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Application of the Laguerre integral
transforms for solving dynamic
seismic problems

G.V. Konyukh and B.G. Mikhailenko

When solving the forward seismic problems in inhomogeneous media it appeared
effective to use algorithms based on a combination of finite integral Fourier, Fourier—
Bessel or Legendre transforms along one or two spatial coordinates with the finite
difference technique along the remaining coordinate. The development of such an
approach for vertically and radially inhomogeneous media is given in [1-2], for 2D
and 3D inhomogeneous media in [3-7]. When modeling seismic fields in the media
with attenuation the Fourier transform along the temporal coordinate was used,
and the obtained boundary problem was solved by the sweep method [9].

In the given paper, the efficiency of application of the Laguerre integral trans-
form along the temporal coordinate for the equations of the first and second order
with respect to time is considered. An aspect of exact satisfaction of the initial
data for these equations is investigated also. The analytical solution for wave fields
propagation in the homogeneous media is obtained. The solution is represented as
a series of the Laguerre functions. Advantages of the Laguerre integral transform as
compared to the Fourier transform are discussed when solving the forward seismic
problems in 2D inhomogeneous media.

1. Laguerre integral transform

Let us introduce the integral transform

= f F(t)(ht)" %12 (ht)dt, (1)
P(t) = f: Frn(ht)? 12, (ht), (2)

where 1% (ht) are the orthonormal Laguerre functions
/ 12 (h)12 (ht)dt = Spun. 3)

The Laguerre functions !, (ht) are expressed by the classical Laguerre
polynomials L2 (ht) (see [8]). We select the parameter a to be integer and
positive, then
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Figure 1. Graphs of Laguerre functions depending on n for
the parameter & = 5 (on the left) and 10 (on the right)
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hm! a _ht
I (ht) = (mTa)!(ht)’ e” 2 Ly, (ht). (4)
In formulas (1)-(4), m = 0,1,2,... . In addition, the new shift parame-

ter A > 0 is introduced whose sense and efficiency of application is discussed
below. Further, for the substantiation of validity of application of decompo-
sition (1), (2) to seismic problems, we shall assume all the functions to be, at
least, piecewise—continuous and to have some limitations on their behaviour
in 0 and oo (see [8]).

In Figure 1 the graphs of the Laguerre functions for various parameters
m and o are presented. As is seen from the figure, the Laguerre functions
are essentially distinct from zero only on the limited segment of the axis ¢.
With the increase of number m, which specifies the quantity of half-cycles
of the Laguerre functions, its duration is increased.

2. Application of the Laguerre integral
transform for the 1D acoustic problems

For simplicity, let us illustrate application of the Laguerre integral transform
(1), (2) on an example of the solution to a system of 1D equations of the
first order. ‘

The distribution of an acoustic wave in the homogeneous medium is
described by a system of equations:

aP 20U,

o P T O 5)
du. 1P
B por " ©)

The problem is solved with zero initial data
Pl =0, Uszly—o =0 (7)
and the boundary conditions
1
Pl _o=f(t), ul,_o=-—-—Ff(2).
Iz-—O f( )5 u |z...0 Pvpf( ) (8)

We assume that the functions P(z,t) and u,(z,t) tend to zero at ¢t — oo.
We apply to problem (5)-(8) the Laguerre integral transform:

Qn(2) = [ Pl t)(he)Riz(ht)at, (9)
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Ra(2) = [ ua(at)(ht) 313 (ht)de, (10

fo = | f&)(ht)~%1(ht)dt (11)

0\8 O\s

with the inversion formulas

Pet) = 32 Qul2) (k)R (ht), (12)
n=0

u(zt) = 3 Ra(2)(ht)$12(ht), (13)
n=0

f(t) = i fa(ht)312(ht). (14)
n=0

Let us obtain a system of the differential equations to satisfy the func-
tions Qn(z), Ra(z). Multiply equation (5) by (ht)~°/212(ht) and integrate
it over the variable ¢ from 0 to co:

T apP Zauz — 9.y _
0/ (5? - oy ) (ht)~$12(ht)dt =

—pv} aai" + (ht)~312(ht) P(z, )

o F d -
- 0/' Pz, ) [(h)~215(ht)] dr.  (15)

In order to satisfy the initial conditions (7), we show that the term
preceding the function P(z,t) in the right-hand side of formula (15) at t = 0
and t — oo is limited and does not tend to co. Denote

Io = (ht)=$12(ht) = 1/%51‘%@(@. (16)

‘We have (see [8])

I = - -:-";!)!?T (ht)””n%'}i [cos (2\/11_fr.t - ﬁvr) +0 (—\/1-:)] (17)

at n — oo, where 8 = (2a + 1) /4.

As it is seen from formulas (16), (17), the expression denoted by I has
the limited value at ¢ = 0 and at t — co. In this case we can satisfy the initial
data (7) by setting P|,_, = 0 in equation (15) and assuming Pl = 0.
The integral term in the right-hand side of equation (15) is transformed to
the form
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P(z, t)% [(ht)= %15 (ht) |

g
Il

O\-"S 0\8

P(z,1 )d [ hn! _TL“(ht)]

(n+a)!
T ! [ h o ne 2
= [ P(zt ——[—- ~SL2(ht) — he™3 Y LY ht]dt
0[ 20y eyt | 3¢ ¥ a0 - he 3 L (h)
h k+a |
= 59 b/ Ty 2 Z Ex ol oua) (18)

Here the following recurrence relation was used:

iLa(ht = -h Z Li (ht). (19)
k=0

Having conducted similar transformations for equation (6), we arrive at
a new system of equa.tions of the form

1.1-i-ar)'Z

[ (k+cr _EBQ,,__
n+a R p 0z =0 (21)

with the boundary conditions

2 o - R"—o, (20)

Qu(ico = far  Ru(Dlmo = —pi%fn- 22)

The exact solution to (20)-(22) is written down in the form

Q,—,(Z)= fn+a [Z (k‘i‘ﬂ’ fk n—k(hip)_

e 62)], e

k=0 Up

Ru(z) = ~ p_va'n(Z) (24)

Finally, the solution to problem 5)-(8) looks like
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P(z,t) = (ht)? E Qn(2)12 (ht), (25)
n=0
uz(2,8) = —-1—P(z. t), (26)
PUp

where fj is determined by formula (11).
Let us simulate the source as the function

f(t) = exp l— mﬁ)(j{—;to))?] sin(27 fo(t — to)), (27)

where ¥ = 4, fo = 1, tp = 1.5s. Consider the behaviour of the function
Qn(z) defined by formula (23) depending on the number n of the Laguerre
function at the fixed parameter h and the distance z. The graphs of the
normal function @,(z) are shown in Figure 2. They are presented at dis-
tances of z = 5A and z = 10\, where A is the dominating wavelength in
the medium (Figure 2a). Impulses of the plane wave reconstructed by for-
mula (25) at the same distances are indicated in Figure 2b. The parameters
h = 20, a = 2 are selected for the calculation. In Figure 3 the graphs of
the function @Q,(z) are given at z = 10\ for h = 40 and h = 60. As follows
from the figure, with the increase of the parameter A the spectral function
Qn(2) is shifted to the right, and the width of the spectrum decreases. For
the signal selected the optimal value of the parameter h is within 20 to 30.
With the increase of frequency of the signal f(t) it is necessary to linearly
increase the value of the parameter h for attaining the optimal convergence
of a series. '

Let us discuss a question of satisfaction of the initial conditions of the
problem for 1D second order wave equation when using the Laguerre integral
transform along the temporal coordinate. The distribution of an acoustic
wave in the homogeneous medium is described by the equation

8P _ 10°P

o7 = o 28)
with zero initial data aP
L, = Bl = (29)
and the boundary conditions
P| _ = /(). (30)

We apply to problem (28)-(30) the Laguerre integral transform (9), (12).
Multiplying both parts of equation (28) by (ht)%2(ht) and 1ntegratmg by
parts over the variable t from 0 to 0o we have
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Figure 2. Graphs of the functions @, (z) for z = 5 and z = 10\ (a) and
reconstructed impulses of the plane wave at the same distances (b)
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Figure 3. Graphs of the function @, (z) for z = 10X for the parameter h = 40
(on the left) and 60 (on the right) .
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T(8?°P 18P\, . _a. 8%Q,
0/ (-3-52—- ;EW)(M) 213 (he)dt = 252

P|*

((ht)"’l"‘(ht) d

]
__[(ht =51e( ht) ’ + f P [(ht)-wa(ht)]dt) (31)

We can satisfy zero initial data (29) if in equation (31) we set P|,_, =

& |,=0 = 0. In this case it is necessary for us to make sure that the expres-
sions preceding the function P and its derivative do not tend to oo att=0
and t — co. As for the expression preceding the derivative 2 Bt’ we have
shown it earlier (see formulas (16), (17)). Similarly, it is possible to show
that the expression' preceding the function P will have a finite value if we
take advantage of the formula

d —9. _ hn! h _n o ___
Smo-2izn)] = - e (2 5 12 (ht) +he™ 3 ;OL (ht) (32)

Equation (31) with taken into account (29) takes the form

9%Q hn! (h? _n a3
20 @n [_hn  (h” o 2 kY[
U 5,2 —OfP[ @ )!(4 e” 2 Ly(ht)+h%e™ 2 k§=o(n k)Lk(ht)) =0

(33)
Here we made use of the recurrence relation
d2 y n—1k-1
o [La(ht)] = [ ~h Z LE(ht)| = h* "3 Lg(ht)
k=0 k=0 j=0
n—2
= h*Y (n -k - 1)L§(ht). (34)
k=0 )
Finally, an equation for the functions Q,(z) looks like
0%Qn _ B2 h? (k + a)
F—@EQV— (n+ ).Z( —7—Qk=0. (35)

The boundary condition (30) will be transformed as follows:

Qn|z=n = fn- (36)

Note, also, that for the decomposition to the Laguerre functions (12)
satisfy the initial data (29) it is necessary to select the parameter a > 2.
It is easy to make sure in it if we substitute a series (12) in the initial data
(29) and differentiate it.
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Let us consider a solution to equation (28) in the case, when the velocity
vp(2) is an arbitrary function of the coordinate 2. For the sake of convenience
we simulate a seismic plane wave in the right-hand side of equation (28),
and replace the Dirichlet boundary condition on the free surface for the
Neumann condition. After application of the Laguerre integral transform
(9), (12), the problem is written down as

Q, h? _
922 - 4_1;3(_2)627‘ = (Pn(z)’ (37)
with the boundary conditions
oQn _
0z z=0 =0, Qn z=b 0’ (38)

where

2 n—1
en(2) = 8(z — 20) fn + v;(z) " _Ta)! kX_;(n —k)y/ (k :!a)!Qk-

We solve problem (37), (38) numerically. For this purpose we introduce
in the variable 2 the uniform difference grid:

w={z=(i-1)Az i=1,...,N+1, b=NAz}.

Approximating the spatial derivative with the second order of accuracy,
we come to a system of the linear algebraic equations, which in the vector
form is written as

Aﬁﬂ = Fn. (39)

Here U, = (@nyy Qny -- .,Q,,N)T and the vector of thé right-hand side is
defined by the components

— 1 — .
(Fa)1 = —5%(21), (Fn)i = —¢n(z), i=2,...,N.
The matrix A is three-diagonal, symmetric and positive definite:

ay -1 0
-1 as --1_
A=-— ) (40)
- -1 any-1 -1
0 -1 an

with the diagonal entries

1/ hAz \?2 1/ hAz \?
—_ _ —_ . .= -} — s ; = 2, ey N.
o =1+ 2 (20,,(2:1)> r =24 2 (2vp(z,~)) !
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Figure 4. Model of a medium and a seismogram of reflected plane waves.
Distances are given in wavelengths, time — in periods

In system (39) the matrix A does not depend on the parameter n. The
dependence on the parameter n is recurrent and defined only by the right-
hand side of equation (39). It enables us to solve very fast the problem
according to the Cholesky scheme, when the system of the algebraic equa-
tions is considered for many right-hand sides, and the matrix A is decom-
posed only once. Note, that if one takes advantage of the Fourier transform
along the temporal coordinate, we shall obtain a matrix A, dependent on
the temporal frequency. It would considerably increase our computer costs.

A model of the medium and calculation of the synthetic seismogram at
falling the seismic plane wave is presented in Figure 4.

3. Application of the Laguerre transform
for 2D acoustic problems

Let us consider the inhomogeneous wave equation

v 8%u 1 9%
Fyoi 2(z,2) 08 8(z — 20)d(z — 20) f(2). (41)

We search for its solution satisfying zero initial data

Ou

o= 0 i =0 (42)

t=0

Y

and the boundary conditions on the free surface

du

2| =0 o (43)

z=0
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We assume vp(z, 2) to be a piecewise-continuous function of two coordi-
nates. The source, with the coordinates 2y, zo is simulated by the right-hand
side of equation (41), a temporal signal in the source being given by the
function f(t).

For solving (41), we take advantage of the finite integral cosine-Fourier
transform

R(z,n,t) = f w(z, 2, t) cos (-’—’?) do (44)
0 N
with the inversion formula
1 2 & nre
u(z,z,t) = ER(z,O, t)+ - Z R(z,n,t) cos (T) . (45)

n=1
If we introduce the new additional boundary conditions

?E
Oz

ou

=0 - dz

=0 (46)

r=a z=b
and consider the wave field up to the time ¢ < T, where T is the minimal
time of propagation of the wave front from the reflecting surfaces z = a,
z = b, the new boundary value problem for R(z,n,t) will be written in the
form (see [3])

?R(z,n,t) 5., e O%R(z,1,t)
32 " kpR(z,n,t) — gc(l, n,z)aT
= cos(knz0)d(z — 20) f(t) (47)
OR(z,n,t) _ _
| =BG t)L:b =0, (48)
JdR(z,n,t) _ _
T R(z,n, t)L=0 =0, | (49)
where
e(l,n,z) = / vz(i 3 cos(kiz) cos(knz)dz (50)
o PV
kn:(f-’i), n=01,2,.... (51)
a

Let us apply to problem (47)-(49) the Laguerre integral transform along
the variable t: o
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Q(z,n,m) = f R(z, n, ) (ht)~3 1% (ht)dt (52)
R(z,n,t) = Z Q(zyn,m (ht)zl (ht). (53)
m=0

Repeating the mathematics from Section 3, we obtain the problem for the
decomposition coefficients Q(z,!, m) (53):

62 ( ) 4]
_%.;m_l — K2Q(z,n,m) -
= h? (+o)! .
S elhn,?) [t tm + 12y = ), ):( 200 1)
= c08(kn20)d0(z — 20) fm, (54)
with the boundary conditions
Q(z,n,m)| _
=g = Qe m)L=b =0, (55)

where f,, = | f(t)(ht)~ 312 (ht)dt.
0

Problem (54), (55) is reduced to the system of algebraic equations with
the help of the difference approximation of derivatives with respect to the
coordinate z. The obtained system with many right-hand sides, as earlier,
is solved with the help of the Cholesky algorithm.

4. Conclusion

The method of solution to the seismic forward problems with the help of
the Laguerre integral transform along the temporal coordinate is proposed.
As compared to the classical Fourier and Fourier-Bessel or the Legendre
transforms, the application of the Laguerre integral transform results in a
system of equations, in which the partition parameter is included in the
recurrent form only in the right-hand side. After reducing the problem to
a system of algebraic equations with many right-hand sides, the fast algo-
rithms of solution are used on the basis of matrix decomposition according
to the Cholesky scheme.
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