals de�ned on 
ontinuous real-

valued fun
tions are 
ontinuous on their domain w.r.t. the standard topology indu
ed by the uniform

norm. Moreover, we propose a semanti
 
hara
terisation of 
omputable operators and fun
tionals via

validity of �nite �-formulas.

Then, in Se
tion 3, we give 
hara
terisations of 
omputable fun
tions and fun
tionals in logi
al

terms via the de�nability theory. Also we propose a re
ursion s
heme whi
h is a suitable tool for

formalisation of 
omplex systems su
h as hybrid systems. Modelling, design, and investigation of the

behaviour of hybrid systems have re
ently be
ome a
tive areas of resear
h in 
omputer s
ien
e (for

example, see [12, 13, 17, 20, 23℄).

In the framework proposed in this paper the traje
tories of 
ontinuous parts of hybrid systems

(performan
e spe
i�
ations) 
an be represented by 
omputable fun
tionals.

For more details we would like to refer to the full version of this paper on

http://inet.ss
.nsu.ru/ rita/
omplex.ps.

2. Basi
 notions

To propose the notions of 
omputability of operators and real-valued fun
tionals, we, following the

paper [6℄, re
all the de�nitions of the 
ontinuous domain for the reals (the interval domain) and


omputable fun
tions and introdu
e fun
tional domains.

2.1. Terminology

Throughout the arti
le, < R; 0; 1;+; �; <> is the standard model of the reals, denoted also by R,

where + and � are regarded as predi
ate symbols. We use the language of stri
tly ordered rings, so

the predi
ate < positively o

urs in formulas.

Let R

�

denote R [ f�1g, R

+

denote R [ f+1g, N denote the set of natural numbers and Q

the set of rational numbers.

2.2. The e�e
tive interval domain for the reals

The interval domain for the reals was �rst proposed by Dana S
ott [26, 27℄ and later was applied to

mathemati
s, physi
s and real number 
omputation (see, for example, [5, 6, 24, 33, 34, 35℄). By the

interval domain for the reals we mean the set of 
ompa
t intervals of R, partially ordered with the

reversed subset in
lusion. The real line is obtained as the set of maximal elements in this 
ontinuous

domain.

We re
all the de�nition of the interval domain I proposed in [6℄:

I = f[a; b℄ � R j a; b 2 R; a � bg [ f?g :

The order is the reversed subset in
lusion, i.e. ? v I for all I 2 I and [a; b℄ v [
; d℄ i� a � 
 and

d � b in the usual ordering of the reals. One 
an 
onsider the least element ? as the set R. Dire
ted

suprema are �ltered interse
tions of intervals. The way-below relation is given by I � J i� J � int(I),

where int(I) denotes the interior of I. For the relation� we have the following properties: ? � J for

all J 2 I and [a; b℄� [
; d℄ if and only if a < 
 and b > d. The maximal elements are the intervals [a; a℄

denoted as fag. Note that I is an e�e
tively given !-
ontinuous domain. An example for a 
ountable
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basis is the 
olle
tion I

0

of all intervals with rational endpoints together with the least element ?.

Similarly, we 
an de�ne the interval domain I

[a;b℄

for an interval [a; b℄.

De�nition 2.1. Let I

0

= fb

0

; : : : ; b

n

; : : :g be the e�e
tive enumerated set of all intervals with rational

endpoints endowed with the least element ?.

A 
ontinuous fun
tion f : I ! I is 
omputable, if the relation b

m

� f(b

n

) is 
omputable enumerable

in n; m, where b

m

; b

n

2 I

0

.

De�nition 2.2. A fun
tion f : R! R is 
omputable if and only if there is an enlargement g : I ! I

(i.e., g(fxg) = ff(x)g for all x 2 domf ) whi
h is 
omputable in the sense of De�nition 2.1.

Denote the 
lass of 
omputable total fun
tions as F and the 
lass of 
omputable fun
tions de�ned on

an interval [a; b℄ as F [a; b℄.

2.3. The e�e
tive fun
tion domain

In this se
tion we introdu
e e�e
tive fun
tion domains whi
h are !-
ontinuous S
ott domains. Based

on the notion of 
omputability of mapping between two domains, we propose 
omputability of opera-

tors and fun
tionals de�ned on 
ontinuous real-valued fun
tions. SuÆ
ien
y of this approa
h follows

from the fa
t that 
omputable operators and fun
tionals de�ned on 
ontinuous real-valued fun
tions

are 
ontinuous on their domain w.r.t. the standard topology indu
ed by the uniform norm. Moreover,

we propose a semanti
 
hara
terisation of 
omputable operators and fun
tionals via validity of �nite

�-formulas.

We 
onsider the set of fun
tions f : [a; b℄ ! I de�ned on a 
ompa
t interval [a; b℄ whi
h are


ontinuous in the following sense.

De�nition 2.3. A fun
tion f : [a; b℄! I is said to be 
ontinuous in x

0

if

f(x

0

) = ? or f(x

0

) = [
; d℄ and 8�

1

�

2

9Æ (jx� x

0

j < Æ ! f(x)� [
� �

1

; d+ �

2

℄).

A fun
tion is 
ontinuous on [a; b℄ if it is 
ontinuous in every point of [a; b℄.

Note that a 
ontinuous fun
tion f : [a; b℄! I 
an be represented by the pair of a lower semi
ontinuous

map and an upper semi
ontinuous map.

De�nition 2.4. A fun
tion f : [a; b℄! R

�

is said to be lower semi
ontinuous if the set Y

f

=

fxjf(x)6=�1g is open w.r.t. the standard topology and

(8x

0

2 Y

f

) (8a < f(x

0

)) 9Æ (jx

0

� xj < Æ ! a < f(x)) :

A fun
tion f : [a; b℄! R

+

is said to be upper semi
ontinuous if the set Y

f

= fxjf(x)6= +1g is

open w.r.t. the standard topology and

(8x

0

2 Y

f

) (8a > f(x

0

)) 9Æ (jx

0

� xj < Æ ! a > f(x)) :

For the 
lassi
al theory of semi
ontinuous fun
tions the reader should 
onsult some textbook (e.g.

[3℄). The reader 
an also �nd some properties of 
omputability on 
ontinuous and semi
ontinuous real

fun
tions in [36℄. It is easy to see that a 
ontinuous fun
tion f : [a; b℄ ! I is 
losely related to the

pair of fun
tions




f

1

: [a; b℄! R

�

; f

2

: [a; b℄! R

+

�

, where f

1

(x) = inf f(x) is lower semi
ontinuous

and f

2

(x) = sup f(x) is upper semi
ontinuous (see [6, 24℄). The fun
tion f

1

is 
alled as lower bound

of f and f

2

is 
alled as upper bound of f .

Below we denote Y

f

= fxjf(x) 6= ?g for f : [a; b℄! I and Y

f

= fxjf(x) 6= �1g for f : [a; b℄!

�

R.

For upper and lower semi
ontinuous fun
tions these sets are open w.r.t. the standard topology by

de�nition. To introdu
e our notions of 
omputable operators and real-valued fun
tionals, we introdu
e

fun
tional domains whi
h are !-
ontinuous S
ott domains.
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De�nition 2.5. A fun
tion domain I

f

([a; b℄) is the 
olle
tion of all 
ontinuous fun
tions

f : [a; b℄ ! I with a least element ?

[a;b℄

partially ordered by the following relation: f v g i�

(8x 2 [a; b℄) (f(x) v g(x)) and ?

[a;b℄

v I for all I 2 I

f

([a; b℄).

To denote that a subset A � I

f

([a; b℄) is dire
ted and has the least upper bound x, we write

W

"

A = x.

The way-below relation � is de�ned in the standard manner: f � g if for every dire
ted subset

A � I

f

[a; b℄ with g v _

"

A there exists a 2 A with f v a.

Proposition 2.6. For ea
h 
ompa
t interval [a; b℄ the fun
tional domain I

f

([a; b℄) is an e�e
tively

given !-
ontinuous S
ott domain.

Proof. The existan
e of

W

"

A for ea
h dire
ted subset A � I

f

([a; b℄) follows from the properties of

semi
ontinuous fun
tions. Indeed,

W

"

A =

D

sup

f2A

f

1

; inf

f2A

f

2

E

, where f

1

is the lower bound and

f

2

is the upper bound of f .

Let us prove that _

"

(# f) for f 2 I

f

([a; b℄), where # f denotes the set fg 2 I

f

([a; b℄)jg � fg. Let

U be open and 
lU =

�

U � Y

f

. The set # f 
ontains all fun
tions of the type g

n

U

= ha

n

U

; 


n

U

i, where

a

n

U

(x) =

(

�1 if x62U;

inf

z2

�

U

f

1

(z) �

1

n

if x 2 U;




n

U

(x) =

(

+1 if x62U;

sup

z2

�

U

f

2

(z) +

1

n

if x 2 U;

By the properties of semi
ontinuous fun
tions, _

"

fg

n

U

j

�

U � Y

f

; n 2 !g = f , so _

"

# f = f .

It is obvious that the fun
tion domain I

f

([a; b℄) is !-
ontinuous. An example for a 
ountable basis

is the set I

f;0

([a; b℄) = fb

n

g

n2!

[ f?

[a;b℄

g, where the lower bound b

1

n

and the upper bound b

2

n

of b

n

satisfy the following 
onditions: there exist a = a

0

: : : � a

i

� : : : � a

n

= b su
h that

1. for all x 2 (a

i

; a

i+1

) b

1

n

(x) = �1 and b

2

n

(x) = +1 or b

1

n

(x) = �

i

x+ �

i

and b

2

n

(x) = 


i

x+ �

i

;

2. if for x 2 (a

i

; a

i+1

)[(a

i+1

; a

i+2

) b

1

n

and b

2

n

are �nite then b

1

n

(a

i+1

) = �

i

a

i+1

+�

i

= �

i+1

a

i+1

+�

i+1

and b

2

n

(a

i+1

) = 


i

a

i+1

+ �

i

= 


i+1

a

i+1

+ �

i+1

;

3. if b

1

n

and b

2

n

are in�nite on (a

i

; a

i+1

) then b

1

n

(a

i

) = b

1

n

(a

i+1

) = �1 and b

2

n

(a

i

) = b

2

n

(a

i+1

) = +1,

where a

i

; �

i

; �

i

; 


i

; �

i

2 Q.

Using the standard numbering of the set of pie
ewise linear fun
tions with rational 
oeÆ
ients, it is

easy to prove that I

f;0

([a; b℄) is 
ountable and e�e
tive. 2

In the same way we 
an 
onstru
t an interval domain I

f

([a; b℄

n

) for n 2 !.

Corollary 2.7. For ea
h 
ompa
t n-
ube [a; b℄

n

the interval domain I

f

([a; b℄

n

) is an e�e
tively given

!-
ontinuous S
ott domain.

Proof. It is similar to the proof of Proposition 2.6. 2

Now we 
onsider a useful property of the way-below relation �. Thus, f � g if and only if these

fun
tions are separated.

De�nition 2.8. Let f and g be lower semi
ontinuous fun
tions, 
lY

f

� Y

g

and f � g. The fun
tions

f; g are said to be separated if there exists a 
ontinuous on Y

g

fun
tion h su
h that f(x) � h(x) < g(x)

for all x 2 Y

g

.

Let f and g be upper semi
ontinuous fun
tions, 
lY

g

� Y

f

and f � g. The fun
tions f and g are

said to be separated if there exists a 
ontinuous on Y

f

fun
tion h su
h that f(x) < h(x) � g(x) for all

x 2 Y

f

.

Let f : R ! I and g : R ! I be 
ontinuous. The fun
tions f and g are said to be separated if

their lower bounds f

1

; g

1

and their upper bounds f

2

; g

2

are separated.
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Proposition 2.9. Let f and g be lower semi
ontinuous and 
lY

f

� Y

g

, f � g. The following assertions

are equivalent.

1.f and g are separated;

2.there exists a step upper semi
ontinuous fun
tion h su
h that

f(x) � h(x) < g(x) for x 2 Y

g

;

3.there exists an upper semi
ontinuous fun
tion h su
h that

f(x) � h(x) < g(x) for x 2 Y

g

;

4.(8x 2 Y

g

)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g(z) > f(w) + t

x

), where U

x

denotes some neighbourhood

of x.

Proof. We prove nontrivial passages.

1 ! 2: It follows from the fa
t that ea
h 
ontinuous fun
tion is approximated by a step upper

semi
ontinuous fun
tions (see [3℄ ).

2! 1: See [31℄.

2! 3: Obviously.

3! 4: Let h : [a; b℄! R

+

be upper semi
ontinuous and f(x) � h(x) < g(x) for x 2 Y

g

. For x 2 Y

g

put

� = g(x)�h(x) and � =

t

3

. A

ording to upper semi
ontinuity of h and lower semi
ontinuity of g, there

exists a neighbourhood U

x

of x su
h that for all z; w 2 U

x

: f(z) � h(z) < h(x)+� and g(w) > g(x)��:

We have g(w) > g(x) � � = h(x) +

2

3

� > h(z) +

�

3

� f(z). For t

x

=

�

3

assertion 4 holds.

4 ! 2: Let fU

x

g

x2
lY

f

have the following property: for all z; w 2 U

x

g(z) > f(w) + t

x

. Sin
e 
lY

f

is


ompa
t, we 
an 
onstru
t a �nite set f

�

U

x

i

g

i�n

su
h that:

1.

�

U

x

i

is 
losed;

2.

�

U

x

i

\

�

U

x

j

is one-element or empty;

3. Y

f

�

S

i�n

�

U

x

i

.

Put h(x) = supfyjy � f(x) ^ (9i(x 2

�

U

x

i

) ^ (y � inf

z2

�

U

x

i

\ 
lY

f

g(z) � t

x

i

)g.

By the properties of lower semi
ontinuity of g, the fun
tion h is a required one. 2

Proposition 2.10. Let f and g be upper semi
ontinuous and 
lY

g

� Y

f

, f � g. The following

assertions are equivalent.

1.f and g are separated;

2.there exists a step lower semi
ontinuous fun
tion h su
h that

f(x) < h(x) � g(x) for x 2 Y

f

;

3.there exists a lower semi
ontinuous fun
tion h su
h that

f(x) < h(x) � g(x) for x 2 Y

f

;

4.(8x 2 Y

f

)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g(z) > f(w) + t

x

), where U

x

denotes some neighbourhood

of x.

Proof. It is similar to the proof of Proposition 2.9. 2

Lemma 2.11. Let A be a dire
ted set of lower semi
ontinuous fun
tions and lim

a2A

a(x) = g(x). For

a 
ompa
t V and some 
 2 R the following assertion holds. If g(x) > 
 for all x 2 V , then there exists

a 2 A su
h that a(x) > 
 for all x 2 V .

Proof. Clearly, for all x 2 V there exists a

x

2 A su
h that a

x

(x) > 
. By the de�nition of lower

semi
ontinuity, there exists a neighbourhood U

x

of x with (8z 2 U

x

) (a

x

(z) > 
). The set fU

x

g

x2V


overs the 
ompa
t V , so we 
an extra
t a �nite sub
overing fU

x

i

g

i�n

. For all z 2 U

x

i

we have

a

x

i

(z) > 
. By the de�nition of a dire
ted set, there exists a fun
tion a 2 A su
h that a(x) > a

x

i

(x)

for all x 2 V . This is a required fun
tion. 2
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Theorem 2.12. Continuous fun
tions f : [a; b℄ ! I and g : [a; b℄ ! I are separated if and only if

f � g.

Proof. Let f and g be separated and f

1

; g

1

be their lower bounds. We show that for a dire
ted set

A � I

f

[a; b℄ with g v _

"

A there exists a 2 A su
h that f v a. It is suÆ
ient to prove that there

exists a with the lower bound a

1

su
h that a

1

(x) � f

1

(x) for x 2 [a; b℄. By Proposition 2.9 we have


lY

f

1
� Y

g

1
^ (8x 2 Y

g

1
)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g

1

(z) > f

1

(w) + t

x

), where U

x

denotes some

neighbourhood of x.

From the set fU

x

g

x2Y

g

1

whi
h 
overs 
lY

f

1
we 
an extra
t a �nite set fU

x

i

g

i�n

su
h that 
lY

f

1
�

fU

x

i

g

i�n

. Moreover, it is easy to 
onstru
t f

�

U

x

i

g

i�m

whi
h 
overs 
lY

f

1
, where

�

U

x

i

is 
ompa
t. For

i � m we de�ne 


i

= supfyjy � (inf

x2

�

U

x

i

g

1

(x)� t

x

i

)g.

Clearly, g

1

(x) > 


i

� f

1

(x) for all x 2

�

U

x

i

. From Lemma 2.11 we have that there exists a

i

with

the lower bound a

1

i

su
h that a

1

i

(x) > 


i

� f

1

(x) for all x 2

�

U

x

i

. Sin
e A is dire
ted, there exists

a w a

i

for all i � m. This fun
tion is a required one.

Let f � g. We show that 
lY

f

1
� Y

g

1
^ (8x 2 Y

g

1
)9U

x

(9t

x

> 0)(8z; w 2 U

x

)(g

1

(z) > f

1

(w) + t

x

),

where U

x

denotes a neighbourhood of x and f

1

; g

1

denote the lower bounds of f and g. For the upper

bounds the 
orresponding assertion is proved by analogy. Obviously, Y

f

� Y

g

and f v g. Suppose

the 
ontrary. There exists x 2 Y

g

su
h that 8U

x

8t

x

(9z; w 2 U

x

) g

1

(z) < f

1

(w) + t

x

. Let us de�ne

fU

n

g

n2!

by the following rule:

U

n

= (x�

1

n

; x+

1

n

) if x 2 (a; b);

U

n

= [a; a+

1

n

) if x = a;

U

n

= (b�

1

n

; b℄ if x = b:

There exists n

0

su
h that for all n � n

0

we have U

n

� Y

1

g

and there exists w

n

2 U

n

with inf

z2

�

U

n

g

1

(z) <

f

1

(w

n

)+

1

n

. We 
onstru
t an in
reasing sequen
e of lower semi
ontinuous fun
tions su
h that the limit

of this sequen
e is g

1

, but there is no n su
h that a

n

(y) � f

1

(y) for all y 2 [a; b℄.

Put

a

1

n

(y) =

(

g

1

(y) if y 62 U

n

;

inf

z2

�

U

n

g

1

(z)�

1

n

if y 2 U

n

;

where

�

U

n

is the 
losure of U

n

. It is easy to see that lim

n!1

a

1

n

(y) = g

1

(y) for all y 2 [a; b℄. For y 6= x

it is obvious. We 
onsider the nontrivial 
ase when y = x. Suppose the 
ontrary: there exists 
 su
h

that a

1

n

(x) < 
 < g

1

(x). By lower semi
ontinuity of g, there exists N with inf

z2

�

U

N

g

1

(z) > 
+

1

N

. So

inf

z2

�

U

N

g

1

(z) = a

1

N

(x) > 
. This is a 
ontradi
tion.

On the one hand, lim

n!1

a

1

n

(y) = g

1

(y) for all y 2 [a; b℄ and, on the other hand, there is no n su
h

that a

n

(y) � f

1

(x) for all y 2 [a; b℄ be
ause for all n a

1

n

(w

n

) < f

1

(w

n

). This is a 
ontradi
tion with

the assumption f � g.

Let us prove that 
lY

f

� Y

g

. Suppose the 
ontrary. There exists a sequen
e fx

n

g

n2!

su
h that for

all n x

n

2 Y

f

� Y

g

, but lim

x!1

x

n

= x 62 Y

g

, i.e. g(x) = ?. We 
an extra
t a subsequen
e fx

m

n

g

n2!

su
h that jx

m

n

�xj <

1

n

. We de�ne a sequen
e of lower semi
ontinuous fun
tions in the following way:

a

1

(x) =

(

g

1

(y) if jy � xj >

1

n

;

�1 if jy � xj �

1

n

:

On the one hand lim

n!1

a

1

n

(y) = g

1

(y) for all y 2 [a; b℄ and on the other hand �1 = a

1

n

(x

m

n

) <

f

1

(x

m

n

) 6= �1: This is a 
ontradi
tion with the assumption f � g.

2

Now we introdu
e the notions of 
omputable operators and 
omputable fun
tionals de�ned on total


ontinuous real-valued fun
tions. Below we use the standard notion of 
ontinuity of a total operator

F : I

f

([a; b℄)! I

f

([
; d℄) w.r.t. the S
ott-topologies on I

f

([a; b℄) and I

f

([
; d℄).



46 M.V. Korovina, O.V. Kudinov

De�nition 2.13. Let I

f

([a; b℄), I

f

([
; d℄) be some fun
tion domains and I

f;0

([a; b℄) = fb

i

g

i2!

,

I

f;0

([
; d℄) = f


i

g

i2!

be their e�e
tive bases 
onstru
ted as in Proposition 2.6. A 
ontinuous total

operator F : I

f

([a; b℄) ! I

f

([
; d℄) is 
omputable, if the relation 


m

� F (b

n

) is 
omputable enumerable

in n and m, where b

n

2 I

f;0

([a; b℄) and 


m

2 I

f;0

([
; d℄).

De�nition 2.14. An operator F : C[a; b℄ ! C[
; d℄ is 
omputable, if dom F is open and there exists

a 
omputable operator F

�

: I

f

([a; b℄) ! I

f

([
; d℄) su
h that

F (f) = g $ F

�

(

^

f) = ĝ; where

^

f(x) = ff(x)g; ĝ(x) = fg(x)g:

De�nition 2.15. A fun
tional F : C[a; b℄ � [
; d℄ ! R is 
omputable, if there exists a 
omputable

operator F

�

: C[a; b℄! C[
; d℄) su
h that

F (f; x) = y $ F

�

(f)(x) = y:

Proposition 2.16. Computable operators and fun
tionals de�ned on 
ontinuous real-valued fun
tions

are 
ontinuous w.r.t. the standard topology indu
ed by the uniform norm.

Proof. It follows from the de�nition and 
ontinuity of 
orresponding operator

F

�

: I

f

([a; b℄) ! I

f

([
; d℄). 2

To introdu
e 
omputability of a fun
tional of the type F : C[a; b℄ �R ! R, we use an e�e
tive

sequen
e of domains fI

f

([�n; n℄)g

n2!

with 
onforming bases in the following sense. We 
onsider a

sequen
e of bases fI

f;0

([�n; n℄)g

n2!

= ffb

n

i

g

i2!

g

n2!

with the homomorphisms res

m;n

: I

f

([�m;m℄)!

I

f

([�n; n℄) of restri
tions for m > n de�ned by the natural rules res

m;n

(b

m

i

) = b

m

i

j

[�n;n℄

= b

n

i

and

res

m;n

(?

[�m;m℄

) = ?

[�n;n℄

:

De�nition 2.17. A sequen
e fF

k

g

k2!

of 
omputable operators of the type

F

k

: I

f

[a; b℄! I

f

[�n; n℄ is uniformly 
omputable if fhk; n;mi jF

k

(b

k

n

)� b

k

m

g is re
ursively enumerable

in k; n and m.

De�nition 2.18. A sequen
e fF

k

g

k2!

of 
omputable operators of the type

F

k

: C[a; b℄ ! C[�n; n℄ is uniformly 
omputable, if there exists a uniformly 
omputable sequen
e of


omputable operators fF

�

k

g

k2!

of the type F

k

: I

f

[a; b℄! I

f

[�n; n℄ su
h that

F

k

(f) = g $ F

�

k

(

^

f) = ĝ; where

^

f(x) = ff(x)g; ĝ(x) = fg(x)g; k 2 !:

De�nition 2.19. A fun
tional F : C[a; b℄ �R ! R is 
omputable, if there exists a uniformly 
om-

putable sequen
e fF

�

k

g

k2!

of 
omputable operators of the types F

�

k

: C[a; b℄! C[�k; k℄ su
h that

F (f; x) = y $ 8k (x 2 [�k; k℄) ! (F

�

k

(f)(x) = y) :

Note that for m > n the 
ondition res

m;n

(F

�

m

(f)) = F

�

n

(f) holds by 
onstru
tion.

Proposition 2.20. A 
omputable fun
tional F : C[a; b℄ �R ! R is 
ontinuous w.r.t. the standard

topology indu
ed by the uniform norm.

Proof. It follows from the de�nition and 
ontinuity of the 
orresponding operators F

�

k

: I

f

([a; b℄) !

I

f

([�k; k℄) for k 2 !. 2

In the same way we 
an de�ne 
omputability of fun
tionals of the type F : C[a; b℄�R

n

! R.

Corollary 2.21. A 
omputable fun
tional F : C[a; b℄�R

n

! R is 
ontinuous.

Proof. It follows from the de�nition and 
ontinuity of the 
orresponding operators F

�

k

: I

f

([a; b℄) !

I

f

([�k; k℄

n

) for k 2 !. 2
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3. De�nability of 
omputable fun
tions and fun
tionals

To semanti
ally 
hara
terise 
omputable real-valued fun
tions, operators and fun
tionals via validity of

�nite formulas, we use 
omparative analyses with real-valued majorant-
omputable fun
tions proposed

in [14, 15℄ and generalised 
omputable operators and fun
tionals introdu
ed below.

The 
omputation of real-valued fun
tion is an in�nite pro
ess that produ
es approximations 
loser

and 
loser to the result. The 
lass of majorant-
omputable real-valued fun
tions has 
lear and exa
t


lassi�
ations in logi
al and topologi
al terms.

3.1. Majorant-
omputable fun
tion and generalised 
omputable operators and

fun
tionals

To re
all the notion of majorant-
omputability and to introdu
e generalised 
omputability, let us 
on-

stru
t the set of hereditarily �nite sets HF(M) over a model M. This stru
ture is rather well studied

in the theory of admissible sets [2℄ and permits us to de�ne the natural numbers, to 
ode and store

information via formulas.

Let M be a model whose language �

0


ontains no fun
tion symbols and whose 
arrier set is M .

We 
onstru
t the set of hereditarily �nite sets, HF(M), as follows:

1. S

0

(M)

*

)

M; S

n+1

(M)

*

)

P

!

(S

n

(M)) [ S

n

(M); where n 2 ! and for every set B, P

!

(B) is

the set of all �nite subsets of B.

2. HF(M) =

S

n2!

S

n

(M):

We de�ne HF(M) as the following model:

HF(M)

*

)

D

HF(M);M; �

0

; ;

HF(M)

;2

HF(M)

E

;

where ;

HF(M)

and the binary predi
ate symbol 2

HF(M)

has the set-theoreti
 interpretation. Below

we will use the notations 2 and ;. Denote � = �

0

[ f2; ;g. The notions of a term and an atomi


formula are given in a standard manner.

The set of �

0

-formulas is the 
losure of the set of atomi
 formulas in the language � un-

der ^;_;:; (9x 2 t) and (8x 2 t), where (9x 2 t) ' denotes 9x(x 2 t ^ ') and (8x 2 t) ' de-

notes 8x(x 2 t ! '). The set of �-formulas is the 
losure of the set of �

0

formulas un-

der ^;_; (9x 2 t) ; (8x 2 t) ; and 9. We de�ne �-formulas as negations of �-formulas.

De�nition 3.1. 1.A set B � HF(M) is �-de�nable , if there exists a �-formula �(x) su
h that

x 2 B $ HF(M) j= �(x):

2.A fun
tion f : HF(M) ! HF(M) is �-de�nable, if there exists

a �-formula �(x; y) su
h that f(x) = y $ HF(M) j= �(x; y):

In a similar way, we de�ne the notions of �-de�nable fun
tions and sets. The 
lass of �-de�nable

fun
tions (sets) is the interse
tion of the 
lass of �-de�nable fun
tions (sets) and the 
lass of

�-de�nable fun
tions (sets).

Note that the sets M and M

n

are �

0

{de�nable. This fa
t makes HF(M) a suitable domain for

studying fun
tions from M

k

to M . Below, when we say about de�nability, we mean de�nability in

HF(R): To introdu
e the de�nition of majorant-
omputability, we use a 
lass of �-, �-de�nable sets

as the basi
 
lasses. So, we re
all some usefull properties of �-, �-de�nable subsets of R

n

.

Proposition 3.2. Let R be the reals with the language �

0

= h0; 1;+; �; <i.

1.The set HF(;) and the predi
ate of equality on HF(;) are �-de�nable.

2.The set fhn; ri j n is a G�odel number of a �-formula �; r 2 R; and

HF(R) j= �(x)g is �-de�nable.
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3.A set B � R

n

is �-de�nable if and only if there exists an e�e
tive sequen
e of formulas in the lan-

guage �

0

with existential quanti�ers over the reals, f�

s

(x)g

s2!

, su
h that x 2 B $ R j=

W

s2!

�

s

(x):

4.A set B � R

n

is �-de�nable if and only if there exists an e�e
tive sequen
e of formulas

in the language �

0

with universal quanti�ers over the reals, f�

s

(x)g

s2!

, su
h that x 2 B $

R j=

V

s2!

�

s

(x):

Proof. The 
laim immediately follows from the properties of the set of hereditarily �nite sets ( see

[8, 15℄). 2

Let us re
all the notion of majorant-
omputability for real-valued fun
tions proposed and inves-

tigated in [14, 15℄. We use the 
lass of �- and �-de�nable sets as the basi
 
lasses. A real-valued

fun
tion is said to be majorant-
omputable if we 
an 
onstru
t a spe
ial kind of nonterminating pro
ess


omputing approximations 
loser and 
loser to the result.

De�nition 3.3. A fun
tion f : R

n

! R is 
alled majorant-
omputable if there exists an e�e
tive

sequen
e of �-formulas f�

s

(x; y)g

s2!

and an e�e
tive sequen
e of �-formulas fG

s

(x; y)g

s2!

su
h that

the following 
onditions hold.

1.For all s 2 !, x 2 R

n

, the formulas �

s

and G

s

de�ne nonempty intervals < �

s

; �

s

> and

< Æ

s

; 


s

>.

2.For all x 2 R

n

, the sequen
es f< �

s

; �

s

>g

s2!

and f< Æ

s

; 


s

>g

s2!

de
rease monotoni
ally and < �

s

; �

s

>�< Æ

s

; 


s

> for all s 2 !.

3.For all x 2 dom(f), f(x) = y $

T

s2!

< �

s

; �

s

>= fyg and

T

s2!

< Æ

s

; 


s

>= fyg holds.

The sequen
e fF

s

g

s2!

in De�nition 3.3 is 
alled a sequen
e of �-approximations for f . The sequen
e

fG

s

g

s2!

is 
alled a sequen
e of �-approximations for f . As we 
an see, the pro
ess whi
h 
arries

out the 
omputation is represented by two e�e
tive pro
edures. These pro
edures produ
e �-formulas

and �-formulas whi
h de�ne approximations 
loser and 
loser to the result.

The following theorem 
onne
ts a majorant-
omputable fun
tion with validity of �nite formulas

in the set of hereditarily �nite sets, HF(R).

Proposition 3.4. For all fun
tions f : R

n

! R the following assertions are equivalent:

1.The fun
tion f is majorant-
omputable.

2.There exist �{formulas A(x; y), B(x; y) su
h that A(x; �) < B(x; �) and

f(x) = y $ (A(x; �) < y < B(x; �) ^

fz j A(x; z)g [ fz j B(x; z)g = R n fyg):

Proof. !)Let f : R

n

! R be majorant-
omputable. By De�nition 3.3 , there exist a sequen
e fF

s

g

s2!

of �-approximations for f and a sequen
e fG

s

g

s2!

of �-approximations for f . Put

A(x; y)

*

)

(9s 2 !) (y 62< Æ

s

; 


s

> ^ (9z 2< �

s

; �

s

>) (y < z))

and

B(x; y)

*

)

(9s 2 !) (y 62< Æ

s

; 


s

> ^ (9z 2< �

s

; �

s

>) (y > z)) :

By 
onstru
tion, A and B are the sought formulas.

 ) Let A and B satisfy the requirements of the theorem. Let us 
onstru
t approximations in the

following way.
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F

s

(x; y)

*

)

9z9v (A(x; z) ^B(x; v) ^ y 2 (z; v) ^ v � z < 1=s) ;

G

s

(x; y)

*

)

8z (A(x; z)! z � y < 1=s) ^ 8z (B(x; z)! y � z < 1=s) :

2

As a 
orollary we note that a total real-valued fun
tion is majorant-
omputable if and only if its

epigraph and ordinate set are �-de�nable (i.e. e�e
tive sets). The same proposition holds for a total

fun
tion f : [a; b℄

n

! R for some 
ompa
t n-
ube [a; b℄

n

.

De�nition 3.5. A real-valued fun
tion f is said to be shared by �-formulas '

1

; '

2

if

f j

[x

1

;x

2

℄

> 
$ HF(R) j= '

1

(x

1

; x

2

; 
);

f j

[x

1

;x

2

℄

< 
$ HF(R) j= '

2

(x

1

; x

2

; 
):

Proposition 3.6. A real-valued fun
tion is majorant-
omputable if and only if it is shared by two

�-formulas.

Proof. The 
laim immediate follows from Proposition 3.4. 2

Theorem 3.7. The 
lass of 
omputable real-valued fun
tions 
oin
ides with the 
lass of majorant-


omputable real-valued fun
tions.

Proof. Without loss of generality we 
onsider a fun
tion f : R ! [0; 1℄. Let f

�

: I ! I

[0;1℄

be


omputable and f

�

(fxg) = ff(x)g. For n 2 !, we de�ne A

n

= fx 2 R j �(f

�

(fxg)) <

1

n

g, where

� is the natural measure de�ned on I

[0;1℄

. It is easy to see that A

n

is a �-de�nable open set, and

dom(f) =

T

n2!

A

n

.

Be
ause ea
h �-de�nable subset of R is an e�e
tive union of open intervals, we 
an denote A

1

=

S

i2!

(�

i

; �

i

), where �

i

; �

i

2 Q and �

i

� �

i

.

The following formulas satisfy the 
onditions of Proposition 3.4 :

A(x; z)

*

)

x 2 A

1

^ (9a 2 Q) (9b 2 Q) (9y 2 Q) (x 2 (a; b) ^ y > z ^

[y; y + 1℄� f

�

([a; b℄);

B(x; z)

*

)

x 2 A

1

^ (9a 2 Q) (9b 2 Q) (9y 2 Q) (x 2 (a; b) ^ y < z ^

[y; y + 1℄� f

�

([a; b℄)

By Proposition 2.13, f is majorant-
omputable.

Let f be majorant-
omputable and A and B satisfy the properties from Proposition 3.4. We


onstru
t a 
omputable fun
tion f

�

: I ! I su
h that f

�

(fxg) = ff(x)g:

Put f

�

([a; b℄) =

S

x2[a;b℄

f

��

(x), where the auxiliary fun
tion f

��

is de�ned in the following way:

f

�

([a; b℄) =

(

\f[u; v℄ j u; v 2 Q; < x; u >2 A; < x; v >2 Bg if su
h u and v exist

? otherwise

It is easy to see that f is 
ontinuous and the set E =< a; b; 
; d >j a; b; 
; d 2 Q; [
; d℄ � f

�

([a; b℄) is

�-de�nable by the following �-formula

9x 2 (a; b) (< x; 
 >2 A^ < x; d >2 B) :

So the fun
tion f is 
omputable.

2
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To introdu
e generalised 
omputability of operators and fun
tionals, we extend the language � by

two 3-ary predi
ates U

1

and U

2

.

De�nition 3.8. A total operator F

�

: I

f

[a; b℄ ! I

f

[
; d℄ is said to be shared by two �-formulas '

1

and '

2

if the following assertions hold. If F

�

(




u

1

; u

2

�

) =




h

1

; h

2

�

then

h

1

j

[x

1

;x

2

℄

> z $ HF(R) j= '

1

(U

1

; U

2

; x

1

; x

2

; z);

h

2

j

[x

1

;x

2

℄

< z $ HF(R) j= '

2

(U

1

; U

2

; x

1

; x

2

; z);

where U

1

(x

1

; x

2

; 
)

*

)

u

1

j

[x

1

;x

2

℄

> 
;U

2

(x

1

; x

2

; 
)

*

)

u

2

j

[x

1

;x

2

℄

< 
 and the predi
ates U

1

and U

2

posi-

tively o

ur in '

1

; '

2

.

De�nition 3.9. An operator F : C[a; b℄ ! C[
; d℄ is said to be generalised 
omputable, if there

exists an operator F

�

: I

f

[a; b℄ ! I

f

[
; d℄ whi
h is shared by two �-formulas and F (f) =

F

�

(

^

f); where

^

f(x) = ff(x)g.

De�nition 3.10. A fun
tional F : C[a; b℄ � [
; d℄ ! R is said to be generalised 
omputable, if there

exists a 
omputable operator F

�

: C[a; b℄! C[
; d℄ su
h that F (f; x) = F

�

(f)(x):

De�nition 3.11. A fun
tional F : C[a; b℄�R! R is said to be generalised 
omputable, if there exists

an e�e
tive sequen
e of 
omputable operators fF

�

n

g

n2!

of the types F

�

: C[a; b℄! C[�n; n℄ su
h that

F (f; x) = y $ 8n (�n � x � n! F

�

n

(f)(x)) :

Theorem 3.12. An operator F : C[a; b℄ ! C[
; d℄ is 
omputable if and only if it is generalised 
om-

putable.

Proof. Let F : C[a; b℄! C[
; d℄ be 
omputable. To show generalised 
omputability of its 
orresponding

operator F

�

: I

f

[a; b℄ ! I

f

[
; d℄, we 
onstru
t two �-formulas '

1

; '

2

satisfying the 
onditions of

De�nition 17. Let I

f;0

([a; b℄) = fb

i

g

i2!

and I

f;0

([
; d℄) = f


i

g

i2!

be e�e
tive bases 
onstru
ted as in

Proposition 2.6 for I

f

([a; b℄) and I

f;0

([
; d℄).

Suppose F

�

(u) = h. By Proposition 3.4 and Corollary 3.6 the relation b

n

� u is de�nable by

�-formulas with positive o

urren
es of U

1

and U

2

, where U

1

(r

1

; r

2

; 
)

*

)

u

1

j

[r

1

;r

2

℄

> 
; U

2

(r

1

; r

2

; 
)

*

)

u

2

j

[r

1

;r

2

℄

< 
. Therefore the set f(n;m)ju � 


n

^ F

�

(b

n

) � b

m

g is de�nable by some �-formula

�(n;m;U

1

; U

2

). Then F

�

(u)� 


m

$ HF(R) j= 9n�(n;m;U

1

; U

2

).

Put

'

1

(U

1

; U

2

; x

1

; x

2

; z)

*

)

9m9n

�

b

1

m

j

[x

1

;x

2

℄

> z

�

^�(n;m;U

1

; U

2

);

'

2

(U

1

; U

2

; x

1

; x

2

; z)

*

)

9m9n

�

b

2

m

j

[x

1

;x

2

℄

< z

�

^�(n;m;U

1

; U

2

):

Clearly, '

1

; '

2

are required formulas.

Let F : C[a; b℄ ! C[
; d℄ be generalised 
omputable. We prove 
omputability of its 
orresponding

operator F

�

: I

f

[a; b℄ ! I

f

[
; d℄. Monotoni
ity of F

�

follows from positive o

urren
es of U

1

and U

2

in the formulas '

1

and '

2

.

Be
ause I

f

[a; b℄ and I

f

[
; d℄ are !-
ontinuous domains, it is enough to prove that F

�

preserves

suprema of a 
ountable dire
ted set.

Let A = f< u

1

n

; u

2

n

>g

n2!

and

W

"

A =< u

1

; u

2

>. Put U

1n

(x

1

; x

2

; 
)

*

)

u

1

n

j

[x

1

;x

2

℄

> 
 and

U

2n

(x

1

; x

2

; 
)

*

)

u

2

n

j

[x

1

;x

2

℄

< 
 for n 2 ! and U

1

(x

1

; x

2

; 
)

*

)

u

1

j

[x

1

;x

2

℄

> 
, U

2

(x

1

; x

2

; 
)

*

)

u

2

j

[x

1

;x

2

℄

< 
.

By Lemma 11, if u

1

j

[x

1

;x

2

℄

> 
 then there exists n su
h that u

1

n

j

[x

1

;x

2

℄

> 
, and if u

2

j

[x

1

;x

2

℄

> 
 then

there exists n su
h that u

2

n

j

[x

1

;x

2

℄

< 
.

So U

1

(x

1

; x

2

; 
) =

W

n2!

U

1n

(x

1

; x

2

; 
) and U

2

(x

1

; x

2

; 
) =

W

n2!

U

2n

(x

1

; x

2

; 
).

By the properties of �-formulas and positive o

urren
es of U

1

and U

2

in '

1

and '

2

,
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'

1

(U

1

; U

2

; x

1

; x

2

; 
)$

W

n2!

'

1n

(U

1

; U

2

; x

1

; x

2

; 
);

'

2

(U

1

; U

2

; x

1

; x

2

; 
)$

W

n2!

'

2n

(U

1

; U

2

; x

1

; x

2

; 
):

Hen
e it is 
lear that F

�

(

W

"

A) =

W

"

F

�

(A).

Now we show that the set f(n;m)jF

�

(b

n

) � 


m

g is �-de�nable and, as a 
onsequen
e, is 
om-

putable enumerable in n and m. Let F

�

(< b

1

n

; b

2

n

>) =< h

1

; h

2

>. Sin
e b

1

n

; b

2

n

; 


1

m

and 


2

m

are

pie
ewise linear, it is obvious that the sets b

1

n

j

[x

1

;x

2

℄

> 
, b

2

n

j

[x

1

;x

2

℄

< 
 and 


1

m

j

[x

1

;x

2

℄

> 
, 


2

m

j

[x

1

;x

2

℄

< 


are �-de�nable. As is evident from the de�nition of F

�

, the sets h

1

j

[x

1

;x

2

℄

> 
, h

2

j

[x

1

;x

2

℄

< 
 are

�-de�nable too. By Proposition 2.9, there exist step upper semi
ontinuous fun
tions s

1

and s

2

su
h

that 


1

m

(x) < s

1

(x) < h

1

(x) and 


2

m

(x) > s

2

(x) > h

2

(x) for x 2 [
; d℄.

As one 
an see, the following �-formula

9x

0

: : : 9x

n

9y

1

: : : 9y

n

9z

1

: : : 9z

n

V

i�n

�

(


1

m

j

[x

i

;x

i+1

℄

< y

i

�

^

�

h

1

j

[x

i

;x

i+1

℄

> y

i

�

^

�




2

m

j

[x

i

;x

i+1

℄

> z

i

�

^

�

h

2

j

[x

i

;x

i+1

℄

< z

i

�

de�nes the set f(n;m)jF

�

(b

n

) � 


m

g. As a 
onsequen
e this set is 
omputable enumerable in n

and m. 2

Note that using the previous theorem one 
an elegantly prove 
omputability of su
h fun
tions as

sup

x2[x

1

;x

2

℄

f(x), inf

x2[x

1

;x

2

℄

f(x) and Riemann integral on [x

1

; x

2

℄.

Corollary 3.13. A fun
tional F : C[a; b℄ � [
; d℄ ! R is 
omputable if and only if it is generalised


omputable.

Proof. The 
laim follows from generalised 
omputability of its 
orresponding operators. 2

Corollary 3.14. A fun
tional F : C[a; b℄ � R ! R is 
omputable if and only if it is generalised


omputable.

Proof. The 
laim follows from the property of �- formulas: an e�e
tive sequen
e of �-formulas is

equivalent to a �-formula. 2

3.2. Semanti
 
hara
terisation of 
omputable fun
tions and fun
tionals

After the mentions of the main properties of majorant-
omputable real-valued fun
tions and gener-

alised 
omputable operators and real-valued fun
tionals, we pass to 
omputable ones.

Corollary 3.15. For a fun
tion f : R

n

! R the following assertions are equivalent:.

1.The fun
tion f is 
omputable.

2.There exist �{formulas A(x; y) and B(x; y) su
h that A(x; �) < B(x; �) and

f(x) = y $ (A(x; �) < y < B(x; �) ^ fz j A(x; z)g [ fz j B(x; z)g = R n fyg):

Proof. The 
laim follows from Proposition 3.4 and Theorem 3.7. 2

Corollary 3.16. A real-valued fun
tion is 
omputable if and only if it is shared by two �-formulas.

Proof. The 
laim follows from Proposition 3.6 and Theorem 3.7. 2

Proposition 3.17. Let f be a 
omputable fun
tion su
h that [a; b℄ � domf and g be a 
omputable

fun
tion su
h that [b; 
℄ � domg and f(b) = g(b). Then the fun
tion h(x) =

(

f(x) if x � b;

g(x) if x � b

is


omputable.
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Proof. From Theorem 26 in [6℄ (
f. [16℄ ) it follows that there exists an e�e
tive modulus of 
ontinuity

w

f

for f and an e�e
tive modulus of 
ontinuity w

g

for g. In other words, for every s 2 ! for all

x

1

; x

2

2 [a; b℄ and x

3

; x

4

2 [
; d℄ we have

jx

1

� x

2

j < w

f

(

1

s

)! jf(x

1

)� f(x

2

)j <

1

s

and

jx

3

� x

4

j < w

g

(

1

s

)! jg(x

3

)� g(x

4

)j <

1

s

:

Put w

h

(�) = minfw

f

(�); w

g

(�)g. The following �-formula de�nes the epigraph of the fun
tion h.

y > h(x)$ (x < b ^ y > f(x)) _ (x > b ^ y > g(x)) _

��

9� 2 Q

+

�

(jx� bj < w

h

(�) ^ ([9t < b℄ jx� tj < w

h

(�) ^ y > f(t) + �)

�

Analogously, the ordinate set of h is �{de�nable. By Corollary 3.16, the fun
tion h is 
omputable. 2

Corollary 3.18. A fun
tional F : C[a; b℄ � [
; d℄ ! R is 
omputable if and only if there exists an

operator F

�

: I

f

[a; b℄ ! I

f

[
; d℄ whi
h is shared by two �-formulas and F (f; x) = y $ F

�

(

^

f)(x) =

fyg; where

^

f(x) = ff(x)g.

Proof. It follows from Theorem 3.12. 2

Corollary 3.19. If a 
omputable operator F : C[a; b℄! C[
; d℄ is de�ned in a 
omputable fun
tion f ,

then the fun
tion F (f) is 
omputable.

Proof. We only note that if a fun
tion u is 
omputable, then the following relations u

1

j

[x

1

;x

2

℄

> z and

u

2

j

[x

1

;x

2

℄

< z are �-de�nable. This follows from Proposition 3.6. 2

Corollary 3.20. A total 
omputable operator F : C[a; b℄ ! C[
; d℄ maps 
omputable fun
tions to


omputable fun
tions.

Proof. It follows from Corollary 3.19. 2

Corollary 3.21. The 
omposition of 
omputable operators is 
omputable.

Proof. The 
laim follows from the properties of �-formulas and Theorem 3.12. 2

Now we introdu
e a useful re
ursion s
heme whi
h permits us to des
ribe the behaviour of 
omplex

systems su
h as hybrid systems.

Let F : C[a; b℄ � C[0; 1℄ �R ! R and G : C[a; b℄ � [0; 1℄ ! R be 
omputable fun
tionals. Then

F : C[a; b℄� [0;+1)! R is de�ned by the following s
heme:

(

F (f; t)j

t2[0;1℄

= G(f; t);

F (f; t)j

t2(n;n+1℄

= F(f; t; F (f; y + n� 1)):

Proposition 3.22. If F is 
ontinuous then F is 
omputable, with F de�ned above.

Proof. We prove that there exists an e�e
tive sequen
e of generalised 
omputable operators F

�

n

:

C[a; b℄ ! C[0; n℄. For this we state that for ea
h k there exist two �-formulas �

1

and �

2

whi
h share

F

�

k

. Clearly, on the m-th step of 
omputation via the re
ursion s
heme, we obtain a 
omputable

fun
tional where t ranges over the interval [m;m+1℄. Hen
e, there exist two e�e
tive sequen
es of �-

formulas f�

m

1

g

m2!

and f�

m

2

g

m2!

su
h that for m � x

1

� x

2

� m+1 and F

�

(< u

1

; u

2

>) =< h

1

; h

2

>

we have
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h

1

j

[

x

1

; x

2

℄ > 
$ �

m

1

(U

1

; U

2

; x

1

; x

2

; 
);

h

2

j

[

x

1

; x

2

℄ < 
$ �

m

2

(U

1

; U

2

; x

1

; x

2

; 
);

where U

1

(x

1

; x

2

; 
)

*

)

u

1

j

[x

1

;x

2

℄

> 
; U

2

(x

1

; x

2

; 
)

*

)

u

2

j

[x

1

;x

2

℄

< 
 and the predi
ate U

1

and U

2

positively o

ur in '

1

and '

2

. The required formula �

1


an be de�ned as follows:

�

1

(U

1

; U

2

; x

1

; x

2

; 
)

*

)

(9i; j 2 N(i < x

1

< i+ 1)) ^ (j < x

2

< j + 1) ^

(�

i

n

(U

1

; U

2

; x

1

; i+ 1; 
) ^

^

i+1�m�j�1

�

m

1

(U

1

; U

2

;m;m+ 1; 
) ^ �

j

1

(U

1

; U

2

; j; x

2

; 
)) _

(9j 2 N(j < x

2

< j + 1) ^

^

0�m�j�1

�

m

1

(U

1

; U

2

;m;m+ 1; 
) ^

�

j

1

(U

1

; U

2

; j; x

2

; 
)) _ (9i 2 N(i < x

1

< i+ 1) ^ �

i

1

(U

1

; U

2

; i; x

1

; 
) ^

^

i�m�n�1

�

m

1

(U

1

; U

2

;m;m+ 1; 
) _

^

0�m�n�1

�

m

1

(U

1

; U

2

;m;m+ 1; 
):

The required formula �

2


an be de�ned in the similar way. 2

We would like to note that the re
ursion s
heme is a useful tool for formalisation of hybrid systems.

Indeed, in this framework the traje
tories of the 
ontinuous 
omponent of hybrid systems (the perfor-

man
e spe
i�
ations) 
an be represented by 
omputable fun
tionals whi
h 
an be 
onstru
ted by the

spe
i�
ations SHS of hybrid systems proposed in [17℄.

Also we pay attention to the following property. Every 
ontinuous total operator F : C[a; b℄ !

C[a; b℄ has a 
ontinuous extension to the fun
tional domain. This means that there is a 
ontinuous

operator F

�

: I

f

([a; b℄) ! I

f

([a; b℄) su
h that

F (f) = g $ F

�

(

^

f) = ĝ; where

^

f(x) = ff(x)g; ĝ(x) = fg(x)g:

To prove this fa
t, we will use the following notion.

De�nition 3.23. Let f be a lower semi
ontinuous fun
tion de�ned on [a; b℄ and g be an upper 
on-

tinuous fun
tion de�ned on [a; b℄. A sequen
e fh

s

g

s2!

of 
ontinuous fun
tions de�ned on [a; b℄ is said

to be 
losely approximating to hf; gi 2 I

f

([a; b℄) if

8" > 09N8n � N (h

n

2 hf � "; g + "i) :

Theorem 3.24. Every 
ontinuous total operator F : C[a; b℄ ! C[a; b℄ has a 
ontinuous extension to

the fun
tional domain.

Proof. It is enough to de�ne the operator F

�

: I

0

f

([a; b℄) ! I

f

([a; b℄), where I

0

f

([a; b℄) denotes the set

fh 2 (I )

f

([a; b℄)jh : [a; b℄ ! I n ?g whi
h is an !-
ontinuous S
ott domain. Indeed, the operator F

�


an be extended to F

��

: I

f

([a; b℄) ! I

f

([a; b℄) by the rule:

F

��

(h) =

(

F

�

(h) if h 2 I

0

f

([a; b℄);

?

[a;b℄

otherwise;

Note that the set I

0

f;0

([a; b℄) = fhf; gi jf; g 2 C[a; b℄g 
an be 
onsidered as a basis for I

0

f

([a; b℄).

Let us denote U

�

F (f)

= f(x; t)jF (f)(x) > tg and U

+

F (f)

= f(x; t)jF (f)(x) < tg for a 
ontinuous

fun
tion f .

We �rst de�ne an auxiliary operator F de�ned on the set I

0

f;0

([a; b℄) of strips with 
ontinuous

bounds and then extend it to an operator de�ned on I

0

f

([a; b℄).

For




f

1

; f

2

�

2 I

f

([a; b℄), where f

1

and f

2

are 
ontinuous, we de�ne two open sets U

�

< U

+

by the

following rules.

We de�ne (x; t) 2 U

�

if and only if there exists " > 0 su
h that for ea
h sequen
e fh

n

g

n2!

whi
h is


losely approximating to




f

1

; f

2

�

we have:
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9N (8n � N)B((x; t); ") � U

�

F (h

n

)

;

where B((x; t); ") is the ball of the radius " 
entered at (x; t).

By analogy, (x; t) 2 U

+

if and only if there exists " > 0 su
h that for ea
h sequen
e fh

n

g

n2!

whi
h is


losely approximating to




f

1

; f

2

�

we have:

9N (8n � N)B((x; t); ") � U

+

F (h

n

)

;

where B((x; t); ") is the ball of the radius " 
entered at (x; t).

Let us de�ne g

1

(x) = supU

�

(x) and g

2

(x) = inf U

+

(x).

Put F(




f

1

; f

2

�

) =




g

1

; g

2

�

. Sin
e g

1

is lower semi
ontinuous and g

2

is upper semi
ontinuous, the

operator F is well-de�ned. For F we denote U

�

as U

�

F(hf

1

;f

2

i)

and U

+

as U

+

F(hf

1

;f

2

i)

.

We show that F(hf; fi) = hF (f); F (f)i. Indeed, a sequen
e fh

n

g

n2!

, whi
h is 
losely approximat-

ing to hf; fi, uniformly 
onverges to f . By 
ontinuity of the operator F , the sequen
e fF (h

n

)g

n2!

uniformly 
onverges to F (f). So U

�

F(hf;fi)

= U

�

F (f)

and U

+

F(hf;fi)

= U

+

F (f)

.

Monotoni
ity of the operator F follows from the de�nitions of U

�

F(hf

1

;f

2

i)

and U

+

F(hf

1

;f

2

i)

. Let

A = f




u

1

n

; u

2

n

�

g

n2!

be a monotoni
 dire
ted set and

W

"

A =< u

1

; u

2

>. We 
he
k that if

u

1

n

; u

2

n

, u

1

and u

2

are 
ontinuous, then

W

"

F(




u

1

n

; u

2

n

�

) = F(




u

1

; u

2

�

). By monotoni
ity of F ,

F(




u

1

; u

2

�

) w F(




u

1

n

; u

2

n

�

) for all n 2 !. Hen
e F(




u

1

; u

2

�

) w

W

"

F(




u

1

n

; u

2

n

�

). To prove the in
lusion

W

"

F(




u

1

n

; u

2

n

�

) w F(




u

1

; u

2

�

), it is enough to 
he
k that for (x; t) su
h that (x; t) 2 U

�

F(hu

1

;u

2

i)

there

exists n 2 ! with (x; t) 2 U

�

F(hu

1

n

;u

2

n

i)

. Suppose the 
ontrary. For some (x; t), (x; t) 2 U

�

F(hu

1

;u

2

i)

, but for

all n 2 ! we have (x; t)62U

�

F(hu

1

n

;u

2

n

i)

. Let us �nd � > 0 su
h that the 
ondition (x; t) 2 U

�

F(hu

1

;u

2

i)

. For

all n we have a sequen
e fh

n

m

g

m2!

whi
h is 
losely approximating to




u

1

n

; u

2

n

�

and B((x; t); �)6�U

�

F (h

n

m

)

for in�nitely great m. From the set fh

n

m

g

n2!;m2!

we 
an extra
t a sequen
e f�

n

g

n2!

whi
h is 
losely

approximating to




u

1

; u

2

�

and B((x; t); �)6�U

�

F (�

n

)

for n 2 !. This is a 
ontradi
tion with the 
hoi
e

of �.

Now we de�ne F

�

for




f

1

; f

2

�

2 I

0

f

([a; b℄) by the following rule: F

�

(




f

1

; f

2

�

) =

W

"

F(




f

1

n

; f

2

n

�

),

where

W

"




f

1

n

; f

2

n

�

=




f

1

; f

2

�

and f

1

n

, f

2

n

are 
ontinuous, n 2 !. Let us prove 
orre
tness of

this de�nition. Suppose

W

"




f

1

n

; f

2

n

�

=

W

"




u

1

n

; u

2

n

�

=




f

1

; f

2

�

. For a �x n we have




u

1

; u

2

�

v

W

"




f

1

n

; f

2

n

�

and




u

1

n

; u

2

n

�

=

W

"

g:l:b:(




f

1

k

; f

2

k

�

;




u

1

n

; u

2

n

�

). By the property of F , F(




u

1

n

; u

2

n

�

) =

W

"

F(g:l:b:(




f

1

k

; f

2

k

�

;




u

1

n

; u

2

n

�

)). By monotoni
ity of F , F(g:l:b:(




f

1

k

; f

2

k

�

;




u

1

n

; u

2

n

�

)) v F(




f

1

k

; f

2

k

�

).

So F(




u

1

n

; u

2

n

�

) v

W

"

F(




f

1

k

; f

2

k

�

). As a 
onsequen
e,

W

"

F(




u

1

n

; u

2

n

�

) v

W

"

F(




f

1

k

; f

2

k

�

).

Similarly we 
an 
he
k in
lusion

W

"

F(




u

1

n

; u

2

n

�

) w

W

"

F(




f

1

k

; f

2

k

�

). Monotoni
ity of F

�

follows from

monotoni
ity of F . Now we prove 
ontinuity of F

�

. Let the sequen
e f




f

1

n

; f

2

n

�

g

n2!

be monotoni
,

and

W

"




f

1

n

; f

2

n

�

=




f

1

; f

2

�

for




f

1

; f

2

�

2 I

0

f

([a; b℄). By the property of bases,




f

1

n

; f

2

n

�

=

W

"

�

m

n

where �

m

n

2 I

0

f;0

([a; b℄). Put l:u:b:

i�i�n

f�

m

n

g = �

m

n

. Then




f

1

n

; f

2

n

�

=

W

"

�

m

n

and �

m+1

n

� �

m

n

. We have

W

"




f

1

n

; f

2

n

�

=

W

"

W

"

�

m

n

.

Let us 
he
k that

W

"

F

�

(




f

1

n

; f

2

n

�

) = F

�

(

W

"




f

1

n

; f

2

n

�

). We have F

�

(

W

"




f

1

n

; f

2

n

�

) = F

�

(

W

"

W

"

�

m

n

) =

W

"

W

"

F

�

(�

m

n

) �

W

"

F

�

(�

m

n

) = F

�

(

W

"

�

m

n

) = F

�

(




f

1

n

; f

2

n

�

). So

W

"

F

�

(




f

1

n

; f

2

n

�

) v F

�

(

W

"




f

1

n

; f

2

n

�

).

Moreover, F

�

(

W

"




f

1

n

; f

2

n

�

) =

W

"

W

"

F � (�

m

n

) and F � (�

m

n

) v F � (




f

1

n

; f

2

n

�

). So

W

"

F

�

(




f

1

n

; f

2

n

�

) w

F

�

(

W

"




f

1

n

; f

2

n

�

). Continuity of F

�

is proved, and so F

�

is a required one.

2

Referen
es

[1℄ J. Blan
k, Domain representability of metri
 spa
e, Annals of Pure and Applied Logi
, 83, 1997, 225{247.

[2℄ J. Barwise, Admissible sets and stru
tures, Berlin, Springer{Verlag, 1975.

[3℄ A. Brown, C. Pear
y, Introdu
tion to Analysis, Springer-Verlag, Berlin, 1989.



Ba
kground for formalisation of 
omplex systems 55

[4℄ L. Blum and M. Shub and S. Smale, On a theory of 
omputation and 
omplexity over the reals: NP-
ompleteness,

re
ursive fun
tions and universal ma
hines, Bull. Amer. Math. So
., (N.S.) , 21, No 1, 1989, 1{46.

[5℄ A. Edalat, Domain Theory and integration, Theor. Comput. S
i., 151, 1995, pages 163{193.

[6℄ A. Edalat, P. S�underhauf, A domain-theoreti
 approa
h to 
omputability on the real line, Theoreti
al Computer

S
ien
e, 210, 1998, pages 73{98.

[7℄ Yu. L. Ershov, Computable fun
tionals of �nite types, Algebra and Logi
, 11, No 4, 1996, 367{437.

[8℄ Yu. L. Ershov, De�nability and 
omputability, Plenum, New York, 1996.

[9℄ H. Freedman and K. Ko, Computational 
omplexity of real fun
tions, Theoret. Comput. S
i. , 20, 1982, 323{352.

[10℄ G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. S
ott, A Compendium Of Continuous

Latti
es, Springer Verlag, Berlin, 1980.

[11℄ A. Grzegor
zyk, On the de�nitions of 
omputable real 
ontinuous fun
tions, Fund. Math., No 44, 1957, 61{71.

[12℄ T.A. Henzinger, Z. Manna, A. Pnueli, Towards re�ning Temporal Spe
i�
ations into Hybrid Systems, Le
t. Notes

Comput. S
i., 736, 1993, 36{60.

[13℄ T.A. Henzinger, V. Rusu, Rea
hability Veri�
ation for Hybrid Automata, Le
t. Notes Comput. S
i., 1386, 1998,

190{205.

[14℄ M. Korovina, Generalized 
omputability of real fun
tions, Siberian Advan
e of Mathemati
s, 2, No 4, 1992, 1{18.

[15℄ M. Korovina, O. Kudinov, A New Approa
h to Computability over the Reals, SibAM, 8, No 3, 1998, 59{73.

[16℄ M. Korovina, O. Kudinov, Chara
teristi
 Properties of Majorant-Computability over the Reals, Pro
. of CSL'98,

Le
t. Notes Comput. S
i., 1584, 1999, 188{204.

[17℄ M. Korovina, O. Kudinov, Computability via Approximations, Bull. of Symboli
 Logi
, 5, No 1, 1999

[18℄ M. Korovina, O. Kudinov, A Logi
al approa
h to Spe
i�
ations of Hybrid Systems, Pro
. of PSI'99, Le
t. Notes

Comput. S
i., 1755, 2000, 10{16.

[19℄ M. Korovina, O. Kudinov, Computability over the reals without equality, Pro
. of Mal'sev Conf. on Mathemati
al

Logi
, Novosibirsk, p. 47, 1999.

[20℄ Z. Manna, A. Pnueli, Verifying Hybrid Systems, Le
t. Notes Comput. S
i., 736, 1993, 4{36.

[21℄ R. Montague, Re
ursion theory as a bran
h of model theory, Pro
. of the 3d Intern. Congr. on Logi
, Methodology

and the Philos. of S
., 1967, Amsterdam, 1968, 63{86.

[22℄ Y. N. Mos
hovakis, Abstra
t �rst order 
omputability, Trans. Amer. Math. So
., 138, 1969, 427{464.

[23℄ A. Nerode, W. Kohn, Models for Hybrid Systems, Automata, Topologies, Controllability, Observability, Le
t. Notes

Comput. S
i., 736, 1993, 317{357.

[24℄ Pietro Di Gianantonio, real-number 
omputation and domain theory, Information and Computation, No 127, 1996,

11-25.

[25℄ M. B. Pour-El, J. I. Ri
hards, Computability in Analysis and Physi
s, Springer-Verlag, 1988.

[26℄ D. S
ott, Outline of a mathemati
al theory of 
omputation, 4th Annual Prin
eton Conf. on Information S
i. and

Systems, 1970, 169{176.

[27℄ D. S
ott, Continuous latti
es, Le
t. Notes Math., 274, Toposes, Algebrai
 geometry and Logi
, 1972, 97{136.

[28℄ E.S
he
hter, Handbook of Analysis and Its Foundations, A
ademi
 Pressbook, 1996.

[29℄ V. Stoltenberg-Hansen and J. V. Tu
ker, Complete lo
al rings as domains, J. of Symboli
 Logi
, 53, 1988, 603{624.

[30℄ V. Stoltenberg-Hansen and J. V. Tu
ker, E�e
tive algebras, Clarendon Press, Handbook of Logi
 in Comput. S
i.,

4, 1995, 375{526.

[31℄ H. Tong, Some 
hara
terizations of normal and perfe
tly normal spa
e, Duke Math. J., N 19, 1952, 289-292.

[32℄ B.A. Trakhtenbrot, Yu.Barzdin, Finite automata: Behaviour and Syntheses, North-Holland, 1973.

[33℄ K. Weihrau
h, Computability, EATCS Monographs on Theor. Comput. S
i., Springer, Berlin, 8, 1987.

[34℄ K. Weihrau
h, A simple introdu
tion to 
omputable analysis, Informatik Beri
hte 171, FernUniversitat, Hagen,

1995, 2-nd edition.

[35℄ C. Kreitz, K. Weihrau
h, Complexity Theory on real-numbers and Fun
tions, Le
t. Notes Comput. S
i.,

145, 1983, 165{175.

[36℄ K. Weihrau
h, X. Zheng Computability on Continuous, Lower Semi-Continuous and Upper Semi-Continuous real

Fun
tions, Le
t. Notes Comput. S
i., 1276, 1997, 166{186.


