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About one direct initial-boundary value problem
for nonlinear one-dimensional poroelasticity

equations

Kh.Kh. Imomnazarov, Sh.Kh. Imomnazarov, P.V. Korobov,
A.E. Kholmuradov

Abstract. We consider a one-dimensional direct initial-boundary value problem
for a nonlinear system of the poroelasticity equations. The theorem of local solvabil-
ity of the classical solution to the problem is proved. The Frechet differentiability
of the problem operator is proved, too.
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Let us consider the one-dimensional nonlinear system of equations of
poroelasticity

ρsutt = (µ(ux)ux)x − ρ2l ((u− v)χ(u− v))t, x ∈ (0, L), t ∈ (0, T ), (1)

ρlvt = ρ2l (u− v)χ(u− v), x ∈ (0, L), t ∈ (0, T ), (2)

with the initial conditions

u|t=0 = u0(x), ut|t=0 = u1(x), v|t=0 = 0, x ∈ (0, L), (3)

and the boundary conditions

µ(ux)ux|x=L = f(t), u|x=0 = 0, t ∈ (0, T ). (4)

Here u and v are the velocities of elastic porous body with a constant partial
density ρs = ρfs (1− d0) and of the fluid with a constant partial density ρl =

ρfl d0, respectively, d0 is porosity, ut =
∂u

∂t
, f : [0, T ] → R, u0 : [0, L] → R,

u1 : [0, L] → R, ρfs and ρfl are the physical density of elastic porous body
and the fluid, respectively, µ(ν) is a three times continuously differentiable
positive function, χ(ν) is a two times continuously differentiable positive
function.

The nonlinear wave equation of the form of (1) (χ ≡ 0 in a reversible
approximation) arises in many problems. For example, when the string
vibrations for the elastic coefficient depend on deformation. Many mechanics
models of porous media, taking into account energy dissipation, the friction
coefficient (permeability) are the function of the velocity difference [1, 2].
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Next, we are interested in the classical solution of the initial-boundary
value problem (1)–(4), i.e., u ∈ C2,2([0, L]× [0, T ]), v ∈ C0,1([0, L]× [0, T ]),
where Ck,m([0, L]× [0, T ]) is the space of k times continuously differentiable
functions with respect to x, and m times continuously differentiable func-
tions with respect to t.

In this paper, using the ideas of [3], we study the direct problem for
one-dimensional dynamic system of equations of porous media.

The statement of the problem and formulation of results. The
problem of the definition of u and v from (1)–(4) with given µ, χ, ρs, ρl will
be called a one-dimensional direct dynamic problem for porous media. The
one-dimensional inverse dynamic problem for porous media by the definition
u, v, µ from (1)–(4) (with given χ, ρs, ρl) for additional information ũ :=
u(L, ·) will be considered separately.

We introduce the functions µ̃(s) = sµ(s), χ̃(s) = sχ(s). To study the
properties of our mathematical model, we consider the operator F , that
maps the function µ̃ on to the given ũ := u(L, ·) which is a restriction of the
solution u for the following initial boundary value problem

ρsutt = (µ̃(ux))x − ρ2l (χ̃(u− v))t,

vt = ρlχ̃(u− v), x ∈ (0, L), t ∈ (0, T ),
(5)

with the initial conditions

u|t=0 = u0(x), ut|t=0 = u1(x), v|t=0 = 0, x ∈ (0, L), (6)

and the boundary conditions

µ̃(ux)|x=L = f(t), u|x=0 = 0, t ∈ (0, T ). (7)

Then the function µ̃ can be found from the solution of the operator equation

F (µ̃) = ũ. (8)

The derivative of the operator F in some direction δµ̃ is calculated in the
following

F ′(µ̃)[δµ̃] =
_
u(L, · ), (9)

where the functions
_
u and

_
v are the solution of the initial-boundary value

problem

ρs
_
utt = (µ̃′(ux)

_
ux)x − ρ2l (χ̃′(u− v)(

_
u − _

v))t + (δµ̃(ux))x,

_
v t = ρlχ̃

′(u− v)(
_
u − _

v), x ∈ (0, L), t ∈ (0, T ),
(10)
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with the initial conditions

_
u|t=0 = 0,

_
ut|t=0 = 0,

_
v |t=0 = 0, x ∈ (0, L), (11)

and the boundary conditions

_
u|x=0 = 0, µ̃′(ux)

_
ux + δµ̃(ux)|x=L = 0, t ∈ (0, T ). (12)

In formulas (10)–(12) the functions u, v are the solution of the initial-
boundary value problem (5)–(7).

Suppose that the following conditions are valid

u0 ∈ C3(0, L), u1 ∈ C2(0, L), f ∈ C2(0, T ), (13)

and the compatibility conditions

(µ̃−1 ◦ f)(0) = u′0(L), (µ̃−1 ◦ f)′(0) = u′1(L),

ρs(µ̃
−1 ◦ f)′′(0) = (µ̃(u′0))

′′(L)− ρ2l [(u1 − ρlχ̃(u0))χ̃
′(u0)]

′(L)
(14)

on the right boundary and

u0(0) = u1(0) = u′′0(0) = u′′1(0) = 0 (15)

on the left boundary.
Assume that the functions µ̃, χ̃ belong to the set

D(F ) =

{
(µ̃, χ̃) ∈ X | µ̃′(s) ≥ µ0, µ̃′′(s) ≤ C, χ̃′′(s) ≤ C
for any s ∈ [0, S], and condition (14) is fulfilled

}
, (16)

for some positive constants µ0, C. Further, we denote by C a positive
constant that is greater than the previous C,

X =
{

(µ̃, χ̃) ∈ C3(0, S)× C2(0, S) | µ̃(0) = 0, χ̃(0) = 0
}
, (17)

where S > 0. Note that in applications we often set parameters to be
strictly monotonously increasing and smooth functions. These conditions
are satisfied in the domain of definition D(F ) and the space X, defined by
above formulas (16), (17). The assumption of smoothness parameters in
our model is also important for the effective solution of the original initial-
boundary value problem. If µ̃, χ̃ are sufficiently smooth, then to determine
the parameters of a medium, we can apply methods of Newton type with
quadratic convergence.

Theorem. Suppose that T is sufficiently small, S sufficiently large, condi-
tion (13) and D(F ) is defined by formula (16).
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Then, for any (µ̃, χ̃) ∈ D(F ), the problem (5)–(7) has a unique solution
u ∈ C3,2([0, L]× [0, T ]), v ∈ C0,1([0, L]× [0, T ]). Consequently, the operator
of the direct problem

F : D(F ) ⊆ X → C2(0, T ), µ̃ 7→ u(L, ·),

where u, v is a solution of (5)–(7), is well defined. Furthermore, for

X ′ := X ∩ C4(0, s)× C4(0, s), D′(F ) := D(F ) ∩ C4(0, s)× C4(0, s),

F : D′(F ) ⊆ X ′ → C2(0, T )

is continuously differentiable according to Frechet, and derivatives are cal-
culated by formulas (9)–(12).

Remark. A similar result holds for the homogeneous Neumann conditions
instead of the Dirichlet boundary conditions on the left boundary x = 0,
which corresponds to the case free from tension on the left boundary. In
the proof of correctness (see below) of the boundary conditions for w = ux,
w̃ = vx we have

µ̃(w)|x=L = f(t), w|x=0 = 0, t ∈ (0, T ).

Here the functions u, v are defined in terms of the functions w, w̃ by the
formulas

u(x, t) =

∫ x

0
w(ξ, t) dξ +

1

ρs

∫ t

0

∫ τ

0
(µ̃(w))x(0, η) dη dτ +

ρ2l
ρl
ρs

∫ t

0

∫ τ

0
[χ̃(u− v)χ̃′(u− v)](0, η) dη dτ,

v(x, t) =

∫ x

0
w̃(ξ, t) dξ + ρl

∫ t

0
(χ̃(u− v))(0, η) dη.

This system is at fixed x closed system of the nonlinear Volterra integral
equations of the second kind with respect to t.

Proof. Let us introduce the functions
^
u = ux,

^
v = vx. We differentiate

both sides of system (5) with respect to x and relative to
^
u,

^
v obtain the

system of equations

ρs
^
utt = (µ̃′(

^
u)

^
ux)x − ρ2l χ̃′(u− v)

^
ut −

ρ2l {[χ̃′(u− v)]t − ρl[χ̃′(u− v)]2}(^u − ^
v), (18)

^
v t = ρlχ̃

′(u− v)(
^
u − ^

v), x ∈ (0, L), t ∈ (0, T ), (19)

Suppose that on the left boundary, given the homogeneous Neumann con-
dition (see the Remark) and using condition (4), we obtain
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µ̃′(
^
u)

^
ux|x=0 = 0, µ̃(

^
u)|x=L = f(t), t ∈ (0, T ),

or
^
ux|x=0 = 0,

^
u|x=L = µ̃−1(f(t)), t ∈ (0, T ). (20)

The initial conditions are of the form

^
u|t=0 = u0x(x),

^
u
′
t|t=0 = u1x(x),

^
v |t=0 = 0, x ∈ (0, L). (21)

To show the existence of solutions of the nonlinear initial-boundary value
problem, we reduce equation (18) to a standard form with a smooth trans-
formation of variables [4], using the characteristic curves

dx(t)

dt
= ±

√
µ̃′(

^
u)(x(t), t)/ρs.

We introduce a new function [4]

U(ϕ(x, t) + ψ(x, t), ϕ(x, t)− ψ(x, t)) =
_
u(x, t), (22)

where ϕ(x, t), ψ(x, t) satisfy the system

ϕt +
√
µ̃′(ux)/ρsϕx = 0, ψt −

√
µ̃′(ux)/ρsψx = 0. (23)

After simple transformations with respect to
^
v and U , equations (18) and

(19) take the form

^
v t = ρlχ̃

′(u− v)(U − _
v), (24)

Uζζ − Uηη =
1

8

(
b̃x

b̃
+

b̃t

b̃
√
b̃

+
ρ2l
ρs

χ1√
b̃

)
1

ψx
(Uη + Uζ) +

1

8

(
b̃x

b̃
− b̃t

b̃
√
b̃
−
ρ2l
ρs

χ1√
b̃

)
1

ϕx
(Uη − Uζ) +

ρ2l
ρs

χ2

4b̃ϕxψx
(U − ^

v). (25)

where b̃ = µ̃′(
^
u)/ρs, χ1 = χ̃′(U − v), χ2 = [χ̃′(u− v)]t − ρl[χ̃′(u− v)]2.

To show that this is a regular transformation of the variables and it is
from the class C2 on a sufficiently small interval (0, t̄), provided

_
u ∈ C2,

_
v ∈ C1, consider the determinant of the Jacobian matrix

det

(
ϕx + ψx ϕt + ψt
ϕx − ψx ϕt − ψt

)
= det

 ϕx + ψx −
√
µ̃′(

^
u)/ρs(ϕx − ψx)

ϕx − ψx −
√
µ̃′(

^
u)/ρs(ϕx + ψx)


= −4

√
µ̃′(

^
u)/ρsϕx ψx. (26)

We show that the determinant of the Jacobian matrix is different from zero,
i.e. ψx 6= 0 and ϕx 6= 0.
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From characteristics of the ordinary differential equation (23) for ψ

tτ (τ, ξ) = 1, t(0, ξ) = ξ,

xτ (τ, ξ) = −
√
µ̃′(

^
u(x(τ, ξ), t(τ, ξ))/ρs, x(0, ξ) = 0,

ψτ (τ, ξ) = 0, ψ(0, ξ) = ξ,

(27)

we obtain
t(τ, ξ) = τ + ξ, ψ(τ, ξ) = ξ, (28)

for τ ≥ 0, ξ = t(0, ξ) ≥ 0.
After differentiating the second relation of (28), we obtain

1 = ψξ = ψxxξ + ψttξ = ψx ·
(
xξ +

√
µ̃′(

^
u)/ρs

)
. (29)

Hence, we obtain ψx 6= 0. Similarly we can prove that ϕx 6= 0. Consequently,
the determinant of the Jacobian matrix is nonzero. On the other hand, the
limit of |ψx| is performed as long as

xξ(τ, ξ) 6= −
√
µ̃′(

^
u(x(τ, ξ), t(τ, τ + ξ))/ρs.

It is true for all t, that τ = t− ξ is less than t̃ > 0, which can depend only
on ‖^u‖C1 .

We differentiate the second relation of (27) with respect to ξ. Relative
to xξ we obtain the ordinary differential equation of the first order with
zero Cauchy data. Let us reduce this problem to the solution of the integral
equation. Using obvious estimates and Gronwall’s inequality, we obtain the
inequality

|xξ(τ, ξ)| ≤ e
C‖u‖

C2
2
√
cρs − 1 <

√
c/ρs ≤

√
µ̃′(

^
u(x(τ, ξ), τ + ξ))/ρs, (30)

which is valid for

τ ≤
∼
t =

2
√
cρs ln(

√
c/ρs + 1)

C‖^u‖C1

.

Similarly, we can prove the boundedness of all derivatives of the functions
ϕ and ψ up to the second order [3].

According to the theorem about the inverse function, the existence of
the solution

^
u ∈ C2,2,

^
v ∈ C0,1 of problem (18)–(21) follows from the exis-

tence of the solution U ∈ C2,2,
^
v ∈ C0,1 of problem (24), (25) transformed

with initial and boundary conditions. To prove the existence of solutions of
system (24) and (25) we use the Banach theorem [5]. Namely, we define a
fixed point of the operator M = (M1,M2), mapping the functions u ∈ C2,2,
^
v ∈ C0,1 onto the solutions M1(U,

^
v) = Y , M2(U,

^
v) = y from
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Yζζ − Yηη =
1

8

(
b̃x

b̃
+

b̃t

b̃
√
b̃

+
ρ2l
ρs

χ1√
b̃

)
1

ψx
(Uη + Uζ) +

1

8

(
b̃x

b̃
− b̃t

b̃
√
b̃
−
ρ2l
ρs

χ1√
b̃

)
1

ϕx
(Uη − Uζ) +

ρ2l
ρs

χ2

4b̃ϕxψx
(U − ^

v), (31)

yt = ρlχ̃
′(u− v)(U − ^

v), (32)

transformed with initial and boundary conditions. Note that the right-hand
sides depend on U ,

_
v not only linearly relative to Uη +Uζ , Uη−Uζ , but also

nonlinear through b̃ = µ̃′(
^
u)/ρs, χ1 = χ̃′(U − v) and ϕ, ψ. The operator M

is a contraction for small values t (0 < t ≤ t) due to the limited right-hand
sides of (31), (32) in the norm ‖U‖C2,2 , ‖^v‖C0,1 . This implies the existence
of the solution u ∈ C3,2, v ∈ C1,1 nonlinear initial-boundary value problem
(1)–(4) and, consequently, according to

u(x, t) =

∫ x

0

^
u(ξ, t) dξ, v(x, t) =

∫ x

0

^
v(ξ, t) dξ + ρl

∫ t

0
[χ̃(u− v)](0, τ) dτ,

there is a solution
^
u ∈ C2,2,

^
v ∈ C0,1 to the initial-boundary value prob-

lem (18)–(21). The uniqueness is proved in a standard way [3], applying
Theorem 4 from [4] for the system

ρsûtt =

(∫ 1

0
µ̃(u2x + (u1x − u2x)θ) dθ

_
ux

)
x

−

ρ2l

(∫ 1

0
χ̃(u2 − v2 + (u1 − v1 − u2 + v2)θ) dθ

)
t

,

v̂t = ρl

∫ 1

0
χ̃(u2 − v2 + (u1 − v1 − u2 + v2)θ)dθ,

with homogeneous initial and boundary conditions for a difference of solu-
tions u1, v1 and u2, v2.

Similarly, we can show the continuous dependence of the solution u ∈
C2,2, v ∈ C0,1 on the parameter µ̃ ∈ C3.

To prove the Frechet differentiability of the operator of the direct problem
F let us note that F (µ̃+δµ̃) = ū(L, ·), where the functions ū, v̄ is the solution
of the initial-boundary value problem (1)-(4) with µ̃ = µ̃+ δµ̃, the functions
w := ū− u− u, ω := v̄− v− v are the solution of the initial-boundary value
problem

ρswtt = (µ̃′(ux)wx)x − ρ2l χ̃′(u− v)wt +Gx −

ρ2l [[χ̃
′(u− v)]t − ρl[χ̃′(u− v)]2](w − ω),

ωt = ρlχ̃
′(u− v)(w − ω),
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with zero initial conditions and the boundary conditions

µ̃′(ux)wx|x=L = G(L, t), w|x=0 = 0, t ∈ (0, T ),

where
G = µ̃(ūx)− µ̃(ux)− µ̃′(ux)(ūx − ux) + δµ̃(ūx)− δµ̃(ux).

Therefore, applying the conversion characteristic of the class C2, known
results for the wave equation and Gronwall’s inequality, we find that the
norm ‖w‖C2 can be estimated through ‖δµ‖C3 [3]. This means the continuity
of F .

Similarly, we prove the continuity of the Frechet derivative of the oper-
ator F . The theorem is proved.
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