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Using borehole electroseismic
measurements to detect and describe
permeable zones*

Kholmatzhon Imomnazarov, Bakhodirzhon Imomnazarov

Formulas for the modified Darcy and Ohm laws are obtained. The diffusion
coefficient is shown to be a function of the conductivity of the liquid, elastic porous
body, and electrokinetic coefficient. A formula for the determination of porosity is
obtained.

1: Introduction

Investigation of the collecting properties of oil formations using the core
analysis data does not give a full picture of rocks in these formations due to
the incomplete core carryover and change in the properties of rocks as they
are extracted to the surface.

Methods based on the investigation of borehole operation play an impor-
tant role in studying the collecting properties of rocks. At the same time, -
field methods for determining the collecting properties of oil-containing for-
mations give general averaged values of the parameters for the entire cross-
section of the packet of layers under exploitation. These data are rather
convenient for hydrodynamic calculations. During the exploitation of a de-
posit, and sometimes even of each borehole in it, a more detailed study of
~ the collecting properties of the formation in its entire thickness is neces-
sary. Methods of petroleum geophysics, which are a powerful tool for the
non-core investigation of rocks in the well-bottom zone, can be used for the
detailed studies of geological cross-sections of deposits. These methods make
it possible to study physical properties of rocks in natural collectors [1].

Cracks or pervious structures in oil formations are important in the in-
vestigation and extraction of hydrocarbons. Sandy shales which can be
found in sedimentary formations are a very good example of such pervious
structures.

In [2, 3], the Stoneley wave was used to estimate the formation and detec-
tion of cracks. This wave is sensitive to properties of rocks, such as density,
elasticity moduli and, what is most important, permeability. Any change in
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the properties of these parameters due to the rock inhomogeneity leads to
change in the characteristics of the Stoneley wave propagation. Therefore,
inhomogeneity can be characterized with the help of measurements of the
Stoneley wave. Cracks in a borehole are an example of such inhomogeneity.
F.L. Paillet and J.E. White [4] observed the attenuation of the Stoneley
wave near pervious cracks. B.E. Hornby, D.L. Johnson, K.H. Winkler, and
R.A. Plumb [5] showed that pervious cracks also cause the reflected Stoneley
waves.

In 1996, O.V. Mikhailov, John Queen, and M. Nafi Toksoz [6] performed
field experiments to measure electric fields induced by the borehole Stoneley
wave.

The experimental data obtained showed large fracturing of the medium
under investigation. Analysis of video images of the borehole showed that
it had mainly horizontal cracks. Recording of the cracks’ density obtained
from these video images demonstrates that there are up to 10 cracks per
1 meter at some depths.

In the experiments, the average frequency of the Stoneley wave was
150 Hz, the dominant wavelength was 9.3 m, and the average velocity was
1400 m/s. To measure the vertical electric field caused by the Stoneley wave,
a pair of electrodes placed in the borehole liquid was used in [6]. The vertical
electric field measured by the pair of electrodes is a ratio of the potential
difference between the electrodes to the distance between them.

Based on the model used in [7], the authors of [6] showed that the normal-
ized amplitude of the electric field (the ratio of the electric field to the pore
pressure in the borehole) generated by the Stoneley wave is proportional to
porosity:

E,
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Here E, is the vertical component of the electric field in the borehole, P,
is the pressure in the borehole, Iy(z) and Ky(z) are the modified zero-order
Bessel functions of the first and second kinds, respectively, ¢, is the Stoneley
wave velocity with the circular frequency w, ¢ is the zeta-potential, i is the
viscosity of the liquid, a is the tortuosity, € is the dielectric permeability of
the liquid, oy and o, are the conductivities of the liquid and elastic porous
body, respectively, and R} is the borehole radius.

Note that in accordance with this formula porosity does not depend on
some important parameters, such as permeability, as well as on the physical
density of the liquid and elastic porous body. .

‘Figure 1 shows distributions with depth of the measured normalized
electric field E/P (first curve), conductivity of the elastic porous body o,
(second curve), the porosity dy calculated by formula (1) (third curve), and
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the averaged fracture density N (fourth curve). In the figure, one can see a
strong correlation of the normalized amplitudes of the electric field caused
by the Stoneley wave with the averaged fracture density.

To determine the permeability k, the following formula is proposed in [8]:

k= dojs 2

= — 2
weaops M (2)

Here p; is the physical density of the conducting liquid, w, is the critical fre-
quency in the Biot theory, and M is a non-dimensional parameter depending
on the geometry of pores.

It was assumed in the experiments that the frequency of the Stoneley
wave is less than w.. This assumption is equivalent to the postulate that
the permeability k is smaller than 10 & (darcies) [6]. Unfortunately, no
experimental data for permeability are presented in [6)].

In this paper, using the mathematical model of a conducting liquid
through a conducting elastic porous medium [9, 10], we verify the correct-
ness of the experimental data [6]. Formulas for the determination of porosity
and permeability, which differ from (1) and (2), are obtained. The calcu-
lated porosity (at the given permeability) is in a good qualitative agreement
with that calculated by using formula (1) in [6]. At the same time, the per-
meability coefficients calculated by the model [9, 10] (at the given porosity
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found by using formula (1)) differ from the permeability calculated with the
help of (2) in [6]. As noted in [1], the permeability coefficient of rocks in
oil and gas formations is less than 2 or 3 8, and is seldom greater. The
permeability calculated by the model confirms this statement.

It has been shown, first, that the modified Darcy and Ohm laws differ
from those proposed in [11-13],

V= —,—’_z-Vp BN, (3)

J = —LVp —04VU, (4)
and in [14],

V= —ng _ LLE, (5)

J = LyVp+dyosE. (6)

Here V is the 3D velocity of the liquid per unit volume, J is the electric
current density, U is the electric field potential, and L; = Ly is the elec-
trokinetic coefficient.

In this case, the coefficients in the determination of the electric current
density depend on permeability (in contrast to [6, 7, 11-14]), as well as on
the physical densities of the elastic porous body and liquid.

Second, in contrast to [15], the diffusion coefficient is a function of the
conductivity of the liquid and elastic porous body as well as of the electroki-
netic coefficient.

Third, in the limiting case the Helmholtz—Smolukhovsky law

e¢

E=—
dmpo s

(7)

is satisfied.

2. A modified Darcy law with allowance for
electric current density

Here we show that the Darcy law modified with allowance for current density
is obtained in the particular case of the mathematical model of a conducting
liquid through a conducting porous medium in [9, 10]. An equation for the
pore pressure distribution is obtained. It turned out here that the diffusion
coefficient is a function of the electrokinetic coefficient.

Let us consider the simplest situation in which viscosity and heat conduc-
tion effects are not taken into account. With a linear accuracy, the equation
of motion of a conducting liquid (v = 0, w = 0, B = 0) has the following
form (cf. [9, 10]):
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plIv=——- —E. ‘ (8)

Here p = p; + ps, p1 and p, are the partial densities of the conducting liquid
and conducting elastic porous body, respectively, x is the friction coefficient,
and 1 is the electrokinetic coefficient. These coefficients and the conductivity
o = o4 + o, satisfy the inequality [10],

ox—72>0. 9)

Note, in particular, that the theory in [9] admits that the Darcy [16] and
Helmholtz—Smolukhovsky (7) laws are satisfied. Actually, assuming in (8)
that E = 0, we obtain the Darcy law
.

Xpp1

At v = 0, from (8) we obtain the Helmholtz—Smolukhovsky formula

Y
'

FE =

Comparing these formulas with (3) (in the case when L; = 0) and (5), we
obtain the following expressions for the determination of the friction and
electrokinetic coefficients:

i
Y 10
X kppi (10)
B _ 4mpoy

=—= : 11

== (11)

It should be noted that the electrokinetic coefficient is proportional to the
viscosity coefficient, but does not depend on the permeability coefficient of
the conducting liquid. '

Substituting (8) into the definition of the current density [10], we obtain

-
B R, .. i ) (12)
Xp X
Following [6], we write equations for the electric field E and the current
density J,
divJ =0, (13)

rot E = 0. (14)

Let us represent the electric intensity (12) in terms of the pore pressure and
the current density, and substitute the expression obtained into (8). As a
result, the modified Darcy law has the following form:
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ploxy?) ox — 2

pv = — J 3 (15)
Substituting these relations into the conservation law of mass and taking
into account (13), we obtain the following heat conduction equation for the
pore pressure:

Here c; is the velocity of the liquid. _
Comparing formulas (3), (4) (~VU = E) and (5), (6) with formulas (8)
and (12), we see that
L, # L,.

3. Pore pressure distribution generated by
the Stoneley wave in the near-borehole space

In this section, we solve a model axially symmetric problem for pore pressure
distribution generated by the Stoneley wave in an infinite liquid-saturated
porous medium with a cylindrical cavity of radius ry and infinite length
(borehole). A pressure pg exp(—iwt + iwz/c,) is specified at the boundary
of this medium. Mathematically, the problem is formulated as follows: it is
necessary to determine pore pressure distributions from the relations

2 1d 2
(ch.—g i Z)Pc =0, r<r, (16)
d? 1d i w
(F‘l‘;a—z—f-%ﬁ)p—o, > 7, (17)
pclr:ro—[) = plr=r0+0- (18)
. ac?
In equation (17), D = o)

Bounded solutions of system (16)—(18) have the following form:

ID "“-)'-‘l" X . w
pe(t,r2) = po#e"“"”‘az, r <, (19)
0(;7‘0)

Thus, the electrokinetic coefficient does not affect the pore pressure dis-
tribution in the borehole. It affects the pore pressure distribution in the
near-borehole space.

(20)
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4. Electric field distribution generated by the
Stoneley wave in the borehole and
near-borehole space

In this section, formulas for the calculation of electric intensity distribution
generated by the Stoneley wave in the borehole and near-borehole space are
obtained.

It follows from equation (14) that

E = -VU. ' (21)

Then the potentials in the borehole and near-borehole space satisfy the
Laplace and the Poisson equations, respectively:

AU, = 0, (22)

2
IX=V AU = — L Ap. (23)
X PX

On the borehole wall, the electric field potential and the normal compo-
nent of electric current are continuous,

oU,

ox — vy U 9
Uc|r=r0—0=U|r=ro+0, of ar = _95_7___ l_p

= + . 24
r=ro-0 X or XPa"‘ r=ro+0 ( )
The axially symmetric bounded solutions of equations (22) and (23) have
the following form:

I|%r) . .. "
U(t,r,2z) = AIMe‘WH'EZ, r < 1o, (25)
1"0(%1‘0) :
Y
Ut,r,z) = ————p(t,rz2) +
(tm2) = ~—Lpltr2)
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Here p(t,r,2) is determined with the help of formula (20), and A; and A
are arbitrary constants.

Substituting (25) and (26) into (24), we obtain the following system of
linear non-homogeneous algebraic equations for A; and Aj:

r > 1. (26)

2 Iy Zro) K1 Em0
A = - . svPo + Az, —opd; = IXY_ 4, (c’ ) (c' )
P(UX - ) I]_ (E%T'Q) K@(:—‘TD)
Solutions of this system of linear non-homogeneous algebraic equations have
the following form: R
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Substituting these coefficients into (25) and (26), we obtain a solution for
electric potentials in the borehole and near-borehole space. The vertical
component of the electric field in the borehole is

s = 5 n) (T i)
[+

8

Io(—ﬁlr) s s

Cs e—wt+zﬁz
w .

Iy (;;f‘o)

Hence, using the expression for pore pressure in the borehole (19), we obtain

, T <rp. (27)

Ei(tr2) _ L ("X -7 ‘o 5 (f’"."'ﬂ) Ko(;“i—ro) ) =1 28)
pe(t,r, 2) N Cs PX X fIO(fff'o) Kl(z‘”‘-ro) .

Thus, we see that the ratio between the vertical component of electric in-
tensity E, in the borehole and the pressure distribution in the borehole
Poh is a function of porosity and, in contrast to [6], it is also a function of
permeability and physical densities of the elastic porous body and liquid.
Using (10) and (11), we obtain from (28) after simple transformations

“’) (a’ + &fIl (£r0) Ko(&ro) ) _1. (29)

@ f(gro) K1 (2m)

P_k(m
P:_ﬁ(ﬁ + 161

Pc
E,

Cs

Hence, using the definitions of partial densities p; = p{ do, ps = pI(1 — dp)
[17], we obtain:

o+oy : (%f‘o) Ko (;—";7‘0)
do=24 Io(&ro) Ka (2mo . (30)
pif p{ = P{ (a . I (E:"U) KD(%TU)) + _’;(ﬂz +18|
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Here p{ and pf are the physical densities of the conducting liquid and con-
ducting elastic porous body, respectively.

Notice that this formula fundamentally differs from (1). Moreover, poros-
ity depends on permeability, and on the ratio between the physical density
of the elastic porous body and that of the liquid.

5. Numerical modeling. Comparison of results
with experimental data for borehole
observations

The porosity distribution for granite was obtained from electroseismic ex-
perimental data by using formula (30) [6]. The physical density of the
conducting elastic porous body and the permeability coefficient k& took the
following values: pf = 2650 kg/m3 [15] and k = 1.7-10~° 8. Porosity dis-
tribution for a depth range from 19 to 137 m is presented in Figure 2. This
result is in good agreement with the averaged fracture density experimen-
tally determined (see curve 4 in Figure 1). The calculated distribution of
the function G(z) = Eﬁ% —?(z) is given in Figure 3. One can see from
the plot of the function G(z) that it is distinctly different from zero, that
is, inequality (9) is valid. Physically, this means that the law of entropy
increase is satisfied.
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~Then, if we assume that the permeability coefficient is unknown and
that, in accordance with formula (2), the porosity is known, we have

- £(a G K°(5’T"°)> (,62 + 18| cﬁ) Tk

f
n\" () s (3
Plots for the permeability coefficients (at the given porosity calculated
by using formula (1)), are given in Figures 4 and 5. The permeability co-
efficients calculated by using the model are different from the permeability
calculated by formula (2) [6]. As noted in [1], the permeability coefficient of

Pe
E,
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rocks in oil and gas formations is less than 2-3 8, and is seldom greater.

The permeability calculated by the model confirms this statement.

Thus, the numerical calculations and their comparison with experimental

data show that measurements of electroseismic phenomena caused by the
Stoneley wave can be used to characterize the pervious formations.
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