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On a problem for a one-dimensional non-local
rock destruction system

Bunyod Imomnazarov

Abstract. In this paper, a solution to an initial boundary value problem for a
one-dimensional non-local system for the destruction of rocks is constructed.
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The technogenic deformation of massifs of rocks causes spontaneous for-
mation of high-loaded zones around the cavities being formed. The initial
destruction occurs using special facilities. As a result of an abrupt increase
of stresses at the massif contour, there simultaneously develops a sponta-
neous disintegration process in all directions with different intensities. Deep
in the massif there forms a zonal structure of stressed-deformed state (SDS)
of the enclosing rocks.

An experimental investigation shows that around mines there emerges
a zonal periodic structure in the form of alternating zones of destructed
and relatively undestructed rocks [1–5]. This phenomenon contradicts the
concepts of classical rock and massif mechanics [6], according to which a
front of unlimited deformation (destruction, disintegration) moves from the
mine contour deep into the massif with the formation of zones of plastic,
elastoplastic, and elastic states of rocks.

This effect was probably first observed in a gold mine in South Africa (see
[7, 8]). Later it was independently discovered and described in the USSR
[1–5, 9, 10]. Numerous scientific papers are devoted to various aspects of
this phenomenon. It is well known that in models of elastic media the metric
tensor of elastic deformations characterizes the deformation energy and is
a parameter of medium’s state. In the process of inelastic deformation,
the curvature tensor generated by the metric deformation tensor becomes
nonzero. In [11] it was proposed to consider the curvature tensor as an
additional parameter of the state of the medium affecting its energy (the
internal energy of the medium depends on the curvature tensor invariants)
and, hence, the entire deformation dynamics.

Papers [12] and [13] present the equations describing inelastic deforma-
tions taking into account the dependence of the internal energy on the cur-
vature calculated using the metric tensor of elastic deformations. In these
papers, the scalar curvature characterizing the inconsistency of deformations
is called the destruction parameter. The authors have solved the problem
of stationary deformations around a radial cavity and have shown that the
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stressed state is radially periodic. In [14], a spatially non-local model for
inelastic deformations of solid bodies was obtained and investigated. The
non-local character of deformations is taken into account with the help of an
additional parameter of state, in additional to classical parameters, such as
the tensors of stresses and deformations. This additional parameter is the
curvature tensor expressed in terms of the metric tensor of deformations, and
it is called the destruction parameter. In the case of small deformations, this
is equivalent to the Saint–Venant incompatibility tensor. The thermody-
namic properties of the model were studied, and non-stationary differential
equations for a spatially non-local model consisting of the equations of the
dynamic elasticity theory and the parabolic equation for the destruction
parameter were formulated. The constructed model can be used to study
the rock destruction problem. As an example, a one-dimensional problem
of deformation of a half-plane loaded with normal stresses is considered.
The statement of non-stationary problem is presented, and a qualitative
agreement with the available experimental data is reached.

Let us consider a non-stationary statement of a one-dimensional problem
of deformation of a half-plane x > 0 under the action of normal stresses. The
velocity u(t, x), the stresses σxx(t, x), σzz(t, x), and the parameter γ(t, x)
satisfy the system of one-dimensional differential equations
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with zero initial Cauchy data and the boundary conditions [14]

σxx|x=0 = −P (t), γ|x=0 = 0,
∂γ

∂x

∣∣∣
x=0

= 0, (2)

where

ψ1 = K̃ζ + 4µξ/3, ψ2 = K̃ζ − 2µξ/3, ψ3 = 2(K̃ζ + µξ/3),

K̃ = λ̃+ 2µ/3, λ̃ = λ− β2/α,

ρ is the density, α, β, λ, and µ are the parameters of expansion in the
equation of state, and ξ, ζ are the kinetic coefficients.
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Applying the Fourier transform with respect to time to both sides of
relations (1) and (2) and after simple transformations, we obtain for the
function γ(ω, x) the following sixth-order ordinary differential equation:
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where ω is the frequency,

A = (ψ10−ψ5ψ9−ψ6ψ8)/(ψ5ψ10), B = (ψ9+ψ4ψ8+i(ψ5+ψ6ψ7))/(ψ5ψ10),

C = (1− ψ4ψ7)/(ψ5ψ10), ψ4 =
3βK̃ζ(2µξ − i ω)/α

2K̃µζξ/3− ω2 − i ω(3K̃ζ + 2µξ)
,

ψ5 =
[2µ(ψ3 − λξ)− i ω(2µ− λ)]/(ρω)

2K̃µζξ/3− ω2 − i ω(3K̃ζ + 2µξ)
, i =

√
−1,

ψ6 =
4ωψ2

2K̃µζξ/3− ω2 − i ω(3K̃ζ + 2µξ)
+
β

α
ψ5,

ψ7 =
βζ(2µξ − i ω)

3β
2

α ζ(2µξ/3− iω)− i ω(ψ3 − iω)
,

ψ8 =

4
3α(2ζξ(µ− K̃)− iω(ζ − ξ)) + i βρω (2µ(ξ + 2ζ)/3− i ω)

3β
2

α ζ(2µξ/3− iω)− i ω(ψ3 − iω)
,

ψ9 = 2β
i βρω

µ
α(ξ + 2ζ)/3− 2λξζ

3β
2

α ζ(2µξ/3− iω)− i ω(ψ3 − iω)
,

ψ10 =
4

3

α(ξ + 2ζ)
(

2ω + β
α
λ
ρω

)
3β

2

α ζ(2µξ/3− iω)− i ω(ψ3 − iω)
.

The general solution to equation (3) has the form

γ = c1e
−ν1x + c2e

−ν2x + c3e
−ν3x, (5)

where νk are the roots with positive real parts of the corresponding char-
acteristic polynomial of the operator L and ck are arbitrary constants,
k = 1, 2, 3.

Substituting (5) into (4), we obtain a non-uniform system of linear equa-
tions with respect to ck, k = 1, 2, 3,
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c1 + c2 + c3 = 0,

ν1c1 + ν2c2 + ν3c3 = 0, (6)
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where ψ11 = (ψ5ψ9 + ψ6ψ8)/(ψ5ψ7 + iψ8), ψ12 = ψ5ψ10/(ψ5ψ7 + iψ8).
The solution to system (6) is evident:
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The component σxx of the stress tensor is determined by the formula
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The velocity u and the component σzz of the stress tensor are determined
by the formulas
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Numerical results

In this section, numerical results of the simulation of seismic wave fields
for the test media models are presented. As a model, a medium consisting
of a half-space loaded with normal stress is given. The medium with the
following material constants was considered in [14]:

ρ = 2.2 g/cm3, λ = 12.63 GPa, µ = 4.95 GPa,

α = 3.14 · 10−3 kg·m3/s2, β = −5.73 · 101 kg·m/s2,

ξ = ζ = 10−4 m·s/kg.
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Amplitude spectra for σxx(x, ω) (left) and γ(x, ω) (right) for x = 10−5 m

As a probing signal, a pulse with a bell envelope represented in the
spectral domain was selected domain in the form:
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where f is the dominant frequency equal to 1 Hz.
The results of numerical calculations of the amplitude spectra σ(x, ω)

and the function γ(x, ω) at a fixed value x for x = 10−5m are shown in the
figure. It can be seen from the figure that the spectra maximum shifts to
the low-frequency domain.
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