Conservation laws for the two-velocity hydrodynamics equations with one pressure*

Kh.Kh. Imomnazarov, P.V. Korobov, N.M. Zhabborov

Abstract

A series of the differential identities connecting velocities, pressure and body force in the two-velocity hydrodynamics equations with equilibrium of pressure phases are found. Some of these identities have a divergent form and can be considered to be certain conservation laws. It is detected that the flow functions for the plane motion satisfy the Monge-Ampere system of equations.

Keywords. Two-velocity hydrodynamics, hyperbolic system.

1. Introduction

In the vector analysis, in the theory of field and in the mathematical physics, an important role is played by differential identities of a classical kind. In paper [1], the generalization of some identities of the theory of inverse problems for the kinetic equations is obtained. In paper [2], a set of formulas of the vector analysis in the form of differential identities of second and third orders connecting the Laplacian of an arbitrary smooth scalar function $u(x, y)$ of two independent variables, the module of its gradient, the angular value and the direction of its gradient have been obtained. Representation of the Gaussian curvature of a surface in the three-dimensional Euclidean space with a graph $z=u(x, y)$ is found. Some of its generalizations and similar formulas for a surface in a pseudo-Euclidean space are given. The results of paper [2] are generalized in [3] in the two directions: a three-dimensional case and any (not necessarily potential) smooth vector field \boldsymbol{v}. A set of formulas of the vector analysis in the form of differential identities which, on the one hand, connect the module $|\boldsymbol{v}|$ and the direction $\boldsymbol{\tau}$ of any smooth vector field $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau}$ in the three-dimensional $(\boldsymbol{v}=\boldsymbol{v}(x, y, z))$ and in the two-dimensional $(\boldsymbol{v}=\boldsymbol{v}(x, y))$ cases, are obtained. On the other hand, the formulas are found separately in the sense of the module $|\boldsymbol{v}|$ and the direction $\boldsymbol{\tau}$ of the vector field $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau}$. Namely, the basic identity to any smooth vector field \boldsymbol{v} explicitly compares a vector field $\boldsymbol{Q}=\boldsymbol{P}+\boldsymbol{S}$, where \boldsymbol{P} is defined only by the module $|\boldsymbol{v}|$ of the field \boldsymbol{v} and is potential both in a two-dimensional, and in a three-dimensional cases, and the field \boldsymbol{S} is defined only by the direction $\boldsymbol{\tau}$ of the field \boldsymbol{v} and is solenoidal in a

[^0]two-dimensional case. Applications of the identities obtained to the Euler hydrodynamic equation are presented.

In this paper, applications of the obtained identities [3] to the twovelocity hydrodynamics equations with one pressure are given.

2. A.G. Megrabov's differential identities connecting the modulus and the direction of a vector field

In paper [3], the following theorem was obtained:
Theorem 1. For any vector field $\boldsymbol{v}=\boldsymbol{v}(x, y, z)=|\boldsymbol{v}| \boldsymbol{\tau}$ with components $v_{k}(x, y, z) \in C^{1}(D), k=1,2,3$, the module $|\boldsymbol{v}| \neq 0$ in D and the direction $\boldsymbol{\tau}$, the following identity is valid

$$
\begin{equation*}
\boldsymbol{Q}=\boldsymbol{Q}(\boldsymbol{v})=\boldsymbol{P}(|\boldsymbol{v}|)+\boldsymbol{S}(\boldsymbol{\tau}), \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
\boldsymbol{Q}(\boldsymbol{v}) \stackrel{\text { def }}{=} \frac{\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v}}{|\boldsymbol{v}|^{2}}, \quad \boldsymbol{P}(|\boldsymbol{v}|) \stackrel{\text { def }}{=} \nabla \ln |\boldsymbol{v}|=\frac{\nabla|\boldsymbol{v}|^{2}}{|\boldsymbol{v}|^{2}} \tag{2}\\
\boldsymbol{S}=\boldsymbol{S}(\boldsymbol{\tau}) \stackrel{\text { def }}{=} \boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{\tau} \times \operatorname{rot} \boldsymbol{\tau}=\boldsymbol{Q}(\boldsymbol{v})-\boldsymbol{P}(|\boldsymbol{v}|) \tag{3}
\end{gather*}
$$

For the vector field \boldsymbol{S}, any of the following representations holds:

$$
\begin{equation*}
\boldsymbol{S}=\boldsymbol{S}(\boldsymbol{\tau})=\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}-\boldsymbol{\tau}_{s}=-\{(\boldsymbol{\tau} \times \nabla) \times \boldsymbol{\tau}+(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}\}=-\frac{(\boldsymbol{v} \times \nabla) \times \boldsymbol{v}}{|\boldsymbol{v}|^{2}} \tag{4}
\end{equation*}
$$

$\left(\boldsymbol{\tau}_{s}=(\boldsymbol{\tau} \cdot \nabla) \boldsymbol{\tau}=\operatorname{rot} \boldsymbol{\tau} \times \boldsymbol{\tau}\right.$ is a derivative of the vector $\boldsymbol{\tau}$ in the direction $\left.\boldsymbol{\tau}\right)$,

$$
\boldsymbol{S}=\operatorname{rot}(\alpha \boldsymbol{k})-\cos ^{2} \theta \operatorname{rot}(\alpha \boldsymbol{k}-\tan \theta \boldsymbol{\lambda})=\operatorname{rot}(\alpha \boldsymbol{k}+\cos \theta \boldsymbol{\psi})-2 \cos \theta \operatorname{rot} \boldsymbol{\psi},
$$

where $\boldsymbol{\lambda}=-\sin \alpha \boldsymbol{i}+\cos \alpha \boldsymbol{j}, \boldsymbol{\psi}=-\sin \theta \boldsymbol{\lambda}+\alpha \cos \theta \boldsymbol{k}$,

$$
\begin{equation*}
\boldsymbol{S}=-\nabla \alpha \times(\cos \theta \boldsymbol{\tau}-\boldsymbol{k})+\nabla \theta \times \boldsymbol{\lambda}, \quad \boldsymbol{S}=\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}-\kappa \boldsymbol{\nu} . \tag{6}
\end{equation*}
$$

Here κ is the curvature of the vector line of the field \boldsymbol{v} and $\boldsymbol{\nu}$ is its unit normal. The following formula is valid: $\kappa^{2}=\sin ^{2} \theta \alpha_{s}^{2}+\theta_{s}^{2}$, where $\alpha_{s}=$ $(\nabla \alpha \cdot \boldsymbol{\tau})$ and $\theta_{s}=(\nabla \theta \cdot \boldsymbol{\tau})$ are derivatives of the angles α and θ in the direction $\boldsymbol{\tau}$, respectively.

The basic identity (1) can also be presented in any of the forms:

$$
\boldsymbol{Q}+\boldsymbol{H}_{i}=\nabla \ln |\boldsymbol{v}|+\operatorname{rot} \boldsymbol{F}_{i}, \quad i=1,2,
$$

where $\boldsymbol{H}_{1}=\cos ^{2} \theta \operatorname{rot}(\alpha \boldsymbol{k}-\tan \theta \boldsymbol{\lambda}), \boldsymbol{H}_{2}=2 \cos \theta \operatorname{rot} \boldsymbol{\psi}, \boldsymbol{F}_{1}=\alpha \boldsymbol{k}, \boldsymbol{F}_{2}=$ $\alpha \boldsymbol{k}+\cos \theta \boldsymbol{\psi}$, thus the vectors $\boldsymbol{H}_{i}, \boldsymbol{F}_{i}$, as well as \boldsymbol{S}, are defined only by the angles α, θ, i.e. the direction $\boldsymbol{\tau}$ of the field \boldsymbol{v}.

If the presence of the property $|\boldsymbol{v}| \neq 0$ in D is not assumed, then (1) takes the form

$$
\boldsymbol{W}=\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v}=\nabla|\boldsymbol{v}|^{2}-\boldsymbol{V}
$$

where

$$
\begin{aligned}
& \boldsymbol{V} \stackrel{\text { def }}{=}-|\boldsymbol{v}|^{2} \boldsymbol{S}=\frac{1}{2} \nabla|\boldsymbol{v}|^{2}-\boldsymbol{v} \operatorname{div} \boldsymbol{v}-\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v} \\
& \quad=-|\boldsymbol{v}|^{2}\{\boldsymbol{\tau} \operatorname{div} \boldsymbol{\tau}+\boldsymbol{\tau} \times \operatorname{rot} \boldsymbol{\tau}\}=\boldsymbol{v} \times \nabla \times \boldsymbol{v} .
\end{aligned}
$$

Other formulas for \boldsymbol{W} and \boldsymbol{v} are obtained by substituting any expression for \boldsymbol{S} from (4)-(6) in the latter equality.

Theorem 2. Under condition of Theorem 1 and provided $v_{k}(x, y, z) \in$ $C^{2}(D), k=1,2,3$, the following formulas are valid:

$$
\operatorname{div} \boldsymbol{S}=-2 \sin \theta(\boldsymbol{\tau} \cdot \boldsymbol{B})=-\frac{2 \sin \theta(\boldsymbol{v} \cdot \boldsymbol{B})}{|\boldsymbol{v}|},
$$

where $\boldsymbol{B}=\nabla \alpha \times \nabla \theta=\operatorname{rot}(\alpha \nabla \theta)=-\operatorname{rot}(\theta \nabla \alpha)$. In addition, the following identity takes place

$$
\begin{aligned}
& \operatorname{div}\left(\boldsymbol{Q}-\boldsymbol{P}+\boldsymbol{H}_{i}\right)=0 \Longleftrightarrow \\
& \quad \operatorname{div}\left\{\frac{\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v}}{|\boldsymbol{v}|^{2}}-\nabla \ln |\boldsymbol{v}|+\boldsymbol{H}_{i}\right\}=0, \quad i=1,2,
\end{aligned}
$$

which can be considered to be a conservation law (its differential form) with the integrated form for a flux $\int_{S}\left(\left[\boldsymbol{Q}-\boldsymbol{P}+\boldsymbol{H}_{i}\right] \cdot \boldsymbol{\eta}\right) d S=0$, where S is a piecewise smooth boundary of the domain D with normal $\boldsymbol{\eta}$.

In Theorems 1 and 2, the following notations are used: symbols ($\boldsymbol{a} \cdot \boldsymbol{b}$) and $(\boldsymbol{a} \times \boldsymbol{b})$ denote the scalar and the vector products of \boldsymbol{a} and \boldsymbol{b}, respectively; ∇ is the Hamiltonian operator (a nabla); Δ is the Laplace operator; D is a domain in the space $x, y, z ; \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ are unit vectors on the axes x, y, z; $\boldsymbol{v}=\boldsymbol{v}(x, y, z)=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}+v_{3} \boldsymbol{k}$ is a vector field defined in $D, v_{k}=v_{k}(x, y, z)$ are scalar functions, $k=1,2,3,|\boldsymbol{v}|^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2} ; \alpha=\alpha(x, y, z)$ is the angle of the slope of the vector $v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}$ to the axis $O x$, so that $\cos \alpha=$ $v_{1} / \sqrt{v_{1}^{2}+v_{2}^{2}}, \sin \alpha=v_{2} / \sqrt{v_{1}^{2}+v_{2}^{2}}$, i.e. $\alpha(x, y, z)$ is the polar angle of a point ($\xi=v_{1}, \varsigma=v_{2}$) on the plane ξ, ς or the argument $\operatorname{Arg} w$ of a complex number $w=\xi+i \varsigma$ (i is an imaginary unit):

$$
\begin{equation*}
\alpha \stackrel{\text { def }}{=} \arctan \frac{v_{2}}{v_{1}}+(2 k+\delta) \pi, \quad k \in \mathbb{Z}, \tag{7}
\end{equation*}
$$

$\delta=0$ and $\delta=1$ in quadrants I, IV and II, III of the plane ξ, ς, respectively; $\theta=\theta(x, y, z)$ is the angle between the vector \boldsymbol{v} and the axis $O z: \theta \stackrel{\text { def }}{=}$
$\arccos \frac{v_{3}}{|\boldsymbol{v}|}$, so that $0 \leq \theta \leq \pi, \cos \theta=\frac{v_{3}}{|\boldsymbol{v}|}, \sin \theta=\frac{\sqrt{v_{1}^{2}+v_{2}^{2}}}{|\boldsymbol{v}|}$. This means that α, θ are spherical coordinates on the space $\xi=v_{1}, \varsigma=v_{2}, \zeta=v_{3}$. Thus, $\boldsymbol{v}=|\boldsymbol{v}| \boldsymbol{\tau}$, where $\boldsymbol{\tau}=\boldsymbol{\tau}(\alpha, \theta)=\cos \alpha \sin \theta \boldsymbol{i}+\sin \alpha \sin \theta \boldsymbol{j}+\cos \theta \boldsymbol{k}$ is the direction of the vector field $\boldsymbol{v}(|\boldsymbol{\tau}|=1)$.

In a two-dimensional case, $\boldsymbol{v}=\boldsymbol{v}(x, y)=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}=\boldsymbol{v}|\boldsymbol{\tau}|, v_{3} \equiv 0$, $\theta \equiv \pi / 2 \Rightarrow \boldsymbol{\tau}=\boldsymbol{\tau}(\alpha)=\cos \alpha \boldsymbol{i}+\sin \alpha \boldsymbol{j}$, the angle α being defined by formula $(7), \nabla \theta=\boldsymbol{B}=0 ; \forall \varphi(x, y) \in C^{1}(D)$, we have $\operatorname{rot}(\varphi \boldsymbol{k})=\varphi_{y} \boldsymbol{i}-\varphi_{x} \boldsymbol{j}$, where $\varphi_{x}=\frac{\partial \varphi}{\partial x}, \varphi_{y}=\frac{\partial \varphi}{\partial y}$.

From Theorem 1 follows

Theorem 3. For any plane vector field $\boldsymbol{v}(x, y)$ with the components $v_{k}(x, y) \in C^{1}(D), k=1,2$, the modulus $|\boldsymbol{v}| \neq 0$ in D and the direction $\boldsymbol{\tau}=\boldsymbol{\tau}(\alpha)$, we have the identity

$$
\begin{gather*}
\boldsymbol{Q} \stackrel{\text { def }}{=} \frac{\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\boldsymbol{v} \times \operatorname{rot} \boldsymbol{v}}{|\boldsymbol{v}|^{2}}=\nabla \ln |\boldsymbol{v}|+\operatorname{rot}(\alpha \boldsymbol{k}) \Longrightarrow \\
\operatorname{div} \boldsymbol{v}=(\{\nabla \ln |\boldsymbol{v}|+\operatorname{rot}(\alpha \boldsymbol{k})\} \cdot \boldsymbol{v}), \quad \operatorname{rot} \boldsymbol{v}=\{\nabla \ln |\boldsymbol{v}|+\operatorname{rot}(\alpha \boldsymbol{k})\} \times \boldsymbol{v} \tag{8}
\end{gather*}
$$

Thus, $\boldsymbol{S}=\operatorname{rot}(\alpha \boldsymbol{k}) \Rightarrow(\boldsymbol{S} \cdot \nabla \alpha)=0$, i.e., the vector lines of the vector field \boldsymbol{S} coincide with the lines of the level of the scalar field of the angles $\alpha(x, y)$. If $v_{k}(x, y) \in C^{2}(D), k=1,2$, the following identities are valid:

$$
\begin{aligned}
& \operatorname{div} \boldsymbol{S}=0, \quad \operatorname{rot} \boldsymbol{S}=-(\Delta \alpha) \boldsymbol{k} \quad \Longrightarrow \\
& \Delta \ln |\boldsymbol{v}|=\operatorname{div} \boldsymbol{Q}, \quad(\Delta \alpha) \boldsymbol{k}=-\operatorname{rot} \boldsymbol{Q} \quad \Longrightarrow \\
& \Delta \operatorname{Ln}\left\{|\boldsymbol{v}| e^{ \pm i \alpha}\right\}=\operatorname{div} \boldsymbol{Q} \mp i(\operatorname{rot} \boldsymbol{Q} \cdot \boldsymbol{k}) .
\end{aligned}
$$

In the conservation law of Theorem 2 we have $\boldsymbol{H}_{i}=0$.
As is known [4], any smooth vector field can be presented in the form of the sum of a gradient of some scalar and a rotor of a certain vector. Identity (8) gives such a representation for the vector field \boldsymbol{Q}. At $\boldsymbol{v}=\nabla u(x, y)$, Theorem 3 gives the identity from paper [2].

3. Two-velocity hydrodynamics equations with one pressure

In papers $[5,6]$, based on conservation laws, the invariance of the equations concerning the Galilee transformation and conditions of thermodynamic conditioning, a nonlinear two-velocity model of motion of a liquid through deformable porous media is constructed. The two-velocity hydrodynamic theory with a condition of balance of pressure phases, has been constructed in paper [7]. The equation of motion of the two-velocity media with one pressure in the system in an isothermal case looks like [7]:

$$
\begin{align*}
& \frac{\partial \bar{\rho}}{\partial t}+\operatorname{div}(\tilde{\rho} \tilde{\boldsymbol{v}}+\rho \boldsymbol{v})=0, \quad \frac{\partial \tilde{\rho}}{\partial t}+\operatorname{div}(\tilde{\rho} \tilde{\boldsymbol{v}})=0 \tag{9}\\
& \frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v}, \nabla) \boldsymbol{v}=-\frac{\nabla p}{\bar{\rho}}+\frac{\tilde{\rho}}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}+\boldsymbol{f} \tag{10}\\
& \frac{\partial \tilde{\boldsymbol{v}}}{\partial t}+(\tilde{\boldsymbol{v}}, \nabla) \tilde{\boldsymbol{v}}=-\frac{\nabla p}{\bar{\rho}}-\frac{\rho}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}+\boldsymbol{f} \tag{11}
\end{align*}
$$

where $\tilde{\boldsymbol{v}}$ and \boldsymbol{v} are the vectors of velocities of the subsystems making up a two-velocity continuum with the corresponding partial densities $\tilde{\rho}$ and ρ, $\bar{\rho}=\tilde{\rho}+\rho$ is the general density of the continuum; $p=p\left(\bar{\rho},(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}\right)$ is the equation of state of the continuum; \boldsymbol{f} is the vector of the mass force carried to the mass unit.

In terms of the vectors $\boldsymbol{W}, \boldsymbol{V}, \boldsymbol{S}, \boldsymbol{Q}, \boldsymbol{P}, \boldsymbol{H}_{i}, \boldsymbol{F}_{i}, \tilde{\boldsymbol{W}}, \tilde{\boldsymbol{V}}, \tilde{\boldsymbol{S}}, \tilde{\boldsymbol{Q}}, \tilde{\boldsymbol{P}}, \tilde{\boldsymbol{H}}_{i}, \tilde{\boldsymbol{F}}_{i}$, determined in Theorem 1, the system of equations (10), (11) can be written down in any of the following forms (symbols without tilde and with a tilde concern the corresponding subsystems of the continuum):

$$
\begin{gather*}
\boldsymbol{W}=\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\frac{1}{2} \nabla v^{2}+\frac{\nabla p}{\bar{\rho}}-\frac{\tilde{\rho}}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}-\boldsymbol{f}, \\
-\boldsymbol{V}=\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\frac{\nabla p}{\bar{\rho}}-\frac{\tilde{\rho}}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}-\boldsymbol{f}, \tag{12}\\
\boldsymbol{G} \stackrel{\text { def }}{=} \frac{1}{v^{2}}\left\{\frac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v} \operatorname{div} \boldsymbol{v}+\frac{\nabla p}{\bar{\rho}}-\frac{\tilde{\rho}}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}-\boldsymbol{f}\right\}=\boldsymbol{S} \Longleftrightarrow \\
\boldsymbol{G}+\boldsymbol{H}_{i}=\operatorname{rot} \boldsymbol{F}_{i}, \quad i=1,2 ; \tag{13}\\
\tilde{\boldsymbol{W}}=\frac{\partial \tilde{\boldsymbol{v}}}{\partial t}+\tilde{\boldsymbol{v}} \operatorname{div} \tilde{\boldsymbol{v}}+\frac{1}{2} \nabla \tilde{v}^{2}+\frac{\nabla p}{\bar{\rho}}+\frac{\rho}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}-\boldsymbol{f}, \\
-\tilde{\boldsymbol{V}}=\frac{\partial \tilde{\boldsymbol{v}}}{\partial t}+\tilde{\boldsymbol{v}} \operatorname{div} \tilde{\boldsymbol{v}}+\frac{\nabla p}{\bar{\rho}}+\frac{\rho}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}-\boldsymbol{f}, \tag{14}\\
\tilde{\boldsymbol{G}} \stackrel{\operatorname{def}}{=} \frac{1}{\tilde{v}^{2}}\left\{\frac{\partial \tilde{\boldsymbol{v}}}{\partial t}+\tilde{\boldsymbol{v}} \operatorname{div} \tilde{\boldsymbol{v}}+\frac{\nabla p}{\bar{\rho}}+\frac{\rho}{2 \bar{\rho}} \nabla(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}-\boldsymbol{f}\right\}=\tilde{\boldsymbol{S}} \Longleftrightarrow \\
\tilde{\boldsymbol{G}}+\tilde{\boldsymbol{H}}_{i}=\operatorname{rot} \tilde{\boldsymbol{F}}_{i}, \quad i=1,2 . \tag{15}
\end{gather*}
$$

In the case of a homogeneous incompressible medium, i.e., provided that $\rho=$ const, $\tilde{\rho}=$ const $\Rightarrow \operatorname{div} \boldsymbol{v}=0, \operatorname{div} \tilde{\boldsymbol{v}}=0 \Leftrightarrow \boldsymbol{v}=\operatorname{rot} \boldsymbol{A}, \tilde{\boldsymbol{v}}=\operatorname{rot} \tilde{\boldsymbol{A}}$, where \boldsymbol{A} and $\tilde{\boldsymbol{A}}$ are the vector potentials of the velocities \boldsymbol{v} and $\tilde{\boldsymbol{v}}$, respectively, the two-velocity hydrodynamics equations are represented in the form

$$
\begin{aligned}
\boldsymbol{W} & =\nabla\left\{\frac{1}{2} v^{2}+\frac{p}{\bar{\rho}}+U-\frac{\tilde{\rho}}{2 \bar{\rho}}(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}\right\}+\operatorname{rot}\left\{\boldsymbol{A}_{t}+\boldsymbol{M}\right\} \\
-\boldsymbol{V} & =\nabla\left\{\frac{p}{\bar{\rho}}+U-\frac{\tilde{\rho}}{2 \bar{\rho}}(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}\right\}+\operatorname{rot}\left\{\boldsymbol{A}_{t}+\boldsymbol{M}\right\} \\
\tilde{\boldsymbol{W}} & =\nabla\left\{\frac{1}{2} \tilde{v}^{2}+\frac{p}{\bar{\rho}}+U+\frac{\rho}{2 \bar{\rho}}(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}\right\}+\operatorname{rot}\left\{\tilde{\boldsymbol{A}}_{t}+\boldsymbol{M}\right\}
\end{aligned}
$$

$$
-\tilde{\boldsymbol{V}}=\nabla\left\{\frac{p}{\bar{\rho}}+U+\frac{\rho}{2 \bar{\rho}}(\tilde{\boldsymbol{v}}-\boldsymbol{v})^{2}\right\}+\operatorname{rot}\left\{\tilde{\boldsymbol{A}}_{t}+\boldsymbol{M}\right\}
$$

where $-\boldsymbol{f}=\nabla U+\operatorname{rot} \boldsymbol{M} ; \tilde{\boldsymbol{A}}_{t}$ and \boldsymbol{A}_{t} are the time derivatives of the vectors $\tilde{\boldsymbol{A}}$ and \boldsymbol{A}, respectively. Hence, when the velocities and physical density of phases coincide, we obtain $\tilde{\boldsymbol{W}}=\boldsymbol{W}, \tilde{\boldsymbol{V}}=\boldsymbol{V}$ and, as consequence, the formulas for the vector fields $\boldsymbol{W}, \boldsymbol{V}$ from paper [2]. Thus, the solution $(\boldsymbol{v}, \tilde{\boldsymbol{v}}, p)$ of the system of the two-velocity hydrodynamics equations for homogeneous incompressible media gives a representation of the vector fields $\boldsymbol{W}, \boldsymbol{V}, \tilde{\boldsymbol{W}}$, $\tilde{\boldsymbol{V}}$, defined in Theorem $1($ where $\boldsymbol{v}=\operatorname{rot} \boldsymbol{A}, \tilde{\boldsymbol{v}}=\operatorname{rot} \tilde{\boldsymbol{A}})$ in the form of the $\operatorname{sum} \nabla \Phi+\operatorname{rot} \boldsymbol{\Psi}$.

From (13), (15) and Theorem 2 follows
Theorem 4. For any motion of an ideal two-velocity system with one pressure ($\boldsymbol{v} \neq 0, \tilde{\boldsymbol{v}} \neq 0$), the following identities are valid:

$$
\operatorname{div} \boldsymbol{G}=-2 \frac{\sin \theta}{v}(\boldsymbol{v} \cdot(\nabla \alpha \times \nabla \theta)), \quad \operatorname{div} \tilde{\boldsymbol{G}}=-2 \frac{\sin \tilde{\theta}}{\tilde{v}}(\tilde{\boldsymbol{v}} \cdot(\nabla \tilde{\alpha} \times \nabla \tilde{\theta})) .
$$

In addition to the general conservation law of Theorem 2, which holds for any smooth vector fields $\boldsymbol{v}(x, y, z, t), \tilde{\boldsymbol{v}}(x, y, z, t)$, the conservation laws of differential forms are also valid:

$$
\operatorname{div}\left(\boldsymbol{G}+\boldsymbol{H}_{i}\right)=0, \quad \operatorname{div}\left(\tilde{\boldsymbol{G}}+\tilde{\boldsymbol{H}}_{i}\right)=0
$$

as well as the integrated forms for the fluxes:

$$
\int_{S}\left(\left[\boldsymbol{G}+\boldsymbol{H}_{i}\right] \cdot \boldsymbol{\eta}\right) d S=0, \quad \int_{S}\left(\left[\tilde{\boldsymbol{G}}+\tilde{\boldsymbol{H}}_{i}\right] \cdot \boldsymbol{\eta}\right) d S=0, \quad i=1,2
$$

Here the vectors $\boldsymbol{H}_{i}\left(\tilde{\boldsymbol{H}}_{i}\right)$ are defined in Theorem 1 and expressed only through the angles $\alpha(\tilde{\alpha}), \theta(\tilde{\theta})$ of the directions of the velocities $\boldsymbol{v}(x, y, z, t)$ $(\tilde{\boldsymbol{v}}(x, y, z, t)), S$ is a piecewise smooth boundary of the domain $D, \boldsymbol{\eta}$ is the normal to S.

For the irrotational motion (at $\boldsymbol{v}=\nabla u, \tilde{\boldsymbol{v}}=\nabla \tilde{u}$), we have

$$
\begin{aligned}
& \boldsymbol{G}=\frac{1}{v^{2}}\left\{\nabla u_{t}+\Delta u \nabla u+\frac{\nabla p}{\bar{\rho}}-\frac{\tilde{\rho}}{2 \bar{\rho}} \nabla(\nabla \tilde{u}-\nabla u)^{2}-\boldsymbol{f}\right\}, \\
& \tilde{\boldsymbol{G}}=\frac{1}{\tilde{v}^{2}}\left\{\nabla \tilde{u}_{t}+\Delta \tilde{u} \nabla \tilde{u}+\frac{\nabla p}{\bar{\rho}}+\frac{\rho}{2 \bar{\rho}} \nabla(\nabla \tilde{u}-\nabla u)^{2}-\boldsymbol{f}\right\}
\end{aligned}
$$

and the following identities hold:

$$
\operatorname{div} \boldsymbol{G}=\frac{2}{v} \operatorname{div}\{u \operatorname{rot}(\alpha \nabla \cos \theta)\}=-\frac{2 \sin \theta}{v} \frac{\partial(u, \alpha, \theta)}{\partial(x, y, z)},
$$

$$
\operatorname{div} \tilde{\boldsymbol{G}}=\frac{2}{\tilde{v}} \operatorname{div}\{\tilde{u} \operatorname{rot}(\tilde{\alpha} \nabla \cos \tilde{\theta})\}=-\frac{2 \sin \tilde{\theta}}{\tilde{v}} \frac{\partial(\tilde{u}, \tilde{\alpha}, \tilde{\theta})}{\partial(x, y, z)}
$$

If one of the following conditions is fulfilled: $u=u(x, y)(\tilde{u}=\tilde{u}(x, y)) \Rightarrow$ $\theta \equiv \pi / 2(\tilde{\theta} \equiv \pi / 2) ; u=u(\alpha, \theta) \quad(\tilde{u}=\tilde{u}(\alpha, \theta)) ; v=\tilde{v}(\alpha, \theta) \quad(\tilde{v}=\tilde{v}(\alpha, \theta))$; $u_{z}=\varphi\left(u_{x}, u_{y}\right)\left(\tilde{u}_{z}=\tilde{\varphi}\left(\tilde{u}_{x}, \tilde{u}_{y}\right)\right)$, then $\operatorname{div} \boldsymbol{G}=0(\operatorname{div} \tilde{\boldsymbol{G}}=0)$.

In the plane case $\boldsymbol{v}=\boldsymbol{v}(x, y, t)=v \tau, \tilde{\boldsymbol{v}}=\tilde{\boldsymbol{v}}(x, y, t)=\tilde{v} \tilde{\boldsymbol{\tau}}, \boldsymbol{\tau}=\cos \alpha \boldsymbol{i}+$ $\sin \alpha \boldsymbol{j}, \tilde{\boldsymbol{\tau}}=\cos \tilde{\alpha} \boldsymbol{i}+\sin \tilde{\alpha} \boldsymbol{j}, \alpha=\alpha(x, y, t), \tilde{\alpha}=\tilde{\alpha}(x, y, t)$ is the angle of slope of the line of current (a vector line of the field $\boldsymbol{v}(\tilde{\boldsymbol{v}})$ at $t=$ const). For an incompressible medium we have $\operatorname{div} \boldsymbol{v}=0, \operatorname{div} \tilde{\boldsymbol{v}}=0, \boldsymbol{v}=u_{y} \boldsymbol{i}-u_{x} \boldsymbol{j}=$ $\operatorname{rot}(u \boldsymbol{k}), \tilde{\boldsymbol{v}}=\tilde{u}_{y} \boldsymbol{i}-\tilde{u}_{x} \boldsymbol{j}=\operatorname{rot}(\tilde{u} \boldsymbol{k}), v^{2}=u_{x}^{2}+u_{y}^{2}, \tilde{v}^{2}=\tilde{u}_{x}^{2}+\tilde{u}_{y}^{2}$, where $u=u(x, y, t)$ and $\tilde{u}=\tilde{u}(x, y, t)$ is a stream function.

From (13), (15) and Theorem 3 follows
Theorem 5. A system of equations of the two-velocity hydrodynamics with one pressure (10), (11) for a plane motion $(\boldsymbol{v}=\boldsymbol{v}(x, y, t), \tilde{\boldsymbol{v}}=\tilde{\boldsymbol{v}}(x, y, t)$, $v \neq 0, \tilde{v} \neq 0$) is representable in the form of the identity

$$
\begin{gather*}
\boldsymbol{G}=\operatorname{rot}(\alpha \boldsymbol{k}), \quad \tilde{\boldsymbol{G}}=\operatorname{rot}(\tilde{\alpha} \boldsymbol{k}) \Rightarrow \operatorname{div} \boldsymbol{G}=0, \quad \operatorname{div} \tilde{\boldsymbol{G}}=0 \\
\operatorname{rot} \boldsymbol{G}=-(\Delta \alpha) \boldsymbol{k}, \quad \operatorname{rot} \tilde{\boldsymbol{G}}=-(\Delta \tilde{\alpha}) \boldsymbol{k} \Rightarrow \\
\Delta \ln v=\operatorname{div} \boldsymbol{Q}, \quad \Delta \ln \tilde{v}=\operatorname{div} \tilde{\boldsymbol{Q}} \tag{16}\\
(\Delta \alpha) \boldsymbol{k}=-\operatorname{rot} \boldsymbol{Q}, \quad(\Delta \tilde{\alpha}) \boldsymbol{k}=-\operatorname{rot} \tilde{\boldsymbol{Q}}
\end{gather*}
$$

where the fields $\boldsymbol{G}, \boldsymbol{Q}, \tilde{\boldsymbol{G}}, \tilde{\boldsymbol{Q}}$ are defined in (8), (13), (15).
Remark. From Theorem 3 follows that for the irrotational motion $(\boldsymbol{v}=$ $\nabla u(x, y, t), \tilde{\boldsymbol{v}}=\nabla \tilde{u}(x, y, t))$ with the potentials $u, \tilde{u} \in C^{3}(D)$ and, in the case of plane, for the motion of an incompressible two-velocity continuum $\left(\boldsymbol{v}=\operatorname{rot}(u(x, y, t) \boldsymbol{k})=u_{y} \boldsymbol{i}-u_{x} \boldsymbol{j}, \tilde{\boldsymbol{v}}=\operatorname{rot}(u(x, y, t) \boldsymbol{k})=\tilde{u}_{y} \boldsymbol{i}-\tilde{u}_{x} \boldsymbol{j}\right)$ with the stream functions $u, \tilde{u} \in C^{3}(D)$ for the values $\alpha_{x}, \alpha_{y}, v=|\boldsymbol{v}|, \boldsymbol{Q}, \boldsymbol{S}$, $\boldsymbol{V}=-v^{2} \boldsymbol{S}, \operatorname{div} \boldsymbol{V}, \operatorname{rot} \boldsymbol{V}\left(\tilde{\alpha}_{x}, \tilde{\alpha}_{y}, \tilde{v}=|\tilde{\boldsymbol{v}}|, \tilde{\boldsymbol{Q}}, \tilde{\boldsymbol{S}}, \tilde{\boldsymbol{V}}=-\tilde{v}^{2} \tilde{\boldsymbol{S}}, \operatorname{div} \tilde{\boldsymbol{V}}, \operatorname{rot} \tilde{\boldsymbol{V}}\right)$ we obtain the same expressions through the derivative functions " $u(\tilde{u})$ ", thus $v=\sqrt{u_{x}^{2}+u_{y}^{2}}, \tilde{v}=\sqrt{\tilde{u}_{x}^{2}+\tilde{u}_{y}^{2}}, \boldsymbol{Q}=\frac{\Delta u \nabla u}{v^{2}}, \boldsymbol{S}=\operatorname{rot}(\alpha \boldsymbol{k}), \tilde{\boldsymbol{Q}}=\frac{\Delta \tilde{u} \nabla \tilde{u}}{\tilde{\boldsymbol{v}}^{2}}$, $\tilde{\boldsymbol{S}}=\operatorname{rot}(\tilde{\alpha} \boldsymbol{k})$,

$$
\begin{align*}
\boldsymbol{V} & =\frac{1}{2} \nabla\left(u_{x}^{2}+u_{y}^{2}\right)-\Delta u \nabla u=-\left(u_{x}^{2}+u_{y}^{2}\right) \operatorname{rot}(\alpha \boldsymbol{k}) \\
& =\left(u_{y} u_{x y}-u_{x} u_{y y}\right) \boldsymbol{i}+\left(u_{x} u_{x y}-u_{y} u_{x x}\right) \boldsymbol{j}=(\nabla u \times \nabla) \nabla u, \tag{17}\\
\operatorname{div} \boldsymbol{V} & =2\left(u_{x y}^{2}-u_{x x} u_{y y}\right), \quad \operatorname{rot} \boldsymbol{V}=-\left\{u_{y}(\Delta u)_{x}-u_{x}(\Delta u)_{y}\right\} \boldsymbol{k}, \tag{18}\\
\tilde{\boldsymbol{V}} & =\frac{1}{2} \nabla\left(\tilde{u}_{x}^{2}+\tilde{u}_{y}^{2}\right)-\Delta \tilde{u} \nabla \tilde{u}=-\left(\tilde{u}_{x}^{2}+\tilde{u}_{y}^{2}\right) \operatorname{rot}(\tilde{\alpha} \boldsymbol{k}) \\
& =\left(\tilde{u}_{y} \tilde{u}_{x y}-\tilde{u}_{x} \tilde{u}_{y y}\right) \boldsymbol{i}+\left(\tilde{u}_{x} \tilde{u}_{x y}-\tilde{u}_{y} \tilde{u}_{x x}\right) \boldsymbol{j}=(\nabla \tilde{u} \times \nabla) \nabla \tilde{u}, \tag{19}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{div} \tilde{\boldsymbol{V}}=2\left(\tilde{u}_{x y}^{2}-\tilde{u}_{x x} \tilde{u}_{y y}\right), \quad \operatorname{rot} \tilde{\boldsymbol{V}}=-\left\{\tilde{u}_{y}(\Delta \tilde{u})_{x}-\tilde{u}_{x}(\Delta \tilde{u})_{y}\right\} \boldsymbol{k} \tag{20}
\end{equation*}
$$

and the following identities hold $(v \neq 0, \tilde{v} \neq 0)$:

$$
\begin{array}{cl}
\boldsymbol{Q}=\frac{\Delta u \nabla u}{v^{2}}=\nabla \ln v+\operatorname{rot}(\alpha \boldsymbol{k}), & \tilde{\boldsymbol{Q}}=\frac{\Delta \tilde{u} \nabla \tilde{u}}{\tilde{v}^{2}}=\nabla \ln \tilde{v}+\operatorname{rot}(\tilde{\alpha} \boldsymbol{k}) \Leftrightarrow \\
\frac{\Delta u}{v^{2}} \operatorname{rot}(u \boldsymbol{k})=-\nabla \alpha+\operatorname{rot}(\ln v \boldsymbol{k}), & \frac{\Delta \tilde{u}}{\tilde{v}^{2}} \operatorname{rot}(\tilde{u} \boldsymbol{k})=-\nabla \tilde{\alpha}+\operatorname{rot}(\ln \tilde{v} \boldsymbol{k}) \Rightarrow \\
\Delta \ln v=\operatorname{div} \boldsymbol{Q}, & \Delta \ln \tilde{v}=\operatorname{div} \tilde{\boldsymbol{Q}} \\
(\Delta \alpha) \boldsymbol{k}=-\operatorname{rot} \boldsymbol{Q}, & (\Delta \tilde{\alpha}) \boldsymbol{k}=-\operatorname{rot} \tilde{\boldsymbol{Q}} .
\end{array}
$$

From (12), (14) and (18), (20) follows
Theorem 6. The system of the Monge-Ampere equations:

$$
\begin{equation*}
u_{x y}^{2}-u_{x x} u_{y y}=F, \quad \tilde{u}_{x y}^{2}-\tilde{u}_{x x} \tilde{u}_{y y}=\tilde{F} \tag{21}
\end{equation*}
$$

(in the general case F and \tilde{F} are smooth functions of the variables x, y, u, \tilde{u}, $u_{x}, \tilde{u}_{x}, u_{y}, \tilde{u}_{y}, u_{x x}, \tilde{u}_{x x}, u_{x y}, \tilde{u}_{x y}, u_{y y}, \tilde{u}_{y y}$ and the parameter t) and the system of equations for the stream function of a plane motion of incompressible media

$$
\begin{align*}
-\left\{u_{y}(\Delta u)_{x}-u_{x}(\Delta u)_{y}\right\} & =(\Delta u)_{t}+\left(\operatorname{rot} \boldsymbol{f}_{1}^{*} \cdot \boldsymbol{k}\right) \\
-\left\{\tilde{u}_{y}(\Delta \tilde{u})_{x}-\tilde{u}_{x}(\Delta \tilde{u})_{y}\right\} & =(\Delta \tilde{u})_{t}+\left(\operatorname{rot} \boldsymbol{f}_{2}^{*} \cdot \boldsymbol{k}\right) \tag{22}
\end{align*}
$$

are related to each other as follows: their left-hand sides are expressed, respectively, through divergence and a rotor of the same vector fields $\boldsymbol{V}, \tilde{\boldsymbol{V}}$ of the form of (17), (19) by formulas (18), (20), where $\boldsymbol{f}_{1}^{*}=\boldsymbol{f}-\frac{\nabla p}{\bar{\rho}}+\frac{\tilde{\rho}}{2 \bar{\rho}} \nabla w$, $\boldsymbol{f}_{2}^{*}=\boldsymbol{f}-\frac{\nabla p}{\bar{\rho}}-\frac{\rho}{2 \bar{\rho}} \nabla w, w=\left(\tilde{u}_{x}-u_{x}\right)^{2}+\left(\tilde{u}_{y}-u_{y}\right)^{2}$.

Let the functions $\boldsymbol{v}(x, y, t)=u_{y} \boldsymbol{i}-u_{x} \boldsymbol{j}, \boldsymbol{\boldsymbol { v }}(x, y, t)=\tilde{u}_{y} \boldsymbol{i}-\tilde{u}_{x} \boldsymbol{j}, p(x, y, t)$ in the domain $\Sigma=\left\{(x, y) \in D, t \in\left(t_{1}, t_{2}\right)\right\}$ satisfy a system of equations of the two-velocity hydrodynamics with one pressure (10), (11) for a plane motion of incompressible media. In this case, in the domain Σ the stream functions $u(x, y, t), \tilde{u}(x, y, t)$ satisfy both equations (21) and (22) at

$$
\begin{equation*}
F=\frac{\operatorname{div} \boldsymbol{f}_{1}^{*}}{2}, \quad \tilde{F}=\frac{\operatorname{div} \boldsymbol{f}_{2}^{*}}{2} . \tag{23}
\end{equation*}
$$

Otherwise, let the functions $u(x, y, t), \tilde{u}(x, y, t), p(x, y, t)$ satisfy in the domain Σ equations (21) and (22) with the right-hand side (23), and on the boundary S of the domain D at $t \in\left(t_{1}, t_{2}\right)$, the equality $(\boldsymbol{V} \cdot \boldsymbol{\eta})=$ $\left(\left[\boldsymbol{f}_{1}^{*}-\operatorname{rot}\left(u_{t} \boldsymbol{k}\right)\right] \cdot \boldsymbol{\eta}\right),(\tilde{\boldsymbol{V}} \cdot \boldsymbol{\eta})=\left(\left[\boldsymbol{f}_{2}^{*}-\operatorname{rot}\left(\tilde{u}_{t} \boldsymbol{k}\right)\right] \cdot \boldsymbol{\eta}\right)$ holds, where $\boldsymbol{\eta}$ is normal to S. In particular, the latter equalities are valid if on the boundary S equalities (10), (11) are valid. In this case, the functions $\boldsymbol{v}(x, y, t)=u_{y} \boldsymbol{i}-u_{x} \boldsymbol{j}$, $\tilde{\boldsymbol{v}}(x, y, t)=\tilde{u}_{y} \boldsymbol{i}-\tilde{u}_{x} \boldsymbol{j}, p(x, y, t)$ in the domain Σ satisfy the system of the two-velocity hydrodynamics equations with one pressure (10), (11) for the plane motion of incompressible media.

In particular, for homogeneous media ($\rho=$ const, $\tilde{\rho}=$ const $)$ and a potential field $\boldsymbol{f}=-\nabla U$, equations (21) and (22) take the form

$$
\begin{gather*}
(\operatorname{rot} \boldsymbol{V} \cdot \boldsymbol{k})=-\left\{u_{y}(\Delta u)_{x}-u_{x}(\Delta u)_{y}\right\}=(\Delta u)_{t}, \\
(\operatorname{rot} \tilde{\boldsymbol{V}} \cdot \boldsymbol{k})=-\left\{\tilde{u}_{y}(\Delta \tilde{u})_{x}-\tilde{u}_{x}(\Delta \tilde{u})_{y}\right\}=(\Delta \tilde{u})_{t}, \tag{24}\\
\frac{\operatorname{div} \boldsymbol{V}}{2}=u_{x y}^{2}-u_{x x} u_{y y}=F, \quad \frac{\operatorname{div} \tilde{\boldsymbol{V}}}{2}=\tilde{u}_{x y}^{2}-\tilde{u}_{x x} \tilde{u}_{y y}=\tilde{F}, \tag{25}\\
F=-\frac{1}{2} \Delta\left(U+\frac{p}{\bar{\rho}}-\frac{\tilde{\rho}}{2 \bar{\rho}} w\right), \quad \tilde{F}=-\frac{1}{2} \Delta\left(U+\frac{p}{\bar{\rho}}+\frac{\rho}{2 \bar{\rho}} w\right) .
\end{gather*}
$$

Hence, the stream functions $u(x, y, t), \tilde{u}(x, y, t)$, found, for example, as the solution to the known system of equations (24) at any fixed t give simultaneously the solution to a system of the Monge-Ampere equations (25), whose right-hand sides can be found from the system of the two-velocity hydrodynamics equations with one pressure (10), (11) at $\boldsymbol{v}=u_{y} \boldsymbol{i}-u_{x} \boldsymbol{j}$, $\tilde{\boldsymbol{v}}=\tilde{u}_{y} \boldsymbol{i}-\tilde{u}_{x} \boldsymbol{j}$.

References

[1] Neshchadim M.V. Inverse problems for the kinetic equations. Algebraic and differential identities // Dokl. Math.-2005.- Vol. 71.- P. 68-70.
[2] Megrabov A.G. Differential identities relating the Laplacian, the modulus of gradient and the gradient directional angle of a scalar function // Dokl. Math.2009. - Vol. 79. - P. 136-140. [Dokl. Acad. Nauk. - 2009. - Vol. 424, No. 5.P. 599-603].
[3] Megrabov A.G. Differential identities relating the modulus and direction of a vector field, and Euler's hydrodynamic equations // Dokl. Math. - 2010.Vol. 82. - P. 625-629. [Dokl. Acad. Nauk. - 2010. - Vol. 433, No. 3.- P. 309313].
[4] Kochin N.E. Vector Calculus and Fundamentals of Tensor Calculus. Leningrad: GONTI, 1938 (In Russian).
[5] Dorovsky V.N. Continual theory of filtration // Sov. Geology and Geophysics.1989. - Vol. 30, No. 7. - P. 34-39.
[6] Dorovsky V.N., Perepechko Yu.V. Phenomenological description of two-velocity media with relaxing shear stresses // J. Appl. Mech. and Tech. Phys.-1992.Vol. 33, No. 3. - P. 403-409.
[7] Dorovsky V.N., Perepechko Yu.V. Theory of partial melt // Geology and Geo-physics.-1989.-No. 9.-P. 56-64 (In Russian).

[^0]: *Partially supported by the Russian Foundation for Basic Research under Grants No. 12-05-31216, 12-01-00773.

