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Laguerre spectral method as applied
to numerical modeling of viscoelastic
seismic problems

G.V. Konyukh, B.G. Mikhailenko, A.A. Mikhailov

The wave propagation in real media can be described within the framework
of the theory of linear viscoelasticity. The presence of convolutional integral in
Boltzmann’s superposition principle poses the main difficulties in implementing
the direct numerical methods in time domain. The paper presents an efficient algo-
rithm, based on the application of the spectral Laguerre method for approximation
of temporal derivatives as applied to the problem of seismic wave propagation in
the heterogeneous viscoelastic medium.

Introduction

The paper presents the new efficient algorithm based on the application of
the spectral Laguerre method for approximation of temporal derivatives as
applied to the problem of seismic wave propagation in the heterogeneous
viscoelastic medium. This approach is an analogue to the frequency domain
forward modeling, where instead of the frequency w we have the number
m — the degree of the Laguerre polynomials. In contrast to conventional
approaches [1-3], the Laguerre method has some advantages in viscoelastic
modeling. This does not require introduction of the memory variables [1]
which obey additional time evolution equations and increase the dimension
of the system under study. This technique permits us to consider the most
general convolutional relations between stress and strain tensors, expressed
by an arbitrary relaxation function in Boltzmann’s superposition principle.
Application of the Laguerre transform together with finite differences along
the spatial coordinates reduces the solution of the original problem to a
system of linear algebraic equations with a sparse matrix, independent of
the number m. Only the right-hand side of the system has the recurrent
dependence on the parameter m. Therefore, we can use fast methods for
solving the obtained system with a great number of the right-hand sides.
As it takes place, the matrix is only once transformed as compared to the
frequency-domain forward modeling. It essentially decreases computer costs
of our algorithm.
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1. Some constitutive relations of the viscoelastic
media

The most general stress-strain relation for a viscoelastic material [4] is ex-
pressed by

oij(2,t) = Ciju(z,t) * £ri(, t), (1)
where o;; and g;; are elements of the stress and the strain tensor, respec-
tively, and * represents the time convolution. The dot above the variable
represents a time derivative. In a pure elastic medium, Cjjri(x) are the ele-
ments of Hook’s tensor. In viscoelastic medium, C;;xi(,t) are the elements
of the tensor depending on the entire response history. Equation (1) is the
formulation of Boltzmann’s superposition principle.

A more appropriate model of the relaxation mechanism is the “standard
linear solid” model represented by the stress-strain relation as a differential
equation [5]

0ij + To0ij = Ml () (et + Teft), (2)
where 7, and 7. denote the stress and the strain relaxation times, respec-
tively, for one relaxation mechanism, M qkl( z) is a relaxed modulus at each
point (x) of the medium. After superlmposmg all the relaxation mecha-
nisms, the relation between C;jx and ME ki is given by

Ciiu(,t) = MEy () [1 - EL:(l -2 exp (—i)] 3)

s=1 o

Here 72 and 77 denote the stress and the strain relaxation times for the s-th
relaxation mechanism, L is the number of relaxation mechanisms. Perform-
ing the time derivatives in equation (1), and using (3), yields

L
Gij(@,t) = MYy (2)én(z, t) + MEy () Z Q°(t) * Ep(x,t),  (4)

where the response function of the medium is expressed by

d°(t) = p (1 e :—:) exp (—}%)H(t).

In (4) the relaxed modulus M ﬁ‘k! and the unrelaxed modulus M g-kl satisfy

L s
rs
MYy (2) = My () [1 - 2(1 - ;‘;)] (5)
s=1
In terms of velocities, a relaxed modulus gives the zero-frequency phase
velocity, whereas an unrelaxed modulus gives the high-frequency limit of
the phase velocity. Equations (4) and (5) are suitable for the numerical
modeling in question.
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2. Statement of the problem and description
of the method

The algorithm is discussed on an example of solution of the first order elastic
equations in the cylindrical coordinates (r, 8, z) for the 3D axially-symmetric,
vertical heterogeneous half-space z > 0. The selected physical model can be
described by the following system:

Ou, _ Oo, n da,, + o, — 0y
Pt = “or 0z r
Ou, __ Qoy, 0o, oy,

Par = or Bz+_;—’

do, ou, ou, u,

o = (A+2M) +A(3z +T)’ o
80z _ 61—‘::; Our Uy

= (rangEea(GreT)

dog Uy ou, Ou,

o = (A+2M)T+A(Bz + 67‘)’

9o, ou, Ou,
ot M(E + or )

Here o;; denotes the component of symmetric stress tensor, u; denotes a
velocity component. A and M are integral operators of the form:

Az(t) = Ax(t)—j\/ g(r)x(t—7)dr, Mz(t) = pz(t)-4 f z(r)g(t—7)dr.

The elastic constants A(z), u(z) and the non-elastic constants A(z), ji(z) are
arbitrary functions of the variable z; x(z,t), g(2,t) are relaxation functions.
The problem is solved with zero initial data

“r|t=0 = Uglyg = °'r|t=o = 0;li=0 = O4ly—o = Orzli=p =0 (7)

and the following boundary conditions:

Urzl;,:n =0, C"zl;,:o = F(r)f(t)’ (8)

where f(t) represents the time variation of the source, F'(r) is a function of
distribution of a source on the plane z = 0. We can choose F(r) in the form
F(r) = n2/2r(14 n2r2)*2, to be suitable to simulate a point source when
Mg — OQ.

At the first step, let us make use the representation of the solution of
(6)-(8) as a combination of the Fourier-Bessel series [6]:
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u | _ 2 o~ [ Ws(kn, 2, t)\ _J1(kar)
{Orz} T a? z { Wz (kn,y 2, t)} [Jo(kna)]?’ (9)
Uz | _ _2_ = W kmz t) Jo(kﬂr)
{O'z} T a2 2=: {I/Vii kn, 2, t)} [Jo(kna)]?’ (10)
gy = i 3 1 'z _ﬂ z, JO(knr)
8 = P ngl rWS(km vt)[J (k a)]g Z Wy km t)[ ( )]2? (11)

Or = 2 E[k W3(kmz t)+W4(kmz t)]%;)l]g -

a2 Z W3 (kﬂv z t) [;,1((:“:)]21 (12)

where Jy, J; are the Bessel functions of the first kind, and k,, are the roots
of the transcendental equation Jy(kp,a) = 0. We choose a parameter a to
be rather large to consider the wave field up to the time ¢ < T, where T is
the minimal time propagation of the leading wave front from the reflecting
surface r = a.

After applying (9)-(12) to problem (6)—(8) we arrive to the following
equations:

Qg_l _ (A+2M)%+Ak W,
ow, oW
a M( 8z "k”WG)’
OWs = 2MWs,
ow, . (ow 03
4 6
T = A (),
8W5 _ 6W2 2
Pt = oz Wkl
oWe  OW,
pW T 9z + kW2
with the initial data
Wileo =0, s=1,...,6, (14)
and the boundary conditions
1
Wal,—0 =0, 1%} L = 2—ﬂexp(kn/no)f(t). (15)
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At the second step, we apply to problem (13)—(15) the integral Laguerre
transform with respect to the time coordinate (7, 8]:

W (kn, 2) = f Wi (kn, 2,8) (ht) =220 (ht) d(ht), s=1,....6, (16)
0

with the inverse formulas

s m!
W, (kn,y 2,t) = (ht)*/2 3~ ——
= (m+a)!

W (kn, 2)I5(Rt), s=1,...,6, (17)
where [7. (ht) are the orthonormal Laguerre functions expressed by the clas-
sical Laguerre polynomials L2 (ht) [9]. Here we select an integer parameter
a > 1 to satisfy the initial data (7). Let us consider the Laguerre series for
the relaxation functions g(¢) and x(t):

(0} = (i e ®
with the inverse formulas
()= [l s
0

A certain form of the functions g(¢) and x(t) is defined by the mechanism
of attenuation. For example, we can define them as x(t) = ¢;(t) and g(t) =
¢2(t) for the general standard linear solid rheology [5]:

¢ (t) = 55 L (s 1)e o, v=1,2 20
v = Z "1:,_ ;,,_ - € Hy v=1,4 ( )
i=1 ‘ol Mol

where L is the number of relaxation mechanisms, 7,; and To, are the strain
and the stress relaxation times of the I-th mechanism. In this case, the
relation between the unrelaxed modulus My and the relaxed modulus Mg

is of the form:
Ly, v
M5=M5[1-2(1-’T")], (21)

l=1 Tav’

where M} = A\, M = pand M = X, M} = ji. After applying the Laguerre
integral transform (16) to problem (13)—(15) we arrive to the following equa-
tions: :
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%W;ﬂ - (A°+ 21\4“”)ng;‘;i = kn AW = 1Y,

gw;* - Moﬁ‘%’i + b MOWS = f1

gwg‘ - 2M°W = ft,

swp - a2 g = g, {22)
B =T B i) =

where

h = 2+h1‘j‘1

Ly 2 2

0 Jo. . Tel — Toy
=pu—=i=3al1 L

M = p— i u[ +h§2+h1’3,;J

The coefficients g,,, and x,, in the above formulas are analytically defined by
substituting (20) into (19). The right-hand side of system (22) is iteratively
defined by the formulas:

m—1 ) . m—1 aWM—j—l = i1
fi =—hZWf+AZaj(—%z—+knW§” ” ) +
j:(] J:{] .
m=1 grrrm—j-1
24 - b; 0z ’
=0 .

= = 0z

m—1 m—1 (23}
fo==h Y Wi+2ay bwri

7=0 j=0

m—1 m—1 Trm—j—1

o oW - meie

fa=-h T4+ A aj(——%—-—-—-}-knws j 1)’

3=0 7=0 o

m—1 m—1
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where

N —Ter (2—hTi NG 3 21 (2—hrE\i
a3m4h2 2+h1’1 )2(2+h1)’ bj = 4"12:(2-4—117'2 )2(2+hr )

Now the boundary conditions take the form:

Wilioo =0, WP'lomo = 5 explla/mo) [ ) (ht) /15, (ht) d(ht). (2
0

Let us note that in the numerical solution, the system of equations (22)
reduces to the system of the four equations. Also, zero boundary conditions
are introduced at z = b the form:

W, =0, W, = 0. (25)

When reducing equations (13) we have taken advantage of the theorem,
which we have proved for our needs:

Theorem. Let two arbitrary functions be represented as a Laguerre func-
tion series:

= (ht)/? Z fn %(ht), Z o ﬁ)|¢klﬁ (ht).

k=0

Then, the function ¢(t) = f f(T)o(t — 7) dT can be also represented as a
Laguerre function series °©

— (hyetB2 S M ek
o(t) = (ht) ED (m+a+ﬂ),¢ml (ht),
where
oo m—1
f (ht) (a+5)/21a+ﬁ(ht)<p(t)d(ht)-—¢0fm+ Y (bm-j—bm-j-1) ;-
0 ,_.o

Problem (22)-(25) is reduced to a system of the linear algebraic equa-
tions with the help of finite difference approximation with respect to the
coordinate z. The sparse matrix of the obtained system is independent of
number m, only the right-hand side has the recurrent dependence on the
parameter m. We use fast methods such as the Cholesky method for the
solution of this system with a great number of the right-hand sides. As a
result, after finding W™ (k,,z2), s = 1,...,6, it is sufficient to substitute
them in the inverse formulas (9)—(12) and (17) to obtain the solution of the
original problem (6)—(8).
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3. An example of numerical calculation

The numerical calculations were carried out for a model of the medium with
a thin absorbing layer above the isotropic elastic half-space. The physical
parameters of this medium model are the following:

e the upper layer: p; = 1 g/em?, ;1 (v = 0) = 1.5 km/s, ¢ (v = 0) =
1 km/s;

e the lower half-space: p; = 2 g/em?, ¢, = 3 km/s, ;2 = 2 km/s.

The upper layer thickness is 0.5 km. The after-effect functions for this layer
are described by two relaxation mechanisms (Lp = Ly = 2). The values of
relaxation times are set as follows:

e for P-wave 7,; = 0.4107, 7. 5 = 0.06661, 7, ; = 0.401, Te,2 = 0.06504;
e for S-wave 7., = 0.416, 7. 3 = 0.06529, 7,; = 0.4012, 7, 5 = 0.063.

The relaxation times were selected so that the values of the quality factor
Qp = 60 for P-wave and Qs = 40 for S-wave be constant in the frequency
band of the signal simulated in the source.

The amplitude spectrum of the source and the quality factors are dis-
played in Figure 1. Expressions for the quality factors and the phase veloc-
ities in viscoelastic media can be found in [10].

Q™
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0.0104

0 L T \\FHL K 1 I B 1
0 1 2 3 4 5 Hz
Figure 1. Graphs of the quality factors Q,(v), @,(v). The dashed line
represents the amplitude spectrum of the source
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Figure 2. Calculation of seismotraces: the elastic model to the left and
the viscoelastic model to the right

Figure 2 illustrates the results of the numerical calculation of the vertical
components of the displacement velocities U, on the free surface z = 0 for
different epicentral distances. The left figure represents seismotraces for
the elastic medium model; the right figure — seismotraces for the model
with the given after-effect functions. The wave field was simulated by the
vertical type source with the coordinates ro = 0, 29 = 0 km. The function
f(t) represents the time variation of the source taken in the form:

f(t) = exp [—%—t—o))—z sin(27v(t — to)), (26)

where y =4, v =1Hz, to =1.5s.
In this case, the wave field has a complicated interference character.
“The interference waves, propagating on the layer surface, both in elastic
and viscoelastic media, form a number of steady-state groups (modes), each

propagating with its own velocity. In the viscoelastic case, the amplitude of
such oscillation considerably attenuates.

Conclusion

We have presented the spectral Laguerre method for the viscoelastic mod-
eling. This approach is an analogue to the frequency-domain modeling but
the resulting linear system with the right-hand side has a sparse matrix in-
dependent of the number m — the degree of the Laguerre polynomials. This
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essentially decreases computer costs of viscoelastic modeling as compared
with the frequency-domain modeling.
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