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Solution of 3D non-stationary problems of
impulse electric prospecting

M.I. Ivanov, V.A. Kateshov, I.A. Kremer, M.V. Urev

Abstract. This paper considers some aspects of modeling non-stationary electro-
magnetic fields for the 3D domains, including inhomogeneous conducting media.
The source of such fields is an underground power line. To describe the fields
in conducting media, a vector magnetic potential and a scalar electric potential
are used, while a magnetic field in non-conducting media is described by a scalar
magnetic potential. Systems of equations in conducting media are integrated by
the Krank–Nickolson scheme. The conjugation conditions of the vector and the
scalar magnetic potentials on the interfaces between the conducting and the non-
conducting media hold with mean time steps. The scalar equations are solved by
a scalar finite element method of second order, and the vector equations –– by the
Nedelek vector finite element method of second order of the second kind. The vec-
tor variation statements of the problems include the Lagrange factors, governing
the divergent properties of vector values.

Introduction

Methods of the impulse electric prospecting are intended for recording pro-
cesses of generation of electromagnetic fields starting with a certain initial
stationary state. Electric parameters of media can be judged from the char-
acter of formation of fields. Initial fields are usually generated by the sources,
which are essentially smaller than the domain in question. This fact results
in generalized formulations of boundary value problems with unrestricted
functionals, and one should distinguish peculiarities of the numerical solu-
tion. Sources of fields are usually located either on the Earth’s surface or in
boreholes. Recently, the methods of surveying the sea bottom have gained in
importance [1], the source being located directly in the conducting medium,
i.e. in the sea water. The domain of electromagnetic fields propagation in-
cludes the air and conducting media. This paper is a sequel to the research
presented in [2]. Here we consider a quasi-stationary model. The combined
use of a scalar magnetic potential in conducting media is discussed in [3].
In this paper, we develop the approach proposed there. Integration with
respect to time of a system of equations in conducting media is carried out
by the Krank–Nickolson scheme. The time-variation of a scalar magnetic
potential is only due to non-stationary processes in conducting media. The
scalar magnetic potential is calculated on half-time steps, while the vector
potential–– on the integer time steps. As compared to [3], a calculation pro-
cess, conducted in such a manner, brings about decreased computer costs,
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and the resulting systems of linear algebraic equations possess the proper-
ties of symmetry. The scalar equations are solved by the method of scalar
finite elements of second order, while the vector equations–– by the Nedelek
method of vector finite elements of first order of the second kind [4, 5]. The
vector variation statements of the problems include the Lagrange factors
governing divergent properties of desired vector values. The well-known
functional spaces H1(Ω), H(rot,Ω) and their subspaces are employed [6].

1. Statement of the problem

Let us arrange the coordinate system (x, y, z) so that the Earth’s surface
were in the plane z = 0 and the axis z directed (from the ground) into
the air. Let the considered domain Ω ⊂ R3 be partitioned into the open
subdomains Ωk so that Ω̄ =

⋃
k Ω̄k. The subdomains Ωk are assumed to

be homogeneous in terms of their physical properties and characterized by
constant values of the electric conductivity σk and the permeability µk.
In what follows, the vector values will be denoted by extra-bold lettering,
the scalar values –– by standard lettering. Let us consider the air to be a
subdomain Ω0 and the subdomain Ω1 –– to border on the subdomain Ω0.
The air is characterized by the absence of conductivity σ0 = 0. Let for all
k 6= 0, σk > 0. The external boundary Ω is denoted by Γ = ∂Ω. Denote
the interfaces between the subdomains as Sk,l = Ωk ∩ Ωl. The boundary
Γ0 := S1,0 is the Earth’s surface. Let the vector n be the external normal
to the boundary Γ, and the vector nk,l –– the normal to Sk,l directed from
the subdomain Ωk to the subdomain Ωl.

Let in each subdomain Ωk, a system of the Maxwell equations with
respect to the magnetic intensity Hk and the electric intensity Ek be given.
The index k shows that appropriate variables belong to the subdomain Ωk.
In explicit cases, this index is omitted. For non-stationary sources of fields,
the system of equations can be written down as

rotE + µ
∂H

∂t
= 0, div(σE + j s) = 0, div E0 = 0, (1)

rotH = σE + j s, divµH = 0. (2)

On interfaces of the media Sk,l, the conjugation conditions hold:

Ek × nk,l = El × nk,l, σkE
k · nk,l = σlE

l · nk,l, (3)

Hk × nk,l = H l × nk,l, µkH
k · nk,l = µlH

l · nk,l. (4)

The external boundary of the domain Γ will be considered to be sufficiently
remote from sources, and on it, the Dirichlet conditions of inhomogeneities
to be valid (the essence of these conditions will be explained below):
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E × n = E i × n, H × n = H i × n. (5)

On the Earth’s surface Γ0, the conjugation condition for the electric field
normal component turns to the condition:

E · n1,0 = 0. (6)

A non-stationary source of the electric and the magnetic fields is de-
scribed by the density of the extraneous current j s. Consider the case,
when the source is an underground horizontal power line, located in the
subdomain Ω1 on the straight line, parallel to the axis OX. Diameter of
the line section falls far short of the size of the domain in question. Let the
ends of this line be at the points A = (xA, yA, zA) and B = (xB, yA, zA). At
the initial time, the constant current Is provided by the external EMF flows
from the point A towards the point B. Then the EMF is switched off. The
source current density is expressed as j s = (jx, 0, 0), where

jx = Is · (1− θ(t)) · (θ(x− xA)− θ(x− xB)) · δ(y − yA) · δ(z − zA),

θ(t) is the Heaviside function, δ(t) is the Dirac function:

θ(t) =

{
0, t < 0,
1, t ≥ 0,

δ(t) =

{
0, t 6= 0,
+∞, t = 0,

∫ ∞

−∞
δ(t) dt = 1.

In the sequel, throughout this paper, we will assume that µk = µ0 = µ =
const. The solution of the problem contains singularity, associated with a
peculiarity in the source:

div j s = Is · (1− θ(t)) · (δ(x− xA)− δ(x− xB)) · δ(y − yA) · δ(z − zA).

Therefore, let us present the sought for fields as the sum of primary and
anomalous fields:

E = E i + Ea, H = H i + Ha.

The primary fields satisfy the following boundary value problem, formu-
lated for the conducting homogeneous half-space z > 0:

rotE i + µ
∂H i

∂t
= 0, divµH i = 0 in R3; (7)

rotH i = σ1E + j s, div(σ1E i + j s) = 0 for z < 0; (8)

rotH i = 0, div E i = 0 for z > 0. (9)

On the Earth’s surface z = 0, the continuity conditions of tangent com-
ponents of primary fields are valid. The normal component of the primary
magnetic field is continuous as well. For the normal component of the pri-
mary electric field holds
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E i · n1,0 = 0 for z = 0. (10)

On the infinity
E i → 0, H i → 0. (11)

Problem (7)–(11) is supplemented with values of primary fields at the
initial time [2].

A solution to the problem in question is based on the classical solution
to the heat conductivity problem, which has been much studied [7]. The
solution is analytically obtained in terms of integrals of the Bessel function.
Let us next consider that primary fields are vector functions defined at each
spatial point and at each instant of time. The values E i and H i on the
boundary Γ define the Dirichlet condition (5) for the fields E and H.

The presence of anomalous fields is due to the inhomogeneity of con-
ducting media Ωc := Ω \ Ω0. Let us formulate the problem for anomalous
fields. Further, the air Ω0 and the conducting media Ωc will be considered
separately. The problem is formulated in the bounded domain Ω like the
initial problem:

rotEa + µ
∂Ha

∂t
= 0, div σEa = 0 in Ωc, (12)

rotHa = σEa + (σ − σ1)E i in Ωc, (13)

rotHa = 0 in Ω0, (14)

divµH = 0 in Ω. (15)

On the interfaces of the media Sk,l, the conjugation conditions hold:

Ek
a × nk,l = El

a × nk,l, (16)

σkE
k
a · nk,l − σlE

l
a · nk,l = (σl − σk)E i · nk,l, (17)

Hk
a × nk,l = H l

a × nk,l, Hk
a · nk,l = H l

a · nk,l. (18)

On the Earth’s surface Γ0, owing to (10), conjugation condition (17) turns
to:

σ1Ea · n1,0 = 0. (19)

On the external boundary of the domain Γ, the Dirichlet homogeneous con-
ditions hold:

Ea × n = 0, Ha × n = 0. (20)

The initial data for anomalous fields are obtained from this system of
equations at the initial instant [2]. Let us next consider that the initial data
are known:

Ea

∣∣
t=0

= E0
a , Ha

∣∣
t=0

= H0
a . (21)
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2. Variation statements of the problems for anomalous fields
in terms of potentials

Similar to [2], to describe anomalous fields, we introduce a scalar magnetic
potential Φ into Ω0 and a vector magnetic potential A into the conducting
media Ωc with appropriate calibration condition:

Ha = −∇Φ in Ω0,

Ha =
1
µ

rotA, div σA = 0 in Ωc.

In this case, the intensity of the anomalous electric field Ea in the subdomain
Ωc can be presented in the form Ea = −∂A

∂t
−∇U . Let us rewrite equations

(12)–(21) in terms of the potentials:

−divµ∇Φ = 0 in Ω0, (22)

Φ = 0 on Γ ∩ Ω0, (23)

rot
1
µ

rotA + σ
∂A

∂t
+ σ∇U = (σ − σ1)E i in Ωc, (24)

div σA = 0 in Ωc, (25)

A× n = 0 on Γ ∩ Ωc (26)

and the conjugation conditions on the interfaces between the media:

−µ∇Φ · n1,0 = rot A1 · n1,0 on Γ0, (27)

−∇Φ× n1,0 =
1
µ

rotA1 × n1,0 on Γ0, (28)

1
µ

rotAk × nk,l =
1
µ

rotAl × nk,l on Sk,l, (29)

σkA
k · nk,l = σlA

l · nk,l on Sk,l. (30)

Let us consider the conjugation conditions for the potential U on the
interface between the media Sk,l. For this, let us take a divergence of (24)
and consider the result of its application on the surfaces Sk,l. Using the
representation of Ea by potentials and relations (17), (30), we obtain

σk∇Uk · nk,l − σl∇U l · nk,l = (σk − σl)E i · nk,l. (31)

On the Earth’s surface Γ0, condition (31) turns to the following:

σ1∇U1 · n1,0 = 0. (32)
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From (24)–(32), it is possible to obtain a closed formulation of the prob-
lem for the electric potential U :

div(σ∇U) = 0 in Ωc, (33)

σ1∇U1 · n1,0 = 0 on Γ0, (34)

σk∇Uk · nk,l − σl∇U l · nk,l = (σk − σl)E i · nk,l on Sk,l, (35)

U = 0 on Γ ∩ Ωc
. (36)

The electric potential U can be calculated at each instant and depends
only on the current values of the primary electric field E i on the interface
between the conducting media Sk,l. Let us rearrange the term with the
potential to the right-hand side of equation (24) and introduce the Lagrange
factors P into the conducting subdomain Ωc:

rot
1
µ

rotA + σ
∂A

∂t
− σ∇P = (σ − σ1)E i − σ∇U in Ωc. (37)

Let us provide the problem with boundary conditions for the Lagrange
factors:

∇P · n1,0 = 0 on Γ0, (38)

P = 0 on Γ ∩ Ωc
. (39)

Consider the initial data to be known [2]:

A
∣∣
t=0

= A0, Φ
∣∣
t=0

= Φ0.

Now, formulate the generalized statements of the problems. The problem
for the magnetic scalar potential Φ is solved with the help of a subspace of
the functions HΦ ⊂ H1(Ω0) with zero trace on the boundary Γ ∩ Ω0. For
the vector magnetic potential A we introduce a subspace of the functions
HA ⊂ H(rot,Ωc) with zero tangent trace on the boundary Γ ∩ Ωc. For the
Lagrange factors and the scalar electric potential we introduce a subspace
HU ⊂ H1(Ωc) of the functions with zero trace on the boundary Γ ∩ Ωc.

At first, we formulate a generalized problem appropriate to problem
(33)–(36) for the scalar potential U :

Find a function U ∈ C0((0, T );HU ) such that ∀t ∈ (0, T ) and ∀V ∈ HU∫
Ωc

σ∇U · ∇V dΩ =
∑

(k,l) 6=(1,0)

∫
Sk,l

V (σk − σl)E i · nk,l dS. (40)

Now we formulate the problems for magnetic potentials and the Lagrange
factor appropriate to problem (25)–(30), (37)–(39) in assumption that the
scalar electric potential U is the function defined from (40):
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Find functions

Φ ∈ C0((0, T );HΦ), (A, P ) ∈ C1(0, T );HA)× C0((0, T );HU )

such that ∀t ∈ (0, T ) and ∀W ∈ HΦ, ∀(B, V ) ∈ HA ×HU∫
Ω0

µ∇Φ · ∇W dΩ = −
∫

Γ0

W rotA · n1,0 dS,∫
Ωc

1
µ

rotA · rotB dΩ +
∂

∂t

∫
Ωc

σA ·B dΩ−
∫

Ωc

σ∇P ·B dΩ

=
∫

Ωc

(σ − σ1)E i ·B dΩ−
∫

Ωc

σ∇U ·B dΩ−
∫

Γ0

∇Φ× n1,0 ·B dS,

−
∫

Ωc

σA · ∇V dΩ = 0.

3. Numerical implementation

Let there be a regular family of triangulations T h of the domain Ω for which
the quasi-uniformity condition holds. Denote by Sh and Fh the spaces of
finite elements of the second order, which are conformal in the spacesH1(Ωc)
and H1(Ω0), respectively. Denote by Vh the space of Nedelek elements of the
first order and the second kind, which are conformal in the space H(rot,Ωc).
The degrees of freedom of functions from the spaces Sh and Fh are associated
with function values at the nodes and the middles of the triangulation edges,
and for functions from the space Vh –– with moments of vector functions on
the triangulation edges. Introduce the spaces Qh = Fh∩HΦ, Xh = Vh∩HA,
and Yh = Sh ∩HU . It is possible to formulate finite-dimensional (according
to spatial variables) analogues of projective problems for anomalous fields.

Find a function Uh ∈ C0((0, T );Yh) such that ∀t ∈ (0, T ) and ∀Vh ∈ Yh∫
Ωc

σ∇Uh · ∇Vh dΩ =
∑

(k,l) 6=(1,0)

∫
Sk,l

Vh (σk − σl)E i · nk,l dS.

Find functions

Φh ∈ C0((0, T );Qh), (Ah, Ph) ∈ C1((0, T );Xh)× C0((0, T );Yh)

such that ∀t ∈ (0, T ) and ∀Wh ∈ Qh, ∀(Bh, Vh) ∈ Xh × Yh∫
Ω0

µ∇Φh · ∇Wh dΩ = −
∫

Γ0

Wh rotAh · n1,0 dS,
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∫
Ωc

1
µ

rotAh · rotBh dΩ +
∂

∂t

∫
Ωc

σAh ·Bh dΩ−
∫

Ωc

σ∇Ph ·Bh dΩ

=
∫

Ωc

(σ − σ1)E i ·Bh dΩ−
∫

Ωc

σ∇Uh ·Bh dΩ−
∫

Γ0

∇Φh × n1,0 ·B dS,

−
∫

Ωc

σAh · ∇Vh dΩ = 0.

We now turn our attention to the linear algebraic equations system
(SLAE). To do this, let us introduce the bases of the spaces Qh, Xh and Yh:

Qh = span
{
ϕk; k = 1, . . . , NQ

}
, Xh = span

{
Ni; i = 1, . . . , NX

}
,

Yh = span
{
ψk; k = 1, . . . , NY

}
.

The desired functions Uh ∈ C0((0, T );Yh), Φh ∈ C0((0, T );Qh), Ah ∈
C1((0, T );Xh), Ph ∈ C0((0, T );Yh) can be presented as

Uh =
NY∑
l=1

ulψl, Φh =
NQ∑
k=1

fkϕk, Ah =
NX∑
j=1

ajNj , Ph =
NY∑
l=1

plψl.

The finite-dimensional projective problems are written down as SLAE
with respect to unknown expansion coefficients that depend on time:

Lu = e, Aa +
∂

∂t
Ma− BT p = F (f ,u),

−Ba = 0, Cf = G(a).

Here the following matrix-vector notations are used:

L =
{∫

Ω0

σ∇ψk · ∇ψj dΩ; k, j = 1, . . . , NY

}
, u = (u1, . . . , uNY

)T ,

e =

{ ∑
(k,l) 6=(1,0)

∫
Sk,l

ψj(σk − σl)E i · nk,l dS; j = 1, . . . , NY

}T

,

A =
{∫

Ωc

1
µ

rotNi · rotNj dΩ; i, j = 1, . . . , NX

}
, a = (a1, . . . , aNX

)T ,

B =
{∫

Ωc

σ∇ψk ·Ni dΩ; k = 1, . . . , NY , i = 1, . . . , NX

}
,

C =
{∫

Ω0

µ∇ϕk · ∇ϕi dΩ; k, i = 1, . . . , NQ

}
, f = (f1, . . . , fNQ

)T ,

M =
{∫

Ωc

σNi ·Nj dΩ; i, j = 1, . . . , NX

}
, p = (p1, . . . , pNY

)T ,
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F (f ,u) =

{∫
Ωc

(σ − σ1)E i ·Nj dΩ−
NY∑
l=1

ul

∫
Ωc

σ∇ψl ·Nj dΩ−

NQ∑
k=1

fk

∫
Γ0

∇ϕk × n1,0 ·Nj dS; j = 1, . . . , NX

}T

,

G(a) =

{
−

NX∑
j=1

aj

∫
Γ0

ϕk rotNj · n1,0 dS; k = 1, . . . , NQ

}T

.

Introduce the time grid {tn, n = 0, 1, . . .}. We admit that this grid
can be non-uniform. Denote the steps τn = tn − tn−1 and the middles of
intervals tn−1/2 = (tn + tn−1)/2, n = 1, 2, . . . The superscripts of the sought
for vectors an, fn−1/2 will be appropriate for a time step number. The
vectors a0 and f0 are assumed to be set by means of the initial conditions.

The scalar magnetic potential f1/2 in a non-conducting medium can be
calculated by the following scheme:

Lu0 = e0,

Aa1 + a0

2
+Ma1 − a0

τ1
− BT p1/2 = F (f0,u0),

−Ba1 = 0,

Cf1 = G(a1), f1/2 =
f1 + f0

2
.

Then we use a regular Krank–Nikolson scheme, starting from the step
n = 1:

Lun−1/2 = en−1/2,

Aan + an−1

2
+Man − an−1

τn
− BT pn−1/2 = F (fn−1/2,un−1/2),

−Ban = 0,

C(αnfn+1/2 + βnfn−1/2) = G(an).

The coefficients are dependent on the time steps:

αn =
τn

τn + τn+1
, βn = 1− αn.

Thus, at each iteration we solve a system of equations with respect to a
vector magnetic potential and a scalar electric potential in a conducting
medium as well as a system of equations for a scalar magnetic potential in
the air.
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4. Example of numerical calculation

A large share of effort goes into the calculation of a vector magnetic po-
tential and the Lagrange factor in a conducting medium. Let us give an
example, characteristic of sensitivity of the algorithm to the presence of
inhomogeneities in a conducting medium. For this purpose, consider a do-
main made from the two horizontal conducting layers with conductivities
σ1 = 3.2 S/m and σ2 = 0.5 S/m. The thickness of each layer equals 3000 m.
The lower medium has an inclusion in the shape of 250×1000×500 m par-
allelepiped with a contrasting conductivity σ3 = 0.01 S/m. The horizontal
dimensions of the layers make up 6000×6000 m. The common size of the
calculation domain is selected so as errors in the boundary conditions on
the external boundaries be of minor influence on the analysis of fields inside
the domain. The source is in the upper medium at a height of 500 m from
the second layer, the length of the power line being 500 m. The current

Figure 1
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of the source is Is = 50 A. Triangulation of the calculation domain covers
70,000 edges and 10,000 vertices. A relative accuracy of the solution to the
SLAE makes up ε = 10−10. We use a non-uniform time grid. The total
time interval of integration of a system of equations is T = 100 s, the total
number of time steps being about 200. The electric field is measured at the
interface between two conducting layers in the vertical plane of a source, at
a distance of 1000 m from the projection of the power line center onto the
interface.

Figure 1 shows y-component of the electric field at an instant t = 10 s.
The domain is presented as a vertical cross-section by the plane through the
source. The solid lines denote the interfaces of conducting media. The source
is shown as a white segment. The receiver is shown by a black dot on the
interface. The location of axes in space is shown in the left bottom part of
the figure. The violation of homogeneity of the electric field on the boundary
of a subdomain with a contrasting conductivity is well distinguished.

Figure 2 presents graphs of dependence of y-component of the electric
field on time at a measurement point. The solid line corresponds to the case
in question. The dotted line corresponds to the case without a contrasting
inclusion: σ3 = σ2. At the initial time, the level of a signal at the mea-
surements point is almost unvarying, and a relative difference between the
curves makes up about 6.5 %. Then the level of the signal falls. At the
instant t = 85 s, the level of the signals falls by three orders.

Figure 2
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