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On an algorithm of domain
decomposition based on finite integral
Fourier—Bessel transforms

G.V. Konyukh, B.G. Mikhailenko, and A.A. Mikhailov

The paper presents an algorithm of domain decomposition when solving the for-
ward dynamic seismic problem in the polar coordinate system. The new algorithm
is based on combination of the method of direct and of finite integral Fourier trans-
forms described in [1, 2]. As seen from the studies conducted, if on some sites of the
medium the wave propagation velocity is a constant function, the efficiency of the
algorithm can be essentially increased using the domain decomposition method.
Particularly, for the domains with constant velocity, the solution can be written
down in the explicit form. We consider the proposed decomposition algorithm on
the example of the following problem.

1. Statement of the problem

Let us consider the solution to the wave equation in the polar coordinate
system

U 18U 10w 1 W | 4r
a7 tror T rag T ey om0 Tl m e fO ()

on the half-space 0 < ¢ < 7, 0 < r < 00. The problem is considered with
zero initial data

U
Uf=°_§t=o_0 | (2)
and with the boundary conditions
ouy  _9ul _,, 3)
plo=0 0P lo=n

We assume the velocity in the medium to be a piecewise-continuous
function v,(r, ¢) of the two coordinates r, ¢ on the interval r; < r < rp and
vp = const on r < ry and r > ry, i.e., the function has

U1, r S r

UP(Tr (P) = 'Up(f', ‘P), ™ <r< r2
a3, r>ra.
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2. Theoretical aspects of the method

At the first stage of solving problem (1)-(3) let us make use of the finite
integral cosine-Fourier transform

Ra(ryt)= [U(r p,t) costnp)dp (4)
[1]

with the inversion formula

Ulr,p,t) = —Ro(r,t)+ ER,.(r,t)COS(W) (5)

n—l

After applying the integral transform (4), (5) the new problem for
R,(r,t) is of the form

z_: 32 Tror -rTRm c(n,m,r) = oz T f(rmt),
m=0 (6)
R,.|‘___O—W =0, n=0,1,...,N,

where

(rm8) = 03 (r, 20)(r = ro) cos(ngo) ¢),

4

2 |-

j v (r, ¢) cos(ng)d, m=0,
0
c(n,m,r) = <

2
- ﬁ(r, ) cos(nyp) cos(me)dp, m=1,2,...,N.

=

\

At the next step we consider the solution to this problem on the intervals
[0,r4], [r1 — Ar,ro+ Ar] and [rs, A] separately.

For this purpose we introduce the following definitions Q1 (t) = R,(r1,t),
Q2(t) = Ru(r1 — Ant), Q3(t) = Ru(ra + Ar,t), QA(t) = Ru(ra,t). Thus,
we assume that

Sp(ryt), r<ry,
Ry(r,t) = { Pu(r,t), ri—~Ar<r<ry+Ar,
Wﬂ(l",t), r 2 ra,

and for each interval we obtain the appropriate problem (6).



On an algorithm of domain decomposition . ..

On the interval [0, r]:

0%S, 108, n? %S,
2|25 , 20 T
l or2 " r Or rzs ] T ot2 +f(nn),

= 0} Sn = Qal';;

n|f=°= Ot li=o

r=ry

On the interval [r; — Ar,ry + Ar):

N
0P, 10P, m? 0P,
Z [-5;5— + —— - r—zpm] c(r,n,m) + f(!‘ n, t)

o r or at?
n|’=° a;: t=0 =0 B rri-Ar o P rerpbAr Qni
On the interval [ry, A]:
la;ﬁ + :3;:" - 4'3.;w } = 33?2/“ + f(r,n,1),
A 3?: =0 W =aqt

In problems (7)-(9),

(0,1, = 020, 90)6(r = ro) cos(rmgo) £ (1)

if ro belongs to the respective interval, and f(r,n,t) = 0 otherwise.
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(7)

(8)

Further let us make use of the analytical solution to the homogeneous
medium and of the numerical-analytical solution to the 2D-inhomogeneous
medium. From the condition of continuity of the solutlon R, (r,t) of problem

(6), we arrive at the system
(rht‘ Q2 ) = Q:;(t)s
Su(r1 = Ar,t;Qy) = Q7(t),
Wa(ra+ Art; C‘?‘i Qx (1),
n(r% t;Qn! = Qfx(t)

(10)

The functions QL(t), Q2(t), Q3(¢), Q“ (t) forms the solution to this sys-
tem After that we can define the fllnCthIlS Sn(r, t;QL), Wa(r,t;Q3), and

P.(r,t;Q%,Q3).

At the final stage, by substituting the given values in the appropriate
solution to problems (7)-(9) and using the inversion formula (5), we obtain

the solution U(r, ¢,t) to the original problem (1)-(3).
Now we consider the main stages of the method in more detail.
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2.1. Analytical solution to homogeneous medium

Let us consider problems (7) and (9). It is possible to obtain their solutions
by using the finite integral Hankel transforms [3]. Let us apply to problem
(7) the integral transform

Sp(Kin t) = / 78 (1, t) Jn(Kinr)dr (11)

o

with the inversion formula

3 e, Jn(nmr)
% ; Sn. Kin,t [J’ (K,mrl)] (12)

where J,, is the Bessel function of the first kind, J}, is a derivative of J,, and
Kin are the positive roots of an equation J,(Kinr1) = 0.
After applying transform (11), (12), problem (7) reduces to the form

6‘25’,;
at2 + ﬂ;nv]_Sn - ¢n(ﬁm1 t)
9 (13)
S 1 = _i"_ =0
» t=0 3t t=0 )

Here

bn(Kin, t) = 4mV? cos(ngo)Jn (KinT0) F (t) — Kinvir1d'n (KinT1)Qn (2)-

The solution to this problem is written down in the form

Sﬂ (K'im t) =

fq&n(nm, ) sin (Kinva (t — 7)) d7. (14)

KinU1

Substituting this value in the inversion formula (12), we come to the solution
to problem (7).
For problem (9) we introduce an additional boundary condition

Walr, t)|r=A =

and take advantage of the appropriate integral Hankel transform -

A
Wn(ﬂ'imt) = / rWa(r,t) [In(pinr)Ya(pinA) = Jn (HinA)Yn(pint)] dr (15)

rz

with the inversion formula
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?l'zoo

2 72
Hind, (#inrz)
W, ) = — inYn i (s ~

"9 =3 ;Jﬁ(u;nA)—Jg(“im,) [J (HinT) Yn(pin A)

JIn (I-‘i'n A) Ya (I-‘in 7')] Wn (F:’m t) ) (16)

where Y, is the Bessel function of the second kind and p;, are the positive
roots of the transcendental equation

JIn (P-t'n‘r2)Yn (ﬂ-in A) -Jn (P's'nA) Y. (ﬂinr2) =0.

After applying transform (15), (16), problem (9) reduces to the form

oW, -
912 + M?ﬂvgw’l = d’ﬂ(”iﬂ! t)s .
O (17)
o ot o = U.

Here

Vi, t) = 47""’% cos(no) [Jn(tinTo) Yn (HinA) = Jn (Hin A) Y (pinro)] £(t) +
2 54 In(Bind)
—1), n t ——
T 2Q ( )Jﬂ(ﬂinr2)

The solution to this problem is written in the form

- 1
Wa (“im t) - HinU2

t
[ nlpins ) sim (it = 7)) ar. - (18)
0

Substituting this value in the inversion formula (16), we obtain the so-
lution to problem (9).

2.2. Numerical-analytical solution to 2D-inhomogeneous
medium

Let us consider the solution to problem (8) following [1]. Introduce the
uniform grid in the variable r:

w={ri=ry—Ar+ih, i=1,...,K; r;+Ar=r1—Ar+(K+l)h}.

We present the vector of the solution in the form
P(r,t) = (Po(r,t), Pi(ryt), ..., Pn(r, )T .

Using an approximation of the first and the second derivatives with respect
to r with the second order, problem (8) will be written down in the vector
form o
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&*P

rl +CAP= F,
- (19)
P.| = -af- =0
t=0 at t=0 )

Here F = (ﬁl,F-g, .. .,F};), where

r

2
X - o aT (B0.Q0. . ake)”, =1,

- imv—{(:f?ﬂ)lf (£) (cos(0), cos(«pa), - - ., cos(N o)) T,

F;(t)=4 i=1"(;.«-(1“;1—&”1
v3 .
—hl (%-'- 2(1"2-{-1&1-_ h)) (Qg(t)?Q?(t)w“&Q?\'(t))’r, 1= K,

o, i1, i#K, i;ef‘llﬁf;l‘ﬂ.
The matrix C is block diagonal, and the matrix A is block three-diagonal:
( Ci
C 0
C = : ,
Ck-1
\ 0 Cx
( Ai Dy 0
B, A; D,
A = T * . * . '
Bk-2 Ak-1 Dk

\ 0 Bk Ag
where i-th blocks of N x N dimension are defined as follows:

¢(0,0,r) ¢(1,0,7) ... ¢(N,0,r)
c c(0,1,r) e(1,1,1) ... e(N,1,r)
i = . . . .

¢(0,N,r;) ¢(1,N,r;) -+ ¢(N,N,ry)

A;

dia, 2 £+ L 34— N
B R R a-ar+in? R Ar iR [
i=1...,K



On an algorithm of domain decomposition ... 109

1/1 - 1
B;=——|—-- : E, i =1,2,...,K -1,
h (h ‘2(r1+Ar+(z+1)h)) =12 K-1
1/1 1 . |
D"_'_E('ﬁ-'-z(rl—}-Ar-{-ih))E' 1=12,...,K~1.

The algorithm for solving a similar problem is described in detail in
[1]. Therefore we consider here only its general scheme. Let us present a
matrix A = CA as A = TAT™!, where T is a matrix of eigenvectors, and
A = diag {\1, Az,..., AL, } consists of eigenvalues (L = K(N + 1)). Then,
using the rep}acement Y = T-!P, system (19) will be transformed to the
form :

2
%+AY 3

(20)
Y] =, —0,

where & = T-1F. .
The solution to the components Y is written by the expression

Yi(t) = %f@,(r) sin (VA(t - 7)) dr, 1=1,2,...,L.
-0

Hence, taking into account the replacement P = TY, the solution to
problem (19) will finally have the form

L
P,(:):En,,-z f Fy(r)sin (Vi(t = 7)) dr, (21)
=l j=1

where t;; are elements of the matrix T.

2.3. Determination of the values Q2 (%), Q(t), Q3(t), Q5 (t)
and scheme of solving the original problem

Using the terms from Subsections 2.1 and 2.2, let us introduce additional
functions. For the solution to problem (19) at r =ry

Prm(t) = aitK1+n+l,ltm+l,l§1(t)a
’? (22)
Pin(t)= GEtK1+n+1,:tL~N+m,tyt(t)1
Where Ar —h _ v (1 1
=S =5 (i s mm)
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and

L

2 (1) Cm ZtK1+ﬂ+1,ltKo+m+l,lgl(t)1 r—Ar<ro<ry—Ar,
Prnom = =1 ’

0, - ro <r1=Ar, rg > ro+ Ar,
where

ro— (r1— Ar)~h 4T
Ko = ; N, ¢n= —-m'ug(ro, o) cos(mip).

1 .
Here gi(t) = —=sin (/At).
9 ( ) \/rl (\/— )
Similarly, for the solution at r = r,
L

Pam(t) =0 thyimiritmiigi(t),
=1

L
P-su,m (t) =b E tK2+n+l,ltL—N+m,fgl(t)a
=1

where

- - - 2 N
I{z: L] (1‘1 AT) hN, b_ﬁ(l 1 )’

h “ 2kt 2mrar—n
L

6 Cm Zth+n+l.ltKo+m+l,lgl(t)s r—Ar<ro<ry—Ar,
pﬂ,m (t):" =1
0, roSr1—Ar, rg>ry+ Ar.

Using the solution to problem (7) at r = r; — Ar, we also define

2 — n \Fin - .
sy =-21y-7 (Kin(r1 = Ar)) sinKino1t) (24)

i=1 J’ﬂ (’i;‘nrl)

and

8?1‘;)1 cos(no) E In (Kin(ry — Af‘)) Jn (K,'"f‘g)

" i=1 Kin [J'n ("""'in”l)]2

sin(Ki,v1t),
2 —
Sn(t) - To S 1,

0, ro-> mq.
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Similarly, for the solution to problem (9) at r = r + Ar we define

CURLES ’}?i.,.%‘ Rl rat Br)sinliont) (29
and
0 Z : p? J2 (mn;‘z) X (ra + A7) XE (ro) sin(pinvat),
) = J2(pinA) — J2(ptinrs)
ro > ra,
0, . ro < ra.

Here d,, = 273v; cos(nepo), Xi(r) = Ja(pint) Yn (inA) = Jn(pinA) Ya(linr).
From the conditjon of continuity of solution (10), we obtain the system

v .

HUEDY [ Qi (r)ph m(t-T)dr+ [ QNP =TT+ (D),
m=0L d
NT t 9

Qi) = L | [ Qur)pt mlt-r)ar+ f Q)P mE-T)dr+fA ()|,
m=0 L. ! 0

L t (26)
Qi) = [ Qr(r)sp(t—r)dr + [ f(r)sh(t - 7)dr,
/ /

t t
Qat) = [ Qu(r)wnt =) dr+ [ f(r)w}(t - 1) dr,
/ /

where n =0,1,2,...,N.
Here

t ’ i
150 = [ OB - 1)ir, 220 = [ £ (e = ),
0 1]

f(t) is a bland-limited source function.

Solving this system we find QL (t), Q2 (t), @3(t), and Q% (¢). Then, substi-
tuting these values in the appropriate formulas of the solutions to problems
(7)-(9) we determine R,(r,t). And further, by the inversion formula (5) we
can calculate the solution to the original problem (1)-(3).

3. Some aspects of numerical calculations

We consider some features of numerical realization of our algorithm. We
should find values of the roots of transcendental equations, used for calcu-
lation in the solutions to prébletns (7) and (9). We can use their analytical
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representation in the form of a row according to the known formulas [4].

The values of the roots are defined precisely enough by a small number of
terms of the row. So i-th root of the equation Jy,(z) = 0, in order of absolute
values is defined as

I-1 _4(-1)(T1-81) 32(1--1)(831* - 982+ 3779)
8 3(8p)° 15(88)° o

) =g -

where 8 = §(2n +4i - 1), [ = 4n?.
Similarly, for the equation Jy,(2)Ys(pz) — Ju{pz)Ya(z) =0 (p > 0), the
i-th root is equal to :

b—a? c¢-—4ab+ 243
— L

o

o3 o’ o
where
oo T oMol b_4(m—1)(m—25)(p3—1)
o T T ey
32(m—1)(m —-i14m+1073) p° —1)’ m = dn?.
58p°(p - 1)

The -number of the required roots of these equations for a certain
n = 0,1,...,N, used in calculation of the functions sl(t), s2(t), wl(t),
w2(t) by formulas (25), (26) and in construction of the solutions S,(r,t),
Wa(r,t) to problems (7), (9), is defined from the Fourier spectrum band
of the source depending on f(t). On this basis, it is possible to reduce
the number of the summed up terms when ca,lculatmg the functions pl(¢),
P2(t), p3(t), pA(t), PE(2), PS(t) and constructing the solution P, (r,t), having
chosen from the determined eigenvalues of problem (19) only those which
correspond to the wave field spectrum.

The solution to system (26) which contains integral equations as convo-
lution type is numerically done in ¢ with the help of the known methods of
integral representation by the quadrature sums [5]. Thus, one should note
the stability of the solution.

The main factors, effecting the error of definition of the functions Q1(2),
Q2(t), Q3(t), Q(t), and consequently the final result are the accuracy of the
finite difference approximation along the coordinate r when solving problem
(19) and the chosen width of the interval Ar. As the analysis of numerical
calculations has shown, in the case of difference approximation with second
order of accuracy, the optimal Ar is a quarter of the spatial wave length in
the medium, corresponding to mm{vl, va}.
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Conclusion

The offered algorithm of domain decomposition may be applied to media
with a more complicated structure of the velocity profile, if there are sites,
where the velocity is constant. This algorithm permits us to reduce essen-
tially the computer time and to decrease the required volume of the main
memory. The main volume of calculations for the given algorithm falls on
construction of the numerical-analytical solution for a 2D-inhomogeneous
medium when calculating the eigenproblem of the matrix of system (19).
As is known, in numerical calculations the N times increase of the matrix
brings about the increase of the computer time by N3 times. The use of
the analytical solution on the intervals [0, r], [r2, R] allows, if necessary, the
increase of the boundaries of these domains without essential increase of the
volume and of time of calculations.
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