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Iterative switching networks*

V.N. Kasyanov

In the paper the construction of the so called iterative networks is studied. This
class contains rearrangeable N-inputs M-outputs networks carrying m connections
with roughly 2(N + M)log(NM/(N + M)) contacts, if m = min(N, M) and with
roughly 2(N 4+ M)logm contacts, if m < min(N, M); these results are the best
obtainable by the methods used.

1. Introduction

The switching (N, M, m)-networks, where n < min{N, M}, is a system for
establishing the simultaneous paths from N terminals called inputs to other
M terminals called outputs. The paths are established through single-pole
single-throw switches called contacts. The contacts may be either “on”
(“closed”) or “off” (“open”). At any moment in time, at most m paths may
be established simultaneously. Such a set of paths will be called a state. In
any state of the (N, M, m)-network any input may be connected to at most
one output and each output can be connected to at most one input.

Rearrangeable and nonblocking networks arise in a variety of communi-
cations contexts. Common examples include telephone systems and network
architectures for parallel computers.

Rearrangeable (N, M, m)-networks can establish any set of 5, s < m,
connections from inputs to outputs. An additional request for connection in
a state a, |a| < m, however, may require a complete rearrangement of the
state a. A request for disconnection, of course, presents no problems.

Nonblocking (N, M, m)-networks like rearrengeable (N, M, m)-networks,
can establish any set of s, s < m, connections from inputs to outputs.
In contrast, however, an additional request for connection can be satisfied
without disturbing connections and irrespective of which state the history
of connections and disconnections has left the network in.

A slightly weaker notion of nonblocking network called also a strict-
sense nonbloking network is that of a wide-sense nonbloking network. A
wide-sense nonbloking network does not make guarantee as a strict-sense
one. A network is a wide-sense nonbloking network, if there is an algorithm
for establishing path in the network, one after another, so that after each
path is established, it is still possible to connect any unused input to any
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Figure 1. N-inputs M-outputs crossbar

unused output. Still weaker is the notion of rearrangeable network because
a rearrangeable network is capable of realizing any m conrections of in-
puts to outputs with node-disjoint paths provided that all the requests for
connections to be made are known in advance. '

A nonblocking or rearrangeable network is called a generalized network,
if it has the additional property that each input can be simultaneously con-
nected to an arbitrary set of outputs, provided that every output is con-
nected to just one input.

A network may be represented as a directed graph in which nodes repre-
sent terminals and edges represent switches (Figure 1). Any desired connec-
tion of inputs and outputs corresponds to subgraph of the graph representing
the network. This subgraph includes all edges (or contacts) in the on state.
Input ¢ is connected to output 7, if there is a path from i to j in the subgraph
just described.

Nonblocking and rearrangeable (N, N, N)-networks (or simply N-net-
works) have a rich and lengthy history. See [13] for an excellent survey
and [7] for more comprehensive description of previous results. In 1950,
Shannon [14] proved that any rearrangeable or nonblocking N-network must
have (N log N) contacts. Further work on lower bounds can be.found in
[2]. In 1953, Clos [6] constructed a strict-sense nonblocking network with
O(N+1/3) contacts and depth j, for fixed J- (The degree of the nodes
is not bounded.) Bounded-depth nonblocking networks have subsequently
been studied extensively [7-9], [12]. In the early 1960s, Beizer [3] and Benes
[4] independently discovered bounded-degree rearrangeable N-network with
depth O(log N) and size O(Nlog N), and Waksman [15] gave an elegant
algorithm for determining how the nodes should be set in order to realize any
particular permutation. Ofman [10] follows with a generalized rearrangeable
N-network of size O(nlog? N). The existence of a bounded-degree strict-
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sense nonblocking N-network with size O(N log N) and depth O(log N) was
first proved by Bassalygo and Pinsker [2].

More recent work has focuses on the construction of generalized non-
blocking, networks [1, 7, 13]. A generalized rearrangeable N-network with
O(N log)V) contacts and a generalized nonblocking N-network with
O(N log? N) contacts were studied by Pippenger [13]. Arora, Leighton and
Maggs [1] described a nonblocking N-network with O(N log N) bounded-
degree nodes and an algorithm that can satisfy any request for connection
or disconnection between an input and an output in O(log N) bit step, even
if many requests are made at once.

For N # M and m = min(N, M) nonblocking (N, M, m)-networks with
O(N log?(M + 1)) contacts were constructed by Ofman [11].

In the paper the construction of the so called iterative networks is stud-
ied. This class contains rearrangeable N-inputs M-outputs networks carry-
ing m connections with roughly 2(N + M)log(NM/(N + M)) contacts,
if m = min(N, M) and with roughly 2(N + M)logm contacts if m <
min (N, M); these results are the best obtainable by the methods used.

These networks may be more useful in the context of real multiprocessor
computer systems or telephone systems, where a number of inputs can be
unequal to a number of outputs and there are limitations on the number
of connections which may be established simultaneously (e.g., it is unlikely
that everyone on the East Coast will call someone on the West Coast at the
same time).

2. Iterative networks

The networks that we use to obtain these results are constructed in such a
way that is described in [8]. We refer to these networks as iterative networks.
The nonblocking networks of Benes [5] and Ofman [10] are similar.

Any iterative networks G is either simple or compound. We start by
describing the class V? of simple iterative networks being nonblocking net-
works.

The N-inputs M-outputs crossbar (or N x M-crossbar) has a separate
contact for connecting each input to each output (see F igure 1).

A simple iterative (N, M, m)-network G, G € VO, is either the N x M-
crossbar, if m = min(N, M), or a network obtained from the N x m crossbar
and the m x M crossbar by merging the output [ of the first crossbar with
the input [ of the second oneforall 1 <! < m,if m < min(N, M) (Figure 2).

Suppose for some integer n > 0 an iterative network Gno1 € V™1 be
coastructed as (Np_y, My,_1, m,_;)-network. For any integer k,, > 0 the
compound iterative (N, M,,, m,)-network G,, € V", where k, = N, /N, _,
=M./M,_, = m,/m,_1, can be constructed from G-, used as an inter-
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Figure 3. A compound iterative network Gy,

nal subnetwork. G, is formed by gluing together k, copies of G,_; and
N,_1 + M, _; copies of k,, X ky-crossbar in the way represented in Figure 3
(here internal subnetworks are denoted by G:_,,..., Gt ). The compound
iterative network G, is formed by merging the output [ of the input cross-
bar s with input s of the internal subnetwork I for all 1 < I < kn and
1 < s < N,_1 and by merging the input ¢ of the output crossbar r with

input r of the internal subnetwork ¢ forall 1 <t < kn and 1 <r < My_;.
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We shall say that G, has the construction coefficients k, y kne1,..., by
where k,,_y,..., k; are the construction coefficients of subnetwork Gra1
Let L, denote the size of G, (or number of switches of G,). It is easy

to see that G, consists of L, = (N + M) i ki+ NM( ﬁ k;)~1 switches, if

m = min(N, M), and G, consists of L, = (N + M)(Z: k; + m(H k)1
switches if m < min(N, M).

Theorem 1.

min L, =

13---9fn

(n+ 1)(N + M) (D) (N MY+ if m = min(N, M),
(n+1)(N + M)mY 1) if m < min(N, M),

and reached when

k= =k = ] (NMYEED(N 4 A)=104) if = min(N, M),
P T T m!/( ) i m < min(N, M).

Proof. It is sufficient to show that for any a > 0

o=, i (St ofT6) '} = or e,

and reached when k; = ... =k, = o/(n+1),
Note that for any @ > 0

n+1 ntl nt1)
Far=, min {3k (I[K)" =a} = na/es,
and reached when k; = ... =k, = al/(“‘“). But

1(n+1) (Til k‘,') (1_[ & )1/(n+1)
1=1

=1
ie., F(a) > (n+ 1)a!/(n+1),
From the other hand

n+1
F(a) < Z al/(n-H) — (n+ l)all(n+1). _ a

=1

Corollary 1. If m = min(N, M), then
min - Lnciog(NM/(N+M))-1 = 2(N + M) log(N M/(N + M)).
Corollary 2. If m < min(N, M), then

k:,-r.l:l,}cli>0 Ln=logm-1 = 2(N + M) log m.
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3. Establishing connections

Below we will consider a compound iterative (N’, M’ m')-network G’ which
is constructed from a rearrangeable (N, M, m)-network G with a coefficient
k, e, k = N'/N = M'/M = m’/m. Let the inputs and outputs of G’
be denoted by I' and U’ correspondingly. Inputs and outputs of the i-
th subnetwork G* of G’, where 1 < i < k, will be denoted by I' and U*

correspondingly. Let |J I‘ and |J U be denoted by 7 and U. So,
1<i<k 1<i<k

|I'| = k|I| = |1| and |U’| = k|U| = |U].

In order to describe the technique for reconfigurating G’ the term of
connection sequence will be considered.

Two nodes from TUU will be called equivalent, if either they are merging
with the outputs of the same input crossbar or they are merging with the
inputs of the same output crossbar.

Consider a state a of G’. We define a node to be busy in a, if there is a
path currently routing through it in o and idle otherwise.

Let Y be a set of all inputs and outputs of some subnetworks G* and G*
of network G'. ‘

A sequence of nodes from Y

(Piys Pigy Pisy Pigs+ -2 Piy)y, T 21,

is called a connection sequence in « under {s,t} with initial node p;, and
terminal node p;, (denoted by [a, p;,, s,t]), if the following properties hold:

1) p;, and p;, are idle nodes,

2) pi; is a busy node for any j, 1< j <r,

3) pi, and p; ,, are equivalent nodes for any odd j,1 < j <,

4) p;; is connected with p;, , for any even j,1 < j <.
The connection sequence = = [a, p, s, t] is the trivial one, if its length (denote
|z|) is equal to 2. A trivial connection sequence contains only idle nodes.
Let a number of pairs of such busy nodes of a subnetworks G/, 1 <1 < k,,

which belong to # and connected in a be denoted by n[z].
It is easy to see that the following properties hold.

Proposition 1. Any connection sequence (pi,, Piys Pigs Pigs - -+ Pir ), T > 1,
consists of different nodes, i.e., for all k,r p;, # pi,, ifk #r.

Proposition 2. For any state @ and any s,t two connection sequences in
o under {s,t} either contain no the same node or consist of the same set of

nodes.
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Proposition 3. For any connection sequence z and any node PEY,ifp
is either connected with a node ¢ € = or equivalent to a node g € z, then

peEzx.

Proposition 4. For any state o and any idle nodes p and q, if eiter p € I*
and g € U', or p e U® and q € I, then q ¢ [, p, s, t].

Lemma 1. For any connection sequence z = [, p, 5, ]

tfz] -1, if |z =0 (mod 4),
molz] = { Zt [x%, othirwise.

Proof. From Proposition 3 the following two properties hold:

1) the connection sequence z includes the same number of nodes of sub-
networks G* and G?, :

2) all busy nodes of the connection sequence z are decomposed onto pairs
-of connected nodes.

From the other hand, the connection sequence z includes only two idle nodes:
the initial node of z and the terminal node of z. By this, the initial node of
z belongs to G* always, and the terminal node belongs to G*, if and only if
|z] = 0 (mod 4). : O

Corollary 3. If p is an idle node of subnetworks G*, q is an idle node of
subnetwork G* and |[a, p, s,t]| = 0 (mod 4), then ¢ ¢ [a, p, s,1].

Lemma 2. If in the given state o a number of connections established
trough the subnetworks G* is less than a number of connections established
trough the subnetworks G*, then there is such an idle output p of G° that
l[a,p,s,t]] =0 (mod 4). '

Proof. We will find such an idle output p of G* that [[a,py8,8]] = 0
(mod 4).

Let A and B be the sets of all busy outputs of subnetworks G* and Gt,
respectively. By condition of Lemma 2 we have that |A| < |B.

So, there are equivalent outputs p and ¢ of the subnetworks G* and G*
such that p ¢ A and ¢ € B. Consider connection sequence [a,p,s,t]. If
lla.p,s,t]] =0 (mod 4), then the needed output p is obtained.

Let |[a,p,s,t]| # 0 (mod 4). Then the above considerations can be
applied to sets A’ = A\ [a,p,s,t] and B’ = B\ [a, p, s, 1], since |A'| < |B'|
by Proposition 5. From Proposition 2 it follows that in this case also by

means of a finite steps the needed output p will be obtained. a

Let o be a state of G'. A trace of a path P € a is the element
(Pr-P2.p3.ps) € I x I x U x U in which every p; € P is a busy node in
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the state {P}. The set of traces of all paths P € o will be denoted by
TRACES (a).

A state 8 is called immediately reached from a state a, if there is such a
communication sequence z in o that for all nodes p;, p2, p3, P4

(pl’p% ps, p4) € TRACES(ﬂ);

if and only if there is such (g, 92,93, ¢4) € TRACES () that the following
properties hold:

1) p1 = q and ps = g4,

2) either p; ¢ =, g2 € o, p2 = @2, Or p2 € T, g2 € T, Py and gy are
equivalent nodes,

3) either p3 ¢ =, g3 ¢ =, p3 = ¢3, Or p3 € Z, g3 € &, p3 and g3 are
equivalent nodes.

A state 3 is called reached from a state a, if there is such a finite sequence
(71 = a,92,...,7 = B),r > 1, of states of G’ that for any t, 1 <t < r, the
state v, is immediately reached from the state v;_;.

For a given subnetwork G™ a number of all paths in « currently routing
through G” will be denoted by n,[a].

Lemma 3. For any state a and any input (or output) p of a subnework
G*%, 1 < s <k, if |[a,p,s,t]]| # 0 (mod 4) or ns[a] < m, then there is such
a state 3 that 3 is reached from a by the communication sequence [a, p, s, t]|
and
nila] — 1, if |[e, p,s,t]] =0 (mod 4),
nt[ﬁ]={ nz[ ] f |[ b, s, ]I ( )

[a], otherwise.

Proof. Lemma immediatly follows from the definition of iterative networks,
Lemma 2 and Proposition 3. a

Theorem 2. G’ is a rearrangeable network.

Proof. Let a be such astateof G’ that |a| < km = m’, and let (u,v) € IxU
be a pair of idle terminals, i.e., » and v are unused in a.

Let a set of all subnetworks in which the input being adjancent with p is
idle in « be denoted by N[a]. m[a] will denote a set of all such subnetworks
G" that n.[a] < m. Let a set of all subnetworks in which the output being
adjacent with ¢ is idle in & be denoted by M{a].

It is clear that if

Nla]n Mla] Nm[a] # 0,

then a connection of the input p with the output ¢ can be established without
rearrangement of current connections of a.
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Let N[a]n M[a]Nm[a] = 0. Thus, one of the following four cases arises:
1) N[a], M[a] and m[a] are mutually disjont,

2) Nla]Nn Mlo] # 0, '

3) N[a)nmla] # 0,

4) Mla]nmla] # 0.

Since case 4 is reduced to case 3 by reorientation of network archs, in
order to prove the theorem it is sufficient to consider cases 1-3 and to show
that for each case there is such a state 8 being reached from « for which

N[B}n M[B] " m[B] # 0.

Case 1. For subnetworks G* € m[a] and G* € M[a] there is such an
output p of G* that |[a,p,s,t]] = 0 (mod 4) by Lemma 2. From Lemma 3
it follows that there is such a state § that 3 is reached from o by the
connection sequence [a,p, s,t] and G* ¢ m[§]. In addition, by Corollary 3
the idle output g of G* being equivalent to p does not belong to [, p, s,t] and
so Gt ¢ M[B]. Thus the state 3 is reached from a and G* € m[8] N M[f],
i.e., we have case 4 for the state 3 being reached from a.

Case 2. From Proposition 4 follows that a consideration presented above
and applied to subnetworks G* € m[a] and G* € N[a]N M([a] can be used
in order to obtain such a state 3 that f is reached from o and

N[8]n Mg} m{g] #0.

Case 3. Let G* € m[a]N N[a], G' € M[a] and p be such an idle input
of G* which is adjacent to u. By Lemma 3 there is a state 8 being reached
from o by the connection sequence [a, p, s,t]. Since the input g of G* being
adjacent to u is equivalent to p and so belongs to [a, p,s,i], we have that
G* € N[A]. From the other hand, the idle output of G* being adjacent to v
does not belong to [, p, s,t] by Proposition 4 and so G* € N[8]. Thus, by
Lemma 3 follows that 3 is either a needed state, if |[a, p,s,t]| = 0 (mod 4),
or 3 is such a state that N[B]N M[f] # 0, i.e., we have case 2 for the state
3 being reached from a, if |[a, p,s,t]| # 0 (mod 4). a

Corollary 4. To establish an additional connection of an idle input with
an idle output in a state «, |a| < m, it is sufficient to rearrange at most of
3m — 1 connections of a.

Theorem 3. Ifk > 1 and m > 2, then G’ is not a wide-sense nonblocking
network.

Proof. Let I(i,j) denote the input i of the input crossbar j, and U(i, j)
denote the output i of the output crossbar j,forall 1 <i< kand1l <j < m.
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Consider the following sequence of pairs input-output: (I(1,1), U(1,1)),
(1(2’ 1)’ U(?, ]-))1 RS (I(k -1, 1): U(k -1, 1))* (I(k, 1)1 U(112))1 (1(1’2)1
U(1,3)), (I(2,2), U(2,3)),...,(I(k = 1,1), U(k — 1,3)). The length of the
sequence is equal to 2k — 1, i.e., it is less than m’ = k x m.

It is clear that there are only two following kinds of states for connection
the pairs considered: '

1) such astate a that there are a subnetwork which connects input 1 with
output 2 and input 2 with output 3, a subnetwork which connects input
1 with output 1 and k — 2 subnetworks in every one of which input 1
with output 1 and input 2 with output 3 are connected,

2) such a state § that there are a subnetwork which connects input 1
with output 2 and k — 1 subnetworks in every one of which input 1
with output 1 and input 2 with output 3 are connected,

It is clear that for the first case without reconnection of the existing state o
it is impossible to connect I(k,2) with U(k,1). For the second case without
reconnection of the existing state § it is impossible to connect I(k,2) with
U(2,2). a
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