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About one form of the dynamic equation of porous
media in terms of velocities, stresses, and pressure

Kh.Kh. Imomnazarov

Abstract. The form of the equation of motion of porous media in terms of veloc-
ities, stresses and pressure as a symmetric t-hyperbolic system has been obtained.

1. Introduction

The poroelasticity theory is widely used in geomechanics, biophysics and
other areas of science and technology.

In 1989, V.N. Dorovsky [1] constructed a nonlinear mathematical model
of fluid motion through an elastic deformable porous medium (the poroelas-
ticity theory) on the basis of the laws of conservation, their invariance with
respect to Galilean transform, and the quasi-linear equation of fluid motion
consistent with thermodynamic equilibrium conditions. In other words, the
structure of the equations is such that, with an arbitrary character of in-
teraction of subsystems, the equation of motion is quasi-linear and common
conservation laws are fulfilled when the basic thermodynamic identity is
identically kept. The existence of four types of sound oscillations is shown––
two transversal (in an isotropic medium their properties coincide) and two
longitudinal. The key difference of a linearized Dorovsky model from well-
known models of the Frenkel–Biot type [2, 3] is in that the Dorovsky model
in the isotropic case is described by three elastic constants [4–6]. These elas-
tic parameters are one-to-one expressed by three oscillations velocities [6].
This circumstance is important for the numerical modeling of elastic waves
in a porous medium when distributions of velocities of acoustic waves and
physical densities of the matrix and of saturating fluids as well as porosity
are known.

The symmetric hyperbolic form of representing the model allows obtain-
ing a simple proof of uniqueness of the continuous dependence of a solution
to the Cauchy problem and boundary conditions with dissipative boundary
conditions on initial data. It also gives a possibility to apply well developed
numerical methods [7, 8].

In this paper, the form of a dynamic equation of porous media in terms
of velocities, stresses and pressure as a symmetric t-hyperbolic system has
been obtained.
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2. About one form of Dorovsky’s equations for porous
media as symmetric t-hyperbolic system

The linearized system of the Dorovsky’s equations is the following [4, 5]:

ρs
∂ui
∂t

+ ∂khik +
ρs
ρ
∂ip = 0,

ρl
∂vi
∂t

+
ρl
ρ
∂ip = 0,

∂hik
∂t

+ µ (∂iuk + ∂kui) +
(
λ− ρs

ρ
K
)
δik div u− ρl

ρ
Kδik div v = 0,

∂p

∂t
− (K − αρρs) div u + αρρl div v = 0.

(1)

Here u = (u1, u2, u3) and v = (v1, v2, v3) are the velocity vectors of the solid
matrix with the partial density ρs = ρfs (1 − d0) and a liquid with partial
density ρl = ρfl d0, respectively, d0 is the porosity, p is the pore pressure, hik
is the stress tensor, ρfs and ρfl are the physical densities of the solid matrix
and fluid, respectively, λ > 0, µ > 0 are the Lame constants, α = ρα3+K/ρ2,
K = λ+ 2

3
µ, ρ = ρl + ρs, ρ3α3 > 0 is the module of volumetric compression

of a fluid component of a heterophase medium, δik is the Kronecker delta,
∂i = ∂

∂xi
.

Let us introduce the new unknowns of the function

σ̃ij = −hij −
ρs
ρ
pδij . (2)

After elimination of div u, system (1) will be rewritten in terms of u, v, σ̃ik
and p as

ρs
∂ui
∂t

− ∂kσ̃ik = 0, ρl
∂vi
∂t

+
ρl
ρ
∂ip = 0, (3)

1
2µ

∂σ̃ik
∂t

− Λ
2µ∆

δik
∂σ̃mm
∂t

+
α̃

∆
δik
∂p

∂t
− 1

2
(∂iuk + ∂kui) = 0, (4)

α̃

∆
∂σ̃mm
∂t

+
3ρs
ρ

Kρl/ρs + α̃

∆
∂p

∂t
+
ρl
ρ

div v = 0, (5)

Here Λ = λαρ2 −K2, α̃ = αρρs −K, ∆ = 3K(αρ2 −K).
By the direct calculation, it is easy to verify that

K
ρl
ρs

+ α̃ = α3ρ
2ρs +K

ρ2
l

ρρs
> 0, ∆ = 3Kα3ρ

3 > 0.
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Let us denote by λs, µs the Lame coefficients of a homogeneous isotropic
body and Ks = λs + 2

3
µs. Using the formula lim

d0→0
ρ2α3 = Ks/ρ

f
s [5], we

obtain in (5) as porosity d0 tends to zero that

∂p

∂t
= −1

3
∂σ̃mm
∂t

. (6)

Taking into account (6), we obtain in (4) as porosity tends to zero that

1
µs

∂σ̃ik
∂t

− λs
(3λs + 2µs)µs

δik
∂σ̃mm
∂t

= ∂iuk + ∂kui,

which coincides with the elasticity theory formulas (see, e.g. [9]) differenti-
ated with respect to time.

Introducing the vector

w = (u1, u2, u3, v1, v2, v3, σ̃12, σ̃13, σ̃23, σ̃11, σ̃22, σ̃33, p)T ,

we rewrite system (3)–(5) in the vector form

A
∂w

∂t
+Bk∂kw = 0. (7)

Here A = (ai,j), i, j = 1, 13, is a symmetric matrix with the following entries:

ai,i = ρs, ai+3,i+3 = ρl, ai+6,i+6 = 1/µ, ai+9,i+9 =
(

1 − Λ

∆

)
/(2µ), i = 1, 3;

a10,11 = a11,10 = a10,12 = a12,10 = a11,12 = a12,11 = −Λ/(2µ∆), a10,13 =
a13,10 = a11,13 = a13,11 = a12,13 = a13,12 = α̃/∆; a13,13 = 3ρs

ρ
Kρl/ρs+α̃

∆ ; and
other entries are zeroes. Matrices Bk = (bki,j), i, j = 1, 13, k = 1, 3, are sym-
metric with entries b11,10 = b110,1 = b12,7 = b17,2 = b13,8 = b18,3 = b21,7 = b27,1 =
b22,11 = b211,2 = b23,9 = b29,3 = b31,8 = b38,1 = b32,9 = b39,2 = b33,12 = b312,3 = −1,
b14,13 = b113,4 = b25,13 = b213,5 = b36,13 = b313,6 = ρl/ρ and with zeroes at other
places.

If we show that the matrix A is positive definite, system (7) will be
symmetric t-hyperbolic (according to Friedrichs). Taking into account the
positiveness of partial densities of the matrix ρs and fluids ρl, as well as the
shear modulus µ, it is sufficient to show positive definiteness of the matrix

Â =


a10,10 a10,11 a10,12 a10,13

a10,11 a11,11 a11,12 a11,13

a10,12 a11,12 a12,12 a12,13

a10,13 a11,13 a12,13 a13,13

 .
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The direct calculations show that

a10,10 =
1− Λ

∆

2µ
≥ 1

3µ
> 0,∣∣∣∣ a10,10 a10,11

a10,11 a11,11

∣∣∣∣ ≥ 1
12µ2

> 0,∣∣∣∣∣∣
a10,10 a10,11 a10,12

a10,11 a11,11 a11,12

a10,12 a11,12 a12,12

∣∣∣∣∣∣ =
αρ2

4µ2∆
> 0,

∣∣∣∣∣∣∣∣
a10,10 a10,11 a10,12 a10,13

a10,11 a11,11 a11,12 a11,13

a10,12 a11,12 a12,12 a12,13

a10,13 a11,13 a12,13 a13,13

∣∣∣∣∣∣∣∣ =
1

4µ2∆
> 0.

Thus, system (7) is symmetric t-hyperbolic.
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