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Theorem of the mean for inhomogeneous
poroelastic static system

Kholmatzhon Imomnazarov, Nasridin Zhabborov

Abstract. Relations of the mean for a vector of displacement of an elastic porous
body and pore pressure for an inhomogeneous poroelastic static system, when mass
forces are present and energy dissipation is absent, are obtained.

1. Introduction

Direct and inverse theorems about the mean for the mathematical physics
equations represent not only theoretical [1], but a practical interest as well.
Also, relations of the mean are most useful in computational mathematics as
they give an effective method of constructing difference schemes. In Monte
Carlo methods, the mean value theorems play a special role as they are
basic for constructing algorithms of a random walk by spheres [2, 3]. For
many basic equations and system equations such theorems have been proved
(see [1,2]). In [4,5], a relation of the mean for the inhomogeneous system of
the Lame equations is obtained.

The simulation of two-phase flows in heterogenous porous media is widely
used in oil production. For example, the simulation of a reservoir is intended
for reconstructing a geological history of a sedimentary basin and, in par-
ticular, of dislocation of a hydrocarbon component on the geological time
scale. The simulation of a reservoir deals with understanding and prediction
of the fluid flows occurring in the oil production processes. On the other
hand, the simulation of two-phase flows in porous media plays an important
role for the prediction of earthquakes preparation as it is an energy intensive
process.

In the given paper, using the method proposed in [4, 5], the relations
of the mean for inhomogeneous equations of a poroelastic static system are
obtained. Namely, the relations of the mean for a vector of displacement of
an elastic porous body and pore pressure are obtained. The knowledge of
these values is sufficient, on the one hand, for the evaluation of reservoirs in
oil production and, on the other hand, for the definition of a dilatancy area
in the earthquakes prediction problems.
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2. Area of dilatancy

The interaction between regional and local tectonic forces in seismic-prone
zones can lead to the appearance of areas of a high concentration of tec-
tonic stresses. After a certain time, destruction of the medium resulting
in an earthquake takes place in some of these areas. Although the earth-
quake preparation process lasts sufficiently long (several years), it is an
energy intensive process. A considerable rheological change in the medium
takes place, and anomalous zones of geophysical fields of various nature are
formed. Cracks opening in the zones with increased values of shearing and
tensile stresses is the most universal mechanism of developing changes in a
medium. Such zones are formed in the vicinity of the sources of future earth-
quakes if in this case the spatial distribution of forces is non-uniform. The
majority of seismologists consider that the initial stage of opening cracks
and the subsequent state of the medium, when the destruction process is
developing, are associated with the dilatancy of the medium [6,7].

Dilatancy is a nonlinear loosening of a medium due to formation of cracks
due to a shear. This takes place when tangential stresses exceed a certain
threshold. A dilatancy area is considered to incorporate a set of elastic
porous medium points, for which at a given stress field {σij} the following
condition is fulfilled:

Dτ ≡ τ − α(P + ρgz)− Y ≥ 0, (1)

where ρ is the density of rocks, g is the acceleration of gravity, z is the
depth of a point, P is the hydrodynamic pressure, α is the internal friction
coefficient, Y is the cohesion of rocks, τ is the intensity of tangential stresses

τ =
√

3
2

[
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6 (σ2

12 + σ2
13 + σ2

23)
]1/2

.

Condition (1) coincides with the Schleicher–Nadai criterion of material de-
struction under the action of shearing loads. It satisfactorily describes the
beginning of the rock destruction process. It can also be used at the “pre-
destruction” stage (when loading constitutes up to 60–90 % of the critical
value) for the qualitative description of the shape of areas with intensifica-
tion of cracks opening.

3. Statement of the problem

Let us assume that the bounded domain Ω̃ ⊂ R3 is filled with a homoge-
neous isotropic elastic porous medium. The elastic porous static state of the
medium Ω̃ in the presence of mass sources and in the absence of dissipation
of energy is described by the system of the differential equations [8–10]:
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ρ0,s

ρ0

∂P

∂xi
+

3∑
k=1

∂h̄ik
∂xk

= ρ0,sfi,
ρ0,l

ρ0

∂P

∂xi
= ρ0,lfi, i = 1, 2, 3. (2)

Here h̄ik is a stress tensor, P is the pore pressure, ρ0 = ρ0,l + ρ0,s, ρ0,l and
ρ0,s are partial densities of fluid and an elastic porous body, respectively,
f = (f1, f2, f3) is the mass force. The total stress tensor of the elastic
porous body looks like

σik = −h̄ik − Pδik, (3)

h̄ik = −µ
(∂Ui
∂xk

+
∂Uk
∂xi

)
−
(
λ− ρ0,s

ρ0
K
)
δik div U +

ρ0,l

ρ0
Kδik div V , (4)

P =
(
K − (ρ2

0α̂+K/ρ0)ρ0,s

)
div U − (ρ2

0α̂+K/ρ0)ρ0,l div V , (5)

where δik is the Kronecker delta, U = (U1, U2, U3) is the vector of displace-
ment of the elastic porous body, V = (V1, V2, V3) is the vector of displace-
ment of fluid, div U = U1,1 + U2,2 + U3,3, Ui,j = ∂Ui

∂xj
, K = λ + 2

3
µ, α̂, λ, µ

are the constants from the equation of state [9].

4. A system of differential equations about the vector of
displacement of an elastic porous body and pore pressure

Let us exclude from system (2) the thermodynamic degrees of freedom, using
their expressions (4) and (5). Then, using the second equation of system
(2), we exclude a displacement of fluid from the first equation of system
(2). Further, we act with a divergence operator on both sides of the second
equation of system (2). As a result, we will obtain an inhomogeneous system
of second order differential equations of the vector of displacement of the
elastic porous body U and the pore pressure P :

LU = − K

α̂+K
ρ0f , ∆P = F. (6)

In system (6), F = ρ0 div f , LU = µ∆U + λ̃∇ div U , λ̃ = λ− K

α̂+K
K.

Thus, system (2) was reduced to two independent equations concerning
the vector of displacement of the elastic porous body U and the pore pres-
sure P . Theorems of the mean for these equations are proved in [1,4,5,11].
From the results of these papers follow:

Theorem 1. Let Ω ⊂ R3 be a bounded domain, restricted by a smooth
enough surface ∂Ω, U ∈ C2(Ω) ∩ C1(Ω), LU being absolutely integrable in
Ω. Then the following representation is valid :
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Uk(r) =
∫
∂Ω

{
Γk(r − q) · Tn[U(q)]−U(q) · Tn[Γk(r − q)]

}
dSq −∫

Ω
Γk(r − q) · LU(q) dVq, k = 1, 2, 3, ∀r ∈ Ω, (7)

where

Γk(r) =
3∑
i=1

Uikei =
1

16πµ(1− ν)

[
(3− 4ν)

ek
r

+
r

r3
xk

]
,

Tn(U) =
3∑

i,j=1

σ̃ijniej = 2µ
∂U

∂n
+ λ̃n div U + µn× (∇×U).

Here σ̃ij = λ̃ div Uδij +µ(Ui,j +Uj,i) is a stress tensor of the elastic medium

and ν = λ̃

2(λ̃+ µ)
.

Lemma 1. For an arbitrary function U ∈ C2(UR) ∩ C1(UR), the equality∫
UR

U(q)dVq =
1− 2ν

4(2− 3ν)

{
1
µ

∫
UR

(q2 −R2)LU(q) dVq+

2R
∫
∂UR

[U(q) +
q(q ·U)
R2

] dSq

}
is valid.

Theorem 2 (about mean). Let Ω be an arbitrary domain, U ∈ C3(Ω),
P ∈ C2(Ω) are a solution of system (6). Then for any ball UR(r) ⊆ Ω the
following equalities are valid :

U(r) =
3

16πR2(2− 3ν)

∫
∂UR(r)

{
(1− 4ν)U(q) + 5

p(p ·U(q))
R2

}
dSq −

ρ0K

ρ3
0α̂+K

1
16πµ(1− ν)

∫
UR(r)

{
(3− 4ν)

( 1
R
− 1
p

)
f(q) +( 1

R3
− 1
p3

)
p(p · f(q))

}
dVq −

ρ0K

ρ3
0α̂+K

3− 2ν
32πR3µ(1− ν)(2− 3ν)

∫
UR(r)

(R2 − p2)f(q) dVq, (8)

P (r) =
1

4πR2

∫
∂UR(r)

P (q) dSq −
ρ0

4π

∫
UR(r)

( 1
R
− 1
p

)
div f(q) dVq, (9)

where p = q − r.
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Theorem 3 (inverse theorem about mean). Let Ω ⊂ R3 be an arbitrary
domain U ∈ C3(Ω), P ∈ C2(Ω), f ∈ C1(Ω) and for any ball UR(r) ⊆ Ω
these functions satisfy relations of the mean (8), (9). Then the functions U
and P are solutions of system (6).

Proof. Following [13], it is sufficient to prove the statement of the theorem
for U in the case r = 0. The proof for the pore pressure P will be carried
out in a similar manner. Clearly, in the ball UR ⊆ Ω for U ∈ C3(UR)
representation (7) is valid:

Uk(0) =
∫
∂UR

{
Γk(q) · Tn[U(q)]−U(q) · Tn[Γk(q)]

}
dSq −∫

UR

Γk(q) · LU(q) dVq, k = 1, 2, 3. (10)

According to (10) with the use of the above lemma, similarly to [7, 13]
we obtain

Uk(0) =
3

16πR2(2− 3ν)

∫
∂UR

{(1− 4ν)Uk + 5
xk(q ·U(q))

R2
} dSq +∫

UR

{(
Γ̂k(q)− Γk(q)

)
LU(q) +

(3− 2ν)(R2 − p2)
32πR3µ(1− ν)(2− 3ν)

LUk

}
dVq, (11)

where

Γ̂k(r) =
1

16πµ(1− ν)

[
(3− 4ν)

ek
R

+
r

R3
xk

]
.

Substituting into (11) relation about the mean (8), we obtain∫
UR

{(
Γ̂k(q)− Γk(q)

)
(LU(q)− g(q)) +

(3− 2ν)(R2 − p2)
32πR3µ(1− ν)(2− 3ν)

(LUk − gk)
}
dVq = 0, (12)

where

gk = − K

ρ3
0α̂+K

ρ0fk, k = 1, 2, 3.

Using the definition of the functions Γk and Γ̂k we obtain from (12)
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∫
UR

{( xk
R3
− xk
r3

)(
r · (LU(q)− g(q))

)
+(

(3− 4ν)
( 1
R
− 1
r

)
+

3− 2ν
2(2− 3ν)

( 1
R
− r2

R3

))
(LUk − gk)

}
dVq = 0. (13)

Equality (13) is valid for all sufficiently small R, then having divided it into
R2 and passing to a limit at R→ 0, with allowance for the equalities [13]

1
R2

∫
UR

(1
r
− 1
R

)
g(r)dVr →

2π
3

g(0),

1
R2

∫
UR

( 1
R
− r2

R3

)
g(r)dVr →

8π
15

g(0),

1
R2

∫
UR

( 1
r3
− 1
R3

)
xk(r · g(r))dVr →

2π
5
gk(0),

we find that
C[LUk(0)− gk(0)] = 0,

where C = 2(1− ν)(2ν − 1)

2− 3ν
for ν < 1/2, hence

LU(0)− g(0) = 0.

The theorem is proved.

Given the fields of the stresses and the pore pressure, it is possible to
define a dilatancy area in a porous medium according to formula (1).
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