
Bull. Nov. Comp.Center, Math.Model. inGeoph., 26 (2024), 1–7
© 2024 NCC Publisher

On an inverse problem arising in the theory of
propagation of nonlinear waves

B.Kh. Imomnazarov, Kh.Kh. Imomnazarov, A.Kh. Mukimov

Abstract. In this paper, we consider a one-dimensional inverse source problem
for the Hopf equation. We show that it is uniquely solvable in the class of finite
smoothness.

Introduction

The study of wave propagation for media in which the proper pressure dif-
ference at a given time can be neglected (briefly, pressureless media) is of
both mathematical and applied interest. A direct model of such media is
the equations of gas dynamics in which the pressure P is formally set equal
to zero. From the point of view of applications, pressureless media arise
in the description of various physical phenomena, such as the evolution of
multiphase flows, the movement of dispersed media, in particular, dust par-
ticles or droplets, the phenomenon of cumulation, the movement of granular
media, etc. Examples of various gas-dynamic problems using pressureless
media can be found, for example, in the classical monographs [1–3].

In this paper, we consider a one-dimensional inverse source problem for
the Hopf equation. We show that it is uniquely solvable in the class of finite
smoothness.

1. Inverse source problem for the Hopf equation

Let us consider a one-dimensional dynamic inverse problem of determin-
ing the function u(t, x), g(t), if the inhomogeneous Hopf equation and the
following conditions are satisfied:

∂u

∂t
+ u

∂u

∂x
= f(x)g(t), t > 0, x ∈ R, (1)

u|t=0 = u0(x), x ∈ R, (2)

u|x=0 = φ(t), t > 0. (3)

The function f(x) is given. Without loss of generality, we can assume that
f(0) = 1 . Let us assume that the agreement condition is satisfied
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φ(0) = u0(0). (4)

Using (3), we eliminate the unknown function g(t) from (1) and obtain the
Cauchy problem for the loaded equation. For this purpose, we formally
differentiate with respect to x both parts of (1) and introduce the notation
v = ux. Thus, we arrive at the following problem for the loaded equation
[4]

∂v

∂t
+ u

∂v

∂x
+ v2 = F (t, x) +G(t, x)v(t, 0), (5)

v(0, x) = u′0(x), (6)

∂u

∂x
= v, (7)

u(t, 0) = φ(t), (8)

where F (t, x) = f ′(x)φ′(t) and G(t, x) = f ′(x)φ(t).

2. Existence theorem

Theorem 1. Let the functions u0(x), f(x) ∈ C1[−1, 1], φ(t) ∈ C1[0, 1] and
f(0) = 1. Then a solution to problem (1)–(4) exists and

u(t, x), ut(t, x), ux(t, x) ∈ L∞(Ω), g(t) ∈ L∞(0, t0).

Proof. First, we prove the solvability of problem (5)–(8). To do this, we
use the fixed point method. First, we assume that the input data f(x),
u0(x) and φ(t) are sufficiently smooth functions.

Fixed point method. Let z(t, x), h(t) be some functions. Instead of
system (5), (6) we consider the system

∂v

∂t
+ z

∂v

∂x
+ v2 = F (t, x) +G(t, x)h(t), (9)

v(0, x) = u′0(x), (10)

And then another problem

∂u

∂x
= v, (11)

u(t, 0) = φ(t). (12)

The sets Z = {(z, h)} and Ω ⊂ R2 will depend on some positive parameters
M , V , δ, τ , which will be specified later.



On an inverse problem arising in the theory of propagation of nonlinear waves 3

Let us put it this way

M = 1 + 2
(
sup
|x|<1

|u0(x)|+ sup
0<t<1

|φ(t)|
)
, V = 1 + 2 sup

|x|<1
|u′0(x)|.

Next, for some quantities 0 < δ < 1 and 0 < τ < δ/M we assume

Ω = {(t, x) : 0 < t < τ, |x| < δ − tM}.

The domain Ω is a trapezoid with base (−δ, δ) and height τ . Further,
Z ⊂ C(Ω)× C[0, τ ] is the set of such pairs (z(t, x), h(t)) that

∥z∥C(Ω) ≤ M, ∥zx∥C(Ω) ≤ V,

z(t, 0) = φ(t), ∥h∥C[0,τ ] ≤ V.

Let us consider system (9)–(12) with coefficients (z(t, x), h(t)) ∈ Z. Let
us put

F0 = sup
|x|<1, 0<t<1

|F (t, x)|, G0 = sup
|x|<1, 0<t<1

|G(t, x)|.

The problem for v(t, x) is equivalent to a nonlinear system

∂v

∂t
(t, y) + v2(t, y) = F (t, y) +G(t, y)h(t),

∂y

∂t
(t, x) = z(t, y), (13)

v(0, x) = u′0(x), y(0, x) = x. (14)

Locally in time, this system is solvable and, for small t, the estimate
holds ∣∣∣∂v

∂t

∣∣∣ ≤ v2 + F0 +G0V.

Since |u′0(x)| < V/2, then on some interval (0, t0) the estimate |v(t, x)| <
V holds, which means

|v(t, x)| ≤ V/2 + τ(V 2 + F0 +G0V ).

We choose τ so small that τ(V 2 +F0 +G0V ) < V/2. Then τ ≤ t0. This
means that system (13)–(14) is solvable in the domain (0, τ) × (−δ, δ) and
|v(t, x)| ≤ V . Further, the following estimate holds:

|y(t, x)− x| ≤ Mt.

This means that y(t,−δ) ≤ −δ + M t, y(t, δ) ≥ δ − M t. By the the-
orem on the continuous dependence of the solution on the parameter, we
conclude that the values y(t, x) cover the interval (−δ+Mt, δ−Mt) when x
runs through the interval (−δ, δ). In addition, differentiability with respect
to the parameter takes place, which means that this covering is univalent.
Consequently, system (9)–(12) is solvable in the domain Ω. In addition, the
estimate holds
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|u(t, x)| ≤ |φ(t)|+ δV ≤ M/2 + δV.

We define the operator L as follows: for given pairs (z(t, x), h(t)) from Z,
we solve problem (9)–(12). Using the functions u and v found, we determine
the functions z(t, x) = u(t, x) and h(t) = v(t, 0).

We choose the value δ so that δV ≤ M/2. Then inside Ω

|u(t, x)| ≤ M.

Thus, for the given choice of parameters δ, τ , system (9)–(12) is solvable in
the domain Ω, the functions v(t, x), u(t, x), ux(t, x) are continuous and the
inequalities are satisfied

∥u∥C(Ω) ≤ M, ∥ux∥C(Ω) ≤ V,

u(t, 0) = φ(t), ∥v(t, 0)∥C[0,τ ] ≤ V.

Therefore, the operator L is well defined and L(Z) ⊂ Z.
Now we will show that the operator L is completely continuous. To do

this, we will show |vx(t, x)| ≤ N that for some constant N . It is at this point
that additional smoothness of the input data is required. We will prove this
statement later. For now, we assume that such an estimate has already been
obtained. Then

|vt(t, x)| ≤ MN + V 2 + F0 + V G0 = N1.

Hence, v(t, 0) is Lipschitz with constant N1. Further, |uxx(t, x)| =
|vx(t, x)| ≤ N , and |ut(t, x)| ≤ |φ′(t)| + δN1. These estimates show that
pairs (u(t, x), v(t, 0)) have some excess smoothness, and therefore the set
of such pairs is compactly embedded in Z. Consequently, by the Schauder
theorem [5] the operator has a fixed point.

Thus, problem (5)–(8) is solvable, provided that the input functions are
smooth. We will show that in this case the function u(t, x) is a solution
to problem (1)–(4). Indeed, from the construction of the solution it follows
that the trace v(t, 0) is defined. Then

∂

∂x

(∂u
∂t

+ u
∂u

∂x
− f(x)g(t)

)
= 0, g(t) = φ′(t) + φ(t)v(t, 0).

Hence,
∂u

∂t
+ u

∂u

∂x
− f(x)g(t) = H(t)

with some function H(t). Putting in the last equality x = 0, we obtain
H(t) ≡ 0. So, the function u(t, x) is a solution to problem (1)–(4).

Now we can get rid of the assumption about the increased smoothness
of the input data. We only needed it to evaluate vx(t, x) and prove the
compatness of the operator L.
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To do this, we note that the following estimates hold:

∥u∥C(Ω) ≤ M, ∥ux∥C(Ω) ≤ V, ∥ux(t, 0)∥C[0,τ ] ≤ V.

In addition, from equation (1) we easily obtain

g(t) = φ′(t) + φ(t)v(t, 0),

|ut| ≤ MV + |f(x)|(|φ′(t)|+ |φ(t)|V ).

Moreover, the quantities M , V and the domain Ω depend only on the
norms of the functions u0(x), u

′
0(x), φ(t), φ

′(t), f(x).
Consider a sequence of smooth functions uτ0(x), φ

τ (t), f τ (x). For them
we solve problem (5)–(8) and obtain a solution to problem (1)–(4) {uτ},
{gτ}. In this case uτ (t, x), uτt (t, x), u

τ
x(t, x) ∈ L∞(Ω), gτ (t) ∈ L∞(0, t0).

Since (L1(Ω))
′ = L∞(Ω), by the Banach-Alaoglu theorem [6] the func-

tions uτt , u
τ
x, g

τ ∗-weakly converge to the corresponding functions ut, ux, g.
And the functions uτ converge strongly in C(Ω) to u. After this, it only
remains to pass to the limit in system (1)–(4).

Estimate for vx(t, x). So, let the input data be smooth. Let us
differentiate equation (9) with respect to x and denote by w(t, x) = vx(t, x):

∂w

∂t
+ z

∂w

∂x
+ zxw + 2vw = Fx(t, x) +Gx(t, x)h(t). (15)

There is an inequality on the characteristic∣∣∣∂w
∂t

∣∣∣ ≤ 3V |w|+ F1 +G1V.

Hence (by Gronwall’s lemma) when t < τ

|w(t, x)| ≤ ((F1 +G1V )τ + |w(0, x)|)e3V τ ≤ Ñ .

The value Ñ depends on some additional derivatives of the input data,
but this is not important. The main thing is that such a value exists.

Corollary. Let the conditions of Theorem 1 be satisfied. Then the solution
to problem (1)–(4) u(t, x) is Lipschetz.

3. Uniqueness theorem

We will prove the uniqueness of the solution to problem (1)–(4) under the
following conditions:

f(x) ∈ C1[−1, 1], g(t) ∈ L1(0, t0). (16)
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Theorem 2. Let the function u(t, x) be continuously differentiable and
f(x), g(t) satisfy condition (16) and f(0) = 1. Then the solution to problem
(1)–(4) is unique.

Proof. Let us have two solutions u1(t, x), u2(t, x). It is clear that the
parameters t0 and V are different for them, but we will take the smaller of
t0 and the larger of V .

Let us denote

w = u1 − u2, s = (u1 + u2)/2, h = g1 − g2.

In this case |s|, |sx| ≤ V . As before, from equation (1) we easily obtain an
equation on the characteristics

∂w

∂t
+ sx(t, x(t))w = f(x(t))h(t), (17)

∂x

∂t
= s(t, x(t)), (18)

w(0) = 0, x(0) = x0. (19)

We obtain the Volterra equation of the first kind for the function h(t).
Let z > 0. Consider the characteristic passing through the point (t, x) =
(z, 0). At this point u1(z, 0) = u2(z, 0) = φ(z), and therefore we have the
problem (17)–(18) with initial conditions

w(z) = 0, x(z) = 0.

Besides this, obviously, w(0) = 0 (initial data).
In fact, it would be worth writing w(t, z), x(t, z), but we do not do this

so as not to clutter the presentation. We have a linear equation with respect
to w. Let us introduce the function

A(t, z) =

∫ t

0
sx(τ, x(τ, z)) dτ.

Let us multiply both sides of (17) by eA(t,z), integrate over t from 0 to z
and get

0 =

∫ z

0
eA(t,z)f(x(t, z))h(t) dt.

This is the desired Volterra equation of the first kind, with kernel K(t, z) =
eA(t,z)f(x(t, z)). On the diagonal we have

e−V z < K(z, z) < eV z.

Differentiating the kernelK(t, z) with respect to the variable t, we obtain

Kt(t, z) = eA(t,z)sx(t, x(t, z))f(x(t, z)) + eA(t,z)f ′(x(t, z))s(t, x(t, z)).
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Next we introduce the function

H(t) =

∫ t

0
h(τ) dτ.

And after this we arrive at the homogeneous Volterra equation of the second
kind

K(z, z)H(z)−
∫ z

0
Kt(t, z)H(t) dt = 0.

It follows that H(t) ≡ 0, and therefore w ≡ 0.

The authors express their sincere gratitude to A.N. Artyushin for useful
advice.
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