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Laguerre spectral method as applied to numerical
solution of a two-dimensional linear dynamic

seismic problem for porous media∗

Kh.Kh. Imomnazarov, A.A. Mikhailov

Introduction

Seismic methods based on the seismic waves propagation in an acoustic or
an ideally elastic medium, were successfully applied to various geophysical
problems to identify geological structures. In such studies, properties of a
pore liquid such as density, the module of volumetric deformation, fluidsatu-
ration and viscosity were generally ignored. A porous medium of consisting
it, is an elastic, i.e., deformable matrix filled with a viscous liquid, being a re-
alistic model which allows us to explain observable effects of seismic research
of properties of rocks in the presence of a pore liquid. Recently the numer-
ical simulation of seismic wave propagation in fluidsaturated liquid porous
media, has received a special attention because of its practical application
in various areas of problems of geophysics, biomechanics and oil reservoir
characterization. In the case, the Frenkel–Biot model [1, 2] is generally used
as a basis. A characteristic feature of models of this type alongside with
distribution of transverse and longitudinal seismic waves, is the presence of
an additional second longitudinal wave. The speeds of propagation of such
waves are functions of four elastic parameters in the Frenkel–Biot theory for
preset values of physical density of a solid matrix, a saturating liquid and
porosity [1, 2]. In 1989, V.N. Dorovsky [3] based on the common first physi-
cal principles, constructed nonlinear mathematical model for porous media.
Just as in the Frenkel–Biot theory, in the Dorovsky model there are three
types of the sound oscillations: transverse and two types of longitudinal.
As opposed to models of the Frenkel–Biot type, in the linearized Dorovsky
models a medium is described by three elastic parameters [4, 5]. These elas-
tic parameters in one-to-one correspondence are expressed by three speeds
of seismic wave propagations. This circumstance is important for the nu-
merical modeling of elastic waves in a porous medium when distributions
of speeds of acoustic waves and physical density of the matrix of saturating
liquids and porosity are known.
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Finite difference methods of solving of problems for the Biot equation
system have been formulated in several ways, these are: the central differ-
ence finite difference method in terms of displacement [6, 7], the predictor-
corrector finite difference method for the velocity-stress system of the equa-
tions [8]. Semi-analytic method for the Biot equation system in terms of
displacement is offered in [9, 10].

In this paper, the system of linearized equations of porous media [4, 5] in
the absence of dissipation of energy in 2D heterogeneous is case numerically
solved. The initial system of equations as first order hyperbolic system in
terms of velocity of a solid matrix, velocity of a saturating liquid, solid stress,
and fluid pressure. For the numerical solution of the task in question, the
method of combination of analytical Laguerre transformation and a finite
difference method is used. The above-considered method of solving dynamic
problems of the elasticity theory was first proposed in [11, 12], and then
developed for viscoelasticity problems in [13, 14].

The proposed method of the solution can be considered as analogue to
the known spectral-difference method on the basis of Fourier transform, only
instead of frequency we have a parameter m –– the degree of the Laguerre
polynomials. However, unlike Fourier transform, application of integral La-
guerre transform with respect time allows us to reduce the initial problem to
solving a system of equations in which the parameter of division is present
only on the right-hand side of equations and has a recurrent dependence.

As compared to finite difference methods, with the help of an analytical
transformation in the spectral-difference method it is possible to reduce
an original problem to solving the system of differential equations, in which
there are only derivatives with respect to spatial coordinates. This allows us
to apply a known stable difference scheme for recurrent solutions to similar
systems. Such an approach is effective when solving non-stationary dynamic
problems for porous media. Thus, because of the presence of the second
longitudinal wave with a low velocity, the use of difference schemes in all
coordinates for stable solutions requires a consistent small step both in time
and in space, which inevitably results in an increase of computer costs.

1. Statement of problem

Let us assume that the half-plane x2 > 0 is filled with a porous medium of
a saturated liquid. Then propagation of seismic waves to the given medium
in the absence of dissipation of energy is described by the following initial
boundary value problem [4, 5, 15]:
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where ~u = (u1, u2) and ~v = (v1, v2) are the vector of the velocity of the
solid matrix with the partial density ρ0,s and a liquid with partial density
ρ0,l, respectively, p is pore pressure, hik is the stress tensor, ~F = (F1, F2)
is the vector of body forces, ρ0 = ρ0,l + ρ0,s, ρ0,s = ρf0,s(1 − d0), ρ0,l =
ρf0,ld0, ρf0,s and ρf0,l are the physical densities of the solid matrix and the
liquid respectively, d0 is porosity, δik is the Kronecker delta, K = λ+ 2µ/3,
λ > 0, µ > 0 are elastic modules α = ρ0α3 + K/ρ2

0, ρ3
0α3 > 0 is the

module of volumetric compression of a liquid component of a heterophase
medium. Elastic modules K, µ, and α3 are expressed through the speed of
the transverse wave cs and two speeds of longitudinal waves cp1 and cp2 by
the following formulas [16, 17]:
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2. Algorithm of solution

For solving problem (1)–(3) let us apply the integral Laguerre transform
with respect to time:

−→
Wm(x1, x2) =

∫ ∞
0

−→
W (x1, x2, t)(ht)−α/2lαm(ht) d(ht),

with the inverse formula

−→
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∞∑
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m!
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Wm(x1, x2)lαm(ht).

Here lαm(ht) are the Laguerre functions.
As a result of the given transformation, initial problem (1)–(3) is reduced

to a 2D spatial differential problem in the spectral domain:
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For the solution of the reduced problem, we use a finite difference ap-
proximation of derivatives along the spatial coordinates on the staggered
grids with fourth order accuracy [18]. For this purpose, let us introduce in
the calculation domain towards the coordinate z = x2 the grids ωz and

◦
ωz

with a quantization step ∆z. These grids are ∆z/2 staggered relative to
each other:
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Similarly, we introduce in the direction of the coordinate x = x1 the
grids ωx and
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ωx with a quantization step ∆x, which are staggered relative
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On the given grids, we introduce differentiation operators Dx and Dz,
approximating the derivatives ∂

∂x
and ∂

∂z
with fourth order of accuracy along

the coordinates z = x2 and x = x1:
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Let us determine the required components of the vector of solution in
the following nodes of the grids:
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As a result of the finite difference approximation of problem (4), we
obtain a system of the linear algebraic equations. Represent a required
vector of the solution ~W in the following form:
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Then, the given system of the linear algebraic equations can be written down
in the vector form as:(

A∆ +
h

2
E
)
~W (m) = ~F∆(m− 1).

As a result, the matrix of the system of the reduced problem has good
conditionality that allows us to use fast methods for solving systems of
linear algebraic equations on the basis of iterative methods, such as the
conjugate gradients, converging to the solution with desired accuracy of all
for some iterations. At this stage of carrying out calculations a version of
the conjugate gradients method has been parallelized. In terms of the input
data, when setting a medium model, it is equivalent to decomposition of the
initial domain to a set of subdomains equal to the number of processors.
This enables to distribute memory, both in setting input parameters of the
model, and in further numerical realization of the algorithm in subdomains.

3. Numerical results

The results of numerical modeling of seismic wave fields for a test model of
a medium are represented. This model consists of two homogeneous layers:
the upper layer is an elastic medium, the lower one is porous. Physical
characteristics of the layers are the following:

The upper layer–– ρ = 1.2 g/cm3, cp = 1.5 km/s, cs = 1 km/s;
The lower layer –– ρf0,s = 1.5 g/cm3, ρf0,l = 1 g/cm3, cp1 = 2 km/s,

cp2 = 0.45 km/s, cs = 1.3 km/s, d = 0.1.
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The upper layer is 18 km thick. The wave field was simulated from a
point source such as the center of expansion with coordinates x0 = 24 km,
z0 = 12 km, being place in the upper elastic layer. The time signal in the
source was set as:

f(t) = exp
(
−2πfo(t− t0)2

γ2

)
sin(2πf0(t− t0)),

where γ = 4, f0 = 1 Hz, t0 = 1.5 s.
The results of numerical calculations of the wave field for the given

medium model are presented in the figure at T of 6, 12 and 15 seconds.
From the represented figures it is seen, that at falling a longitudinal wave
radiated by a source such as center of expansion on to the layers inter-
face, the corresponding types of waves for the elastic and porous media are
formed. In the upper layer, there are longitudinal and transverse waves, and
in the lower porous layer, there are two longitudinal and transverse waves.

T = 6 T = 12

T = 15

Snapshots of the wave field for uz(x, z) component of displacement velocity
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Conclusion

The proposed algorithm is an analog to known spectral methods of the
solution of dynamic problems. However, as opposed to classical Fourier and
Laplace transformations, the application of the Laguerre transformations
reduces to a system of equations, in which the transformation parameter is
recurrently present only in the right hand side. As a result, the matrix of
the system of the problem has a good conditioning number, allowing the use
of effective numerical methods of the solution to systems of linear algebraic
equations.
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