
Bull. Nov. Comp. Center, Comp. Science, 49 (2025), 37-48

@ 2025 NCC Publisher

Methods and tools for constructing specialized versions of

universal Cloud Sisal programs

Victor N. Kasyanov, Elena V. Kasyanova

Abstract. The paper considers the problem of constructing the specialized versions of universal

Cloud Sisal programs and presents an approach to solving it with the help of reducing

concretizations. It describes a cross-platform Cloud Sisal compiler of the cloud parallel

programming system (CPPS), which performs these transformations during compilation.

Keywords: compiler, program concretization, internal representation, reducing transformation,

programming system, Cloud Sisal language, annotated programming

Introduction

The CPPS, developed at the Institute of Informatics Systems SB RAS (IIS SB RAS) and

available for use via a web browser, is aimed at providing the user with tools for the

development, debugging, verification and execution of parallel programs according to

their functional specifications in the Cloud Sisal language [1 - 8]. The Cloud Sisal

language continues the traditions of the previous versions of the SISAL language,

remaining a functional streaming language oriented towards writing large scientific

programs. At the same time, it expands their capabilities with cloud computing support [9

- 12].

By program concretization, or program optimization in a given context, we mean such

a transformation of a program within the framework of one language that preserves the

meaning of the program and improves its quality in a predefined subset of its applications

relative to a certain quality criterion [13, 14]. The subclass of so-called reducing

concretizations (or reductions) has the following characteristic feature: an improvement of

the quality of a given universal (or general-purpose) program with the help of reductions

is not due to its restructuring, but to removing the objects and constructions that become

redundant after the set of tasks to be solved is narrowed in the given restricted context

[15].

The paper presents a solution of the problem of constructing the optimized specialized

versions of universal Cloud Sisal programs in the CPPS with the help of reducing

concretizations of annotated programs.

The paper is organized as follows. More information about the CPPS and the Cloud

Sisal language is given in Section 1. The internal graph representation of Cloud Sisal

programs used by the CPPS is considered in Section 2. Section 3 proposes a set of

reducing concretizations for universal Cloud Sisal programs and discusses its properties.

Section 4 describes a cross-platform Cloud Sisal compiler of the CPPS which carries out

these transformations during compilation. Finally, a conclusion is given in Section 5.

38 Victor N. Kasyanov, Elena V. Kasyanova

1. The CPPS and Cloud Sisal Language

Modern approaches to parallel program development are mainly architecture-oriented: to

achieve efficient operation, the programs being constructed are closely linked to the

architectures of parallel computing systems on which they are executed and, as a rule,

developed. Therefore, the requirements for the qualifications of parallel program

developers are exceptionally high, especially since parallel programs are much more

difficult to test and debug than sequential programs, and the problem of parallel programs

verification is far from both practical and theoretical solution. Moreover, only a narrow

circle of domestic users has access to high-performance computing equipment, which in

terms of the number of supercomputers and their total capacity is much lower than in

developed countries. In addition, the high-performance equipment is based in a limited

number of locations, while the bulk of application programmers work in other

environments, where parallel programs cannot be developed. Therefore, the project [1- 9]

being carried out at the IIS SB RAS to develop the Cloud Sisal language and the CPPS

supporting the development, verification and debugging of the architecturally independent

parallel Cloud Sisal programs and their correct transformation into an efficient code for

the parallel computing systems of various architectures using semantic transformations in

clouds seems quite promising.

The Cloud Sisal language features the advantages typical of functional programming

languages, such as single assignment and deterministic results for parallel and sequential

implementation, but it includes arrays and loops and uses the semantics of always-

terminating computations [9]. The Cloud Sisal language also supports annotated

programming and program concretization [13 - 18]. It allows a user to describe the known

semantic properties of a program in the form of formalized comments called annotations

(or pragmas). In particular, with the help of these pragmas, the user can describe a

narrowed context of application of a universal Cloud Sisal program.

For example, the pragma "assert = Boolean condition" can be located in the header of a

function definition before the first formal parameter and can set conditions on the

parameter values specified in it, which must be true for any function call immediately

before the execution of the body of this function. In particular, the Boolean condition of

the pragma can have a simple kind “parameter = constant” and describe the known

constant value of the input parameter of a general-purpose function in the described

narrowed context of its application. These known constant values of the input parameters

can be used for the specialization of the function via mixed computations [19 - 21] or

partial evaluation [22]. It should be noted, however, that the assert pragmas can be used to

describe more general and complicated restrictions on the values of input parameters of

general-purpose functions. For example, the assert pragma in the header of the function

“foo” specifies that the function is used in the context where its first input parameter is

less than ten

function foo(//$ assert=n<10 integer n

 real x returns real)

 if n<10 then foo1(n+10,x*10)

 elseif n<20 then foo2(n+20,x*20)

 Methods and tools for constructing specialized versions... 39
39 ____________ __ __

 else foo3(n+30, x*30)

 end if

end function

and therefore the function can be replaced by the following specialized version

function foo(//$ assert=n<10 integer n

 real x returns real)

 foo1(n+10,x*10)

end function

Another example is the "non_used = list of values" pragma, which allows us to

describe a stable context of a general-purpose program by narrowing the set of its possible

results used in this context. This pragma, placed before the "returns" keyword in the

function header, contains a list of values which are not used in any function call, and,

therefore, the calculation of these values can be removed from the function body. For

example, as indicated in the annotation below, the second result array of the “gen”

function is never used in the context described here:

function gen(N : integer

 //$ non_used=_[2] returns TwoDim, TwoDim)

 for i in 1, N cross j in 1, N do

 returns array of i * j; array of i + j

 end for

end function

and, therefore, its calculation in the function body can be deleted:

function gen(N : integer

 //$ non_used=_[2] returns TwoDim, TwoDim)

 for i in 1, N cross j in 1, N do

 returns array of i * j

 end for

end function

40 Victor N. Kasyanov, Elena V. Kasyanova

An annotated Cloud Sisal program can be considered as a program written in the Cloud

Sisal language extended by annotations (or pragmas) which are formalized comments

relevant to the semantics of a basic program to be annotated [13-18, 23-25].

The extensions of high-level languages by special annotations (pragmas) commonly

used in compilers are currently considered to be part of language description [26 - 28].

One of the three main approaches to transformational program development is the so-

called extended compilation [29] characterized by advice permission and partial relaxation

of restrictions on the basic language. That is, the transformation system accepts not only

the basic program, but also some annotations as guidance on transformations. Importantly,

annotations of the Cloud Sisal programs are more than directives or hints for a compiler or

another transformation system (e.g., for automatic parallelization of a sequential

program): they can be used to modify the semantics of the basic program, though only

moderately.

It is assumed that a general-purpose program can be annotated by the information

known about a specific context of its applications. Through this, annotations added to the

basic general-purpose program specify a covering context. It means that any actual

program application from the context described should be admissible for annotations,

though some admissible applications may be beyond the context.

Annotations may specify the context of a basic program application both explicitly, as

assertions which are predicate constraints on the admissible properties of program

fragments or admissible states of computations, and implicitly, as directives specifying the

admissible transformations of annotated programs or states of computations in the

indicated points of a program.

A concretizing transformation of a general-purpose program annotated by the

information about a specific context of its applications is a replacement of the annotated

program with its specialized version equivalent to (or correct with respect to) the original

one on the context-defined ranges of inputs and outputs and is better than the source

program by the quality criteria given by the context. Thus, the annotated program is

subjected to concretizing transformations as a whole. It means that the concretizing

transformations can change not only the basic program but its annotations as well.

It was shown [13 - 18, 23 - 25] that the class of correct transformations of annotated

programs covers various kinds of manipulations with basic programs.

In particular, the approach allows specializing and generalizing the transformations of

basic programs to be reduced to the equivalent transformations of annotated programs.

Another advantage of the approach is the possibility to perform global transformations

of basic programs by the iterative application of elementary (context-free) transformations

of annotated programs.

It is proved [25] that any basic program transformation represented by a normal

Markov algorithm [30] may be modeled within the annotated program framework in such

a way that annotations specify only the elementary transformations of annotated programs

and for any basic program the transformation process not only has the same result as the

modeled normal algorithm, but also performs a similar sequence of processing steps.

 Methods and tools for constructing specialized versions... 41
41 ____________ __ __

2. Internal representation of Cloud Sisal programs

The CPPS uses an internal representation of Cloud Sisal programs oriented towards their

semantic and visual processing and based on attributed hierarchical graphs with ports

[31, 32].

Within the framework of this representation, the program is assembled from modules

before its interpretation or optimizing compilation. The following essential requirements

were taken into account when developing the internal representation: machine

independence, completeness, the possibility of retranslation, simplicity of interpretation,

structuring of objects, explicit representation of all implicit actions on data, and

extensibility [1, 7].

The nodes of the internal representation graph correspond to the expressions of a Cloud

Sisal program, and the arcs reflect the data transfers between the node ports, the ordered

sets of which are assigned to the nodes as their arguments (input ports, or inputs) and

results (output ports, or outputs). So, the nodes of the graph describe the actions on their

inputs (arguments), the results of which are received at the outputs of the nodes and are

sent along arcs to the inputs of other nodes.

Due to the property of the Cloud Sisal language, the internal representation graph is

acyclic and does not contain two arcs entering the same input.

The nodes of the internal representation graph can be simple or composite.

Simple nodes (or simply nodes) correspond to elementary expressions. They have no

internal structure and represent elementary operators, such as plus or minus, under their

arguments. There is a special kind of simple nodes, each of which has one output and an

empty set of inputs — they represent literals (or constants).

Composite nodes (or fragments) correspond to composite expressions of a Cloud Sisal

program, such as a loop expression or a function body. Each fragment is a subgraph

composed of a set of subfragments corresponding to subexpressions of which the

composite expression consists. Any of these subfragments can be a simple node.

It is assumed that the nesting tree of fragments is ordered, i.e. a set of sons of any node

of the tree is linearly ordered. Moreover, this ordering of nodes does not contradict the

direction of the arcs connecting the ports of these nodes.

Thus, the internal representation graph of Cloud Sisal programs, unlike the control flow

graph [13, 33] typically used in optimizing compilers for imperative languages (such as C

or Fortran), expresses not the control flow but the data flow in the program. In addition, it

also preserves the existing hierarchy of language constructs in the translated program,

typically expressed in compilers within an intermediate representation graph of the

translated program such as a derivation tree [13, 33].

The internal representation graph of Cloud Sisal programs also has a number of useful

properties including the following two [1, 7]:

1. Explicitly defined information (semantic) connections (arcs) between operands of

expressions (ports of nodes) make it possible to interpret a Cloud Sisal program without

additional transformations. This entails the absence of side effects of calculations (due to

the absence of the concept of a variable) — a natural property of purely functional

languages.

2. At the level of individual information-independent operations, parallelism is clearly

represented, which does not depend on the machine architecture.

42 Victor N. Kasyanov, Elena V. Kasyanova

3. Reducing concretizations of Cloud Sisal programs

A set of reducing concretizations for general-purpose Cloud Sisal programs has been

developed, covering all the main language constructs and all the main ways of their

specialization [34]. Most of these are context-free transformations of Cloud Sisal language

expressions, which significantly simplifies not only the proofs of their correctness and

feasibility of their application, but also their practical implementation.

Almost all the transformations from the developed set are equivalent. Exceptions are

transformations of constant calculations for real or complex values, which may be

nonequivalent (and possibly incorrect) due to a possible change in the calculation

accuracy deriving from the fact that the compiler is launched on a computer different from

the target one. Also, nonequivalent though correct are some analytical transformations,

such as replacing by zero an expression which has the form of a multiplication of some

subexpression by zero, due to a possible erroneous value of this subexpression.

It is assumed that a user can control the application of nonequivalent transformations

using special pragmas. For example, a user can enable the application of a predefining

analytical transformation to some expression either explicitly, by requiring the

unconditional (context-free) application of the transformation to the part of the program

where this expression is located, or implicitly, by placing a pragma about the absence of

error values so that this expression is in the scope of this pragma.

Conventionally, the set of reductions is divided into the following subsets.

1. Substituting a constant value for a variable. Cloud Sisal is a single assignment

language, so if a variable in a program has been assigned a constant value, or if a pragma

specifies that the variable has a constant value, then the specified constant value can be

substituted for the variable in all places where it is used. This transformation is not

context-free, since it uses a set (e.g., in the form of a hash table) of variable-constant pairs

found during program processing.

2. A set of reductions of simple expressions, including constant calculations and

analytical transformations, which consists of 25 transformations.

3. A set of conditional expression reductions comprising 13 transformations. Cloud

Sisal allows two types of conditional constructs: “if” and “case”. A natural reduction of a

conditional expression is the removal of all branches with identically false or impassable

conditions. For if-expressions, the latter means that if there is a branch with an identically

true condition, then all branches following it can be removed. If after the reduction of an

if-expression only the “then” or “else” branch is left, it can be replaced by a list of

expressions of the results of this branch. If the “then” branch is removed, but at least one

“elseif” branch is preserved, the Boolean condition and the “then” subbranch of this

branch can be substituted for the Boolean condition and the “then” branch of the

expression being processed. If after the reduction the if-expression has no branches left, it

can be replaced by a list of error values of the same dimension as the results returned by

the branches of the original construct. For a case-expression, if all test values are

identically false, then “case” can be replaced by the contents of the “else” branch or, in its

absence, by a list of error values of the appropriate dimension.

4. The set of reductions of let-expressions consists of the following transformations.

The first removes the definitions of the local variables having constant values, by

replacing occurrences of these variables with their values. The second transformation is

similar to the first one, but it removes a local variable and replaces it with its

corresponding expression if it is used only once. The third transformation is the removal

 Methods and tools for constructing specialized versions... 43
43 ____________ __ __

of definitions of local variables not used within their scope. Finally, if a let-expression

does not contain variable definitions or the list of its result expressions does not depend on

its local variables, then this expression can be reduced to this list.

5. Reductions of functions and their calls. The body of a (non-recursive) function can

be substituted in the place of its single call as a let-expression. If program analysis has

revealed or a pragma has specified that specific results of some function are not used after

any call, the function can be rebuilt so that it does not return these results, and the

expressions that calculate them can be removed from it. A similar approach can be taken

if, in all calls to a function, a certain argument is equal to the same known constant. In

such a situation, the function can be rebuilt so that it does not accept this argument, and

the known constant value can be substituted in the function body in any place where it is

used.

6. Loop reductions. Loop unrolling is generally not a reducing transformation as it may

increase the code size and change its structure. Also, since test-driven loops in Cloud Sisal

can be asynchronously parallel, unrolling them could negatively affect parallelism.

However, in the case when the number of loop iterations is 0 or 1, the loop can be reduced

to its body and/or to the expressions computing the loop reductions. Also, when the loop

body is empty or does not depend on previous iterations and counters, the loop can be

reduced to the known expressions computing its reductions.

7. Removing unused computations. If the value of some expression is not used further

in the program or is excluded from the list of its results by the corresponding pragma, this

expression can be deleted or replaced by an error value. This transformation is not

context-free.

The properties of this set of reducing concretizations have been studied from the point

of view of the mutual influence of transformations (repetition and deadlock relations

between transformations) and the influence of the order of application of transformations

on the result obtained. In particular, it has been shown that the set does not have the

Church-Rosser property [33].

An effective three-pass strategy for applying the transformations from the developed

set of reductions has been formulated and substantiated.

4. Cross-platform Cloud Sisal compiler

In addition to the optimizing compiler from the CPPS using Windows and building the C#

code, a cross-platform compiler CS2CPP for the Cloud Sisal language has been developed

and implemented in Python [34].

The CS2CPP compiler translates Cloud Sisal programs into C++ programs extended by

OpenMP directives [35]. It is divided into three parts (parser, reduction block and code

generator), which interact with each other by transmitting the internal representation graph

of a Cloud Sisal program in the form of the JSON text [36].

The parser builds the internal representation graph of a source Cloud Sisal program,

which can be passed, at the user's option, to another part of the compiler (reduction block

or generator) either directly or indirectly, following a preliminary processing of this

representation using other components of the CPPS, such as a visual debugger.

44 Victor N. Kasyanov, Elena V. Kasyanova

The reduction block transforms a Cloud Sisal program within its internal representation

and builds its specialized version using our developments: the set of reducing

concretizations and strategy for their application.

The code generator, based on the received internal representation of a Cloud Sisal

program, uses mixed code generation methods to construct its optimized C++ code

extended by OpenMP directives. In particular, it implements memoization methods to

optimize the generated C++ functions. The code generator uses abstractions for Cloud

Sisal data types which are necessary for implementing error values. Error values are set

transparently for the main program code and do not require additional code in the output

program in the C++ language.

All the three parts of the cross-platform CS2CPP compiler are included in the CPPS

environment, together with the support for execution mode. In this mode, the C++ code

obtained by the compiler is processed using the free optimizing compiler GCC [37]. The

main function of the Cloud Sisal program is renamed to the sisal_main function, and the

main function of the C++ program loads the input data and calls sisal_main using the

input data as arguments. The names of the remaining functions in the C++ program

correspond to the names in the source program in the Cloud Sisal language. The resulting

executable files accept the program input data (the arguments of the main function) via

stdin in the form of a JSON text (the JsonCpp library [38] is used), which facilitates

working with the compiler in the automatic mode and using it in other systems, such as

development environments. The presence of the required arguments of the main function

among the input data is also checked by the program. The calculation results are also put

out to standard output as a JSON text.

A system for automatic compiler testing has been developed with a set of some test

Cloud Sisal programs and sets of their input data and expected correct calculation results.

For each test Cloud Sisal program, several sets of input and expected output data can be

specified.

The proposed compiler architecture allowed the development of its three parts

independently of each other and made it simple to use them in the CPPS, both separately

and together with other CPPS components. In particular, it provided the ability to extend

the CS2CPP compiler to other output languages by writing new code generators.

The LLVM [39] is a widely used software infrastructure for creating compilers and

software development tools. It includes a range of frontends for many high-level

languages, a modern source- and target-independent optimizer and code generation

support for many popular CPUs (as well as some less common ones!). At the core of the

LLVM is an intermediate representation of the code (LLVM IR code), which can be

transformed during compilation, linking, and execution. From this representation, the

optimized machine code is generated for a range of platforms, both statically and

dynamically.

We have started work on creating a new code generator that constructs LLVM IR code

of a Cloud Sisal program based on its internal representation. The code generator is being

implemented in Python using the LLVM Lite library [40].

 Methods and tools for constructing specialized versions... 45
45 ____________ __ __

5. Conclusions

The paper presents an approach to solving the problem of constructing specialized

versions of universal Cloud Sisal programs in the cloud parallel programming system

(CPPS) with the help of reducing concretizations. The cross-platform CS2CPP compiler

of the cloud system is described. It implements this approach in the process of translating

the Cloud Sisal language into the C++ language extended by OpenMP directives. Our

current plans are to expand the CS2CPP compiler to integrate the CPPS with the LLVM

infrastructure. This will allow us, on the one hand, to use existing tools and libraries of the

LLVM infrastructure within the CPPS, and on the other hand, to provide support for the

Cloud Sisal language by the LLVM infrastructure.

Acknowledgments. The authors are grateful to all colleagues who took part in the

work discussed in the paper.

References

[1] Kasyanov V.N., Kasyanova E.V. Methods and system of cloud parallel programming //

Problems of optimization of complex systems (Part 1). Proc. XIV International Asian

School-Seminar. – Almaty. – 2018. – P. 298-307 (In Russian).

[2] Kasyanov V., Kasyanova E. Methods and system for cloud parallel programming // 21st

International Conference on Enterprise Information Systems. Proc. ICEIS 2019. – 2019. –

Vol. 1. – P. 623–629.

[3] Kasyanov V.N., Kasyanova E.V. Methods and tools for formal verification of Cloud Sisal

programs // International Conference on Mathematics and Computers in Science and Engi-

neering. Proc. MACISE. – 2020. – P. 219-222.

[4] Kasyanov V.N., Kasyanova E.V., Kondratyev D.A. Formal verification of Cloud Sisal pro-

grams // Journal of Physics: Conference Series. – 2020. – Vol. 1603. – P. 012020.

[5] Kasyanov V.N., Kasyanova E.V., Zolotuhin T.A. Visualization of data-flow programs //

Lecture Notes in Electrical Engineering. – 2019. – Vol. 574. – P. 119-124.

[6] Kasyanov V.N., Zolotuhin T.A., Gordeev D.S. Visualization methods and algorithms for

graph representation of functional programs // Programming and Computer Software. –

2019. – Vol. 45. – No. 4. – P. 156–162.

[7] Kasyanov V.N., Zolotukhin T.A., Gordeev D.S. et al. Cloud Parallel Programming System

CPPS: Visualization and Verification of Cloud Sisal Programs. – Novosibirsk: IPC NSU,

2020 (In Russian).

[8] Kondratyev D.A., Promsky A.V. Towards verification of scientific and engineering pro-

grams. The CPPS project // Computation Technologies. – 2020. – Vol. 25, No. 5. – P. 91-

106.

46 Victor N. Kasyanov, Elena V. Kasyanova

[9] Kasyanov, V. N., Kasyanova, E. V. Programming Language Cloud Sisal. – Novosibirsk,

2018. –(Preprint / Institute of Informatics Systems of the Siberian Branch of the Russian

Academy of Sciences, No. 181) (In Russian).

[10] Feo J.T., Cann D.C., Oldehoeft R.R. A report on the Sisal language project // Journal of

Parallel and Distributed Computing. – 1990. – Vol. 10, No. 4. – P. 349-366.

[11] Gaudiot J.-L., DeBoni T., Feo, J., et al. The Sisal project: real world functional program-

ming // Lecture Notices in Computer Science. – 2013. – Vol. 1808. – P. 84–72.

[12] Kasyanov V.N. Sisal 3.2: functional language for scientific parallel programming // Enter-

prise Information Systems. – 2013. – Vol. 7, No. 2. – P. 227–236.

[13] Kasyanov V.N. Optimizing transformations of programs. – M: Nauka, 1988 (In Russian).

[14] Kasyanov V.N. Program annotation and transformation // Programming and Computer

Software. – 1989. – Vol. 15, No. 4. – P. 155-164.

[15] Kasyanov V. N. Reducing transformations of programs // Translation and optimization of

programs. – Novosibirsk: Computing Center of the Siberian Branch of the USSR Academy

of Sciences, 1983. – P. 86-98 (In Russian).

[16] Kasyanov V.N. Transformational approach to program concretization // Theoretical Com-

puter Science. –1991. – Vol. 90, No. 1. – P. 37-46.

[17] Kasyanov V.N. A support tool for annotated program manipulation // Fifth European Conf.

on Software Maintenance and Reengineering. Proc. – 2001. – P. 85-94.

[18] Kasyanov V.N., Mirzuitova I.L. Slicing: Program Slices and their Applications. – Novosi-

birsk: IIS SB RAS, 2002 (In Russian).

[19] Ershov A.P. Organization of mixed computations for recursive programs // Doklady

Akademii Nauk SSSR. – 1979. – Vol. 245, No. 5 – P. 1041-1044 (In Russian).

[20] Ershov A.P. Mixed computation in the class of recursive program schemata // Acta

Cybernetica. –1978. – Vol. 4, No. 1. – P. 19-23.

[21] Ershov A.P. Mixed computation: potential applications and problems for study // Theoreti-

cal Computer Science. –1982. – Vol. 18, No. 1. – P. 41-67.

[22] Jones N.D. An introduction to partial evaluation // ACM Computing Surveys. – 1996. – Vol.

28, Issue 3. – P. 480-503.

[23] Kasyanov V.N. Practical approach to program optimization. – Novosibirsk, 1978. – (Pre-

print / Computer Center of Siberian Division of the USSR Academy of Science, No.135) (In

Russian).

[24] Kasyanov V. N. Annotated program transformations // Lecture Notes in Computer Science.

– 1989. – Vol. 405. – P.71-180.

[25] Kasyanov V.N. On completeness of mechanism of annotation-directives // Bull. Novosibirsk

Comp. Center. Ser. Computer Science. – Novosibirsk, 1995. – Iss. 3. – P. 59-68.

 Methods and tools for constructing specialized versions... 47
47 ____________ __ __

[26] Reference Manual tor the Ada Programming Language. – Springer-Verlag, 1983.

[27] Koelbel C.H., Loveman D.B., Schreiber R.S. et al. The High Performance Fortran Hand-

book. – The MIT Press, 1993.

[28] Lohr K.-P. Concurrency annotations for reusable software // Comm. of the ACM. – 1993. –

Vol. 36, No. 9. – P. 81-89.

[29] Feather M.S. A survey and classification of some program transformation approaches and

techniques // Program Specification and Transformation. – 1987. – P. 165-195.

[30] Markov A.A., Nagornij N.M. Theory of Algorithms. – Moscow: Nauka, 1984 (In Russian).

[31] Kasyanov V.N. Methods and tools for information visualization on the basis of attributed

hierarchical graphs with ports // Siberian Aerospace Journal. – 2023. – Vol. 24, No. 1. – P.

8–17.

[32] Kasyanov V.N. Kasyanova E.V. Information visualization based on graph models // Enter-

prise Information Systems. – 2013. – Vol. 7, No. 2. – P. 187–197.

[33] Kasyanov V.N., Evstigneev V.A. Graphs in Programming: Processing, Visualization and

Application. – St. Petersburg: BHV-Petersburg, 2003 (In Russian).

[34] Kasyanov V.N., Kasyanova E.V., Malyshev A.A. Cross-platform Cloud Sisal compiler for

the cloud parallel programming system CPPS // Marchukovsky Scientific Readings 2024:

Abstracts of the International Conf. Proc. – Novosibirsk: ICM&MG SB RAS. – 2024. –

P. 135-135.

[35] OpenMP – URL: http://www.openmp.org.

[36] JSON – URL: https://www.file-extension.info/format/json.

[37] GCC – URL: https://gcc.gnu.org/.

[38] JsonCpp – URL: https://sourceforge.net/projects/jsoncpp.mirror/.

[39] LLVM Compiler Infrastructure – URL: https://llvm.org.

[40] LLVM Lite – URL: https://github.com/numba/llvmlite.

[41] 36. JSON – URL: https://www.file-extension.info/format/json

[42] 37. GCC – URL: https://gcc.gnu.org/

[43] 38. JsonCpp – URL: https://sourceforge.net/projects/jsoncpp.mirror/

[44] 39. LLVM Compiler Infrastructure – URL: https://llvm.org

[45] LLVM Lite Library – URL: https://github.com/numba/llvmlite

https://gcc.gnu.org/
https://github.com/numba/llvmlite
https://gcc.gnu.org/
https://github.com/numba/llvmlite

48

	KasyanovVN_KasyanovaEV_2025_corr2-1-11
	KasyanovVN_KasyanovaEV_2025_corr2-13

