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Solutions to the inverse coefficient problem for the
system of poroelasticity equations based on neural
networks

P.V. Korobov, Kh.Kh. Imomnazarov, [.N. Umarov

Abstract. This paper examines the use of neural networks to solve an inverse
coefficient problem for a system of poroelastic equations. The problem consists of
finding the desired functions of the system along with an unknown coefficient of the
equation under an additional boundary condition. In this paper, the unknowns are
the shear modulus coefficient and the interfacial friction coefficient. This approach
assumes the possibility of setting problems for various coefficients and parameters
of the environment involved in the system of equations under consideration or their
combination.

1. Statement of direct and inverse problems

A direct initial boundary value problem for a system of poroelasticity equa-
tions with homogeneous boundary conditions is formulated as follows [1-3]:

psure = ((uz)ue)s — pi(u = v)x(u =), @ €(0,L), te(0,T), (1)

prve = pi(u—v)x(u—wv), x€(0,L), te(0,T), (2)
uli=0 = ¢o(T), utlt=0 = $1(x), =€ (0,L), (3)
vji=0 =0, z€(0,L), (4)
uz—0 =0, te(0,7). (5)

The problem of finding the functions u and v from the system of equations
(1)—(5) will be called the direct problem.
Let the coefficient p(u,) be unknown and additional information on the
boundary L be given:
w(L,t) = u(t). (6)

Then the problem of finding the coefficient p(u,) and the functions u
and v from the system of equations (1)—(5) and the additional condition (6)
is called the inverse problem.

2. Description of the method for solving the inverse
coefficient problem of proroelasticity

To solve the inverse problem (1)-(5) with additional condition (6), it is
proposed to use a neural network [4] trained on a sufficiently large data
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set consisting of a set of approximations of the problem coefficients and
additional boundary conditions.

This article considers inverse problems separately for cases of constant
coefficients and coefficients depending on their arguments.

We will consider two approaches to the formation of input and search
data for the algorithm.

The first approach concerns the case of constant coefficients pu(u,) =
const; x(u — v) = const. In this case, the training data is a set of coef-
ficients {u;}, {x:} from the ranges [tmin, lmax), [Xmin, Xmax] and a set of
corresponding additional boundary conditions w;(L,t), obtained by solving
the direct problem with coefficients wu;, x;. In a similar manner, test data
sets are formed from the same ranges (for example, p;, x; are randomly
selected from [fimin, fmax)s [Xmins Xmax], and additional conditions uj(ﬂ,t)
are calculated for them.

In the second approach, the coefficients u, x have a given dependency
on their arguments with some constant values ., x.. The choice of training
and test data in this case is similar to the first approach, only instead of the
coefficients pi;, xi, we choose their constant components ji.,, X¢;-

For training and test data, it is necessary to enter sets of coefficients
{wi}, {xi}, where each element u; and x; are vectors of dimension N x M
or less, if we restrict ourselves to the data in the set of control points.

3. Solution to the inverse problem for constant coefficients

Let us consider the inverse problem for the system of equations (1)—(6) in
the case of constant coefficients. It is necessary to find the coefficients p and
X using the additional condition (6).

To solve this problem, a neural network with an LSTM (Long Short-
Term Memory) architecture was chosen. This neural network uses additional
hidden layers [5]. The use of a neural network to solve this problem consists
of two parts: training the neural network and applying the obtained network
coeflicients to the input parameters of the problem being solved. The input
parameters in this case are the sets of coefficients u, x and the additional
conditions u(t). First, we will collect a training database for our neural
network. To do this, we form P sets of coefficients u, x in a uniform grid
with a step of 0.1-10° from the ranges [2-10%,3-10%] for p and [1072,2-1072]
for x. We calculate additional conditions on the boundary L by solving the
direct problem (1)—(5) for each set of coefficients.

As test data, we use a random set of coefficients 1 and x from the same
ranges. We also calculate additional conditions on the boundary L for the
selected coefficients.

The result of the neural network operation is demonstrated in Figure 1.
The figure shows a comparison of the test coefficients 1 and y with the
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Figure 1. Comparison of test and reconstructed coefficients for a problem with
constant coefficients

coefficients reconstructed using additional conditions from the test data.

We can conclude that the neural network successfully reconstructed the
coefficients using additional boundary conditions for constant coefficients.
The accuracy of this reconstruction can be increased or decreased by chang-
ing the calculation parameters and the neural network used.

4. Solution to the inverse problem for variable coefficients
with a given dependence

In this case we will consider problem (1)—(5) with coefficients p, x having
the following dependency on their arguments
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pte) = pe(1+ e @), x(u—0v) = xe (147,

where u. = const, . = const.

We use the same approach as for the case with constant coefficients, but
as training and test data we will take sets of coefficients ., x. from the same
ranges and the additional conditions on the boundary L.

The result of the restoration the coefficients u. , x. according to addi-
tional conditions from the test data set is shown in Figure 2.

Based on the results obtained, we can conclude that, using the described
technology, it is possible to reconstruct the solution to problem (1)—(5) under
the additional condition (6) within the ranges for the coefficients f., x. in

1le9
3.0

w |
|
il \M

= Actuall Data
—— Predicted Data

mu

2.04

6 2‘0 4‘0 6‘0 8‘0 l(l) 0

samples
00201 actuall Data
—— Predicted Data N

0.018

0.016 4
=
G

0.014 4 ’

0.012 A J V

0.010 A

0 20 40 60 80 100

samples

Figure 2. Comparison of test and reconstructed coefficients for a problem with a
known dependency of the coefficients
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which the training data were specified. The accuracy of the reconstructed
solution, with this approach, will depend only on the detail and quality of
the training data.
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