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On the solvability of the inverse problem
for the parabolic equation

Kh.Kh. Imomnazarov

1. Introduction

The given paper considers the problem of determination of the right hand
side of the high-order parabolic equation with the variable ::oeﬂicients

L(z',8:,8:) u(t,z) = f(zs) - Mt, 2'), z=(z',z,) € Ry, t>0,
using the information given on the hyperplane z, = 0:
“l:r:,,:O = 'pb(tr mf)v

where f(z,) is the known function.

Solvability in the Sobolev weight space is proved.

A sufficiently complete bibliography on the theory of inverse problems
can be found in [1-5).

2. Statement of the problem

Let.us consider, in the half-space R} , = {(t,z) | t > 0,z € R,}, the
parabolic high-order equation:

L(z',8:,8;) u(t,z) = f(zs) - A(t, z"), (1)
where u = u(t,z), z = (2',2,) = (z1,..., Tn-1, Tn),

L(m", 0, 0;) = 0 + Z “a(mi) oz,

|la|=2m
a 0
Oy =0 ...0;", O = % 0y, = :9?1,
a=(ar,...,o0), @20, j=1,2,...n
We introduce the following notations: r = (1,2m,...,2m,2p) -
(n + 1)-dimensional vector; s = (1,2m,...,2m) - n-dimensional vector;

2p>4m+ 1.
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Problem 1. It is necessary to find the functions
("’(tv 3)1 A(t1 :l:')) € Wg.-y(R;Ll) X LZ,‘V(R-:)
(the rest functions are known) from equation (1), if the functions

ult:ﬁ = 01 zE€ an (2)
ulrn=0 = 'l’(t' 't)v t>0, z’ € Rﬂ—ls (3)

are knoun.

Here W5_ (R}, ,) denotes the weight Sobolev spaces [6].
Let 4o be such a positive number that the inequality

C 1
S WPEROIS 5, 2> 4m+1, ©)

C = IGOV"‘IOI2m($’0)| q‘lm

O Jr, T+
1!’(0:3,) =0, '€ Rn1, (5)

- and the condition A

'f’ € W'z’,-y(R:)s f € W:p(Rl)s f(n) 5& 0, 7> %

are fulfilled.

Theorem 1. Let the coefficients of operator L(z’, 8:,0;) be constant. If the
conditions A, (4), (5) are fulfilled, then, with v > 9, Problem 1 has the
unique solution u(t,z) € Wi, (R},,), A(t,2') € Ly,(RY).

Proof. Let zj € R,-; be fixed. Consider equation (1) when the coefficients
at the point zj are frozen. We reduce Problem 1 to the linear integrodiffer-
ential equation by the method of work [1]. We obtain the Cauchy problem
from (1)-(3), in the Fouerier transform (with respect to the variable z), of
-the function u(t, z) after excluding of the unknown A(t, z’). The solution is
given by the formula

U(t:E) = '[: e"'(‘—l) Lam(i€) g(t, E)ds, (6)

where
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v(t, &) = Fraglult, z)] = (2:)“/2 /R e~ =L y(t, z)dz,

g(t,e)=cu,e)+’}(5;)’ao 02m(@h / (=in)™ v dE,
f(e)
Gt =0+ I aw(ah)(-i€)*
(06 ,a.,z_z,m 0 )f(ﬂ)

f(fn) = F,,"..g,,[f(:v,,)], 'j)(tvE’) = Fz'—*{’[w(tv "B')]!
Lom(i€) = Z aa(x{))(_'if)a-

jo|=2m

Write formula (6) in the equivalent form using the function 8(t),

u(t,6) = [ 8(t = )&= Lam () () g(s, £)ds. (7)
R,
Estimate the norm of the function v(t,£) in Lz (R]). We have
Ci
v, Lzo(B) < llv, Lay(Ra)l} < D ———=ll9, Lao(RT)II- (8)

Here we have used the Young inequiality and
Ci(y + [E1"™) < by + Lam(i)] < Caly + E1*™).

1€ 2P

Estimate the norm || L

tion g(¢,€):

" 1+ 6%
v+ [P

9, La4(RY)||, using the explicit form of the func-

9 Lao(RS)| < |1+ 1€al*) G, Lao(BD)| +

1
¥+ g
C .

%ll(l +1€nl*) v, Loy (RD)] - (1 + [€a17) £, La(R1)|.  (9)
" From estimaties (8), (9) with allowance for (4), we obtain
11+ 1 + 1€'1P7™) v, Lan(BE DI < 20(1+ 16017) G, Lan(RE))-
Hence, by the Plancherel theorem it follows that

ﬂ(t, ) f-—n;[v(t f)] € W2 'V(Rn-}-l

The uniqueness is proved in a standard way. : (m)

Corollary 1. Ify € W;'.,(R,‘{'), fe sz”(Rl), v > 7o, then the solution to
Problem 1 is given by the formulas
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u(t,2) =Ti(f,G1), Gi(t,z) =8+ Y. au(z)doy,
la’l=2m

Aft, x’) = (Gl (ts z’) + aO,...,0.2m(3’0) -[31 (;ixin)ng,"_,g,,[u(t, z)] dfﬂ)/f((]),

where Ty : W2P(Ry) x W3 (RE) = W3 (RE,,).
Remark 1. In fulfilling the conditions of Theorem 1 we estimate the norm

o Clf,W*R
10273(£,Go) Lag(RE )N < TG, 1m0 10

Choose € > 0 such that the following inequalety is fulfilled

€ 2 C,
—— || f,WoP(R C+—)=q<l 11
T WP RIC+ ) = a (1
Theorem 2. Suppose the conditions A, (4), (5), (11) be fulfilled, and the
coefficients a,(z') satisfy the conditions
‘ aa(2') = aq, |2'|>r1 >0, Z sup |aq(z’) - aq(zg)| < €.
laj=2m *
Then the statement of Theorem 1 is irue.

Proof. After the exclusion of the unknown function A(t,z’) from (1)-(3)
we obtain the Chauchy problem for the integrodifferential equation

L°(z', 8,,8;) u(t, z)
= Qu(t,z)+ D aalz’) 05 u(t,z) +
|laj=2m
) o aam(ah) [ (~iin)™ Fapes (7)) s
= #(t’ z')f(’:ﬂ): (12)
ult=0 = 0, z € R,. (13)

Here u(t,2') = (F% + Zjar=2m (') 5/ %)/£(0).
The solution to the Chaucy problem (12), (13) is sought for in the form

u(t, .‘I) = T](f, Gl), (14)

where iy (t,z') € Lz ,(R}) - the unknown function, the operator T} is defined
in Corollary 1.

Apply the operator L°(zy, 8, 8;) — L%(z’, 8, ;) to the function u(t, z)
from (14) and after simple transformations we obtain for y, (¢,z’) the equa-
tion '
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pi(t, z') = S1(p1) + p(t, 2'). (15)

Here Si(p1) = f~1(0) (LD(E:), 0, 0:) — LO(2', 8, 8;)) Ta(f, 1) |za=0-
We shall show that the norm of the oerator S;(y;) is small in the norm
Ly ~(R}), if the coefficients little differ from constants. Really

15101 Lan(BDN £ 37 W(@a(2’) = aal20)) B2 To(f, 1), Lan( BN +

|a|=2m

" (ao....,u.zm(ﬂf") - aO.....O.?m(m’O)) X

jR (=i€0) 2™ Fyp s [Ty (F s 0)}dEm, L2 (R2)

< E(C+ ) UL WE RN s, Lo (R

Here we have used inequiality (10). Hence, with allowance for (11), from
equation (15), we obtain the estimate

i1, L2y (RN < =gl Loy (B (16)

By the method of successive approximations from equation (15), we find
p1(t,z'). Substituting p,(¢,z’) into (14), we obtain the solutions of the
Cauchy problem (12), (13). The function A(t, z') is calculated by the formula

At z') = (at¢+ 3" aa(zh) 8%+

la'|=2m
0...0am(@) [ (=iin) ™ Frymgu u(t, ) da) /£(0). (17
1
The uniqueness is proved in a standard way. W

Corollary 2. The solutions to the Cauchy problem (12), (13) can be written
in the operator form

u(t z) = T?(fa #‘)1
where T2 w. p(Rl) X W2 ..',(R+) - W2 ‘Y(Rﬂ+l

Remark 2. Vu € Ly, (Rt), f € W2P(Ry), ¥ > 70 the following estimate is
valid

cuf, WaP(Ry)||
— q1)y@m—la)/2m

|62 T2(f, 1), Loy (RELD|| < lle, L2y (BN (18)
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Lemma. Let G = Bpy1(0) = {z'||z'| < R+ 1} be a ball in R,_y. Then
V8 >0, 3y,...,yY € G, Fpo(y),...,en(y), such that po(y) € C®(Ra-y),
woly) = 0, vi(y) € CE(Bs(¥’)), 7 = 1,2,...,N. These functions satisfy
the conditions

wily) =0, j=12,... N,

N

z%—(y) =1 everywhere in R,_;.
j=0

The proof of the lemma follows from the theorem on unit partitions [7].
Choose 74 > ¥o, such that the following inequality is fulfilled

CCy|lf, WP (R

1/2m

=q <l (19)
(1-a)n ’

Here Cy is a positive number.

Theorem 3. Under assumptions about infinitely differentiability of the co-
efficients of the operator L(z',8,,8;), and if they are constants out of the
ball BR(0) and, moreover, conditions A, (4), (5), (19) hold, then for v > v,
Theorem 1 is valid.

Proof. Let § > 0. Using the functions ¢o(z'),...,on(z") from the lemma,
we constract the following functions @g(y),...,@n{y), y = 2":

(a) Px(y) € C®°(Ra-y), 0< @i(y) <15
(b) @o(y) =1, y € suppyo(y); Po(y) =0, [yl S R+ 1~
(© &) =1, ly—v¥1< & G(y) =0, ly-v*| > 26 k=1,2,...,N.
Also introduce the functions ,31 (¥)s-.-,On(Y):
Bi(y) € Cg°(Ra-1), 0<B5(y) £ 1,
ﬂ’(y)"{ 0, ly—-¢| > 34

and the integrodifferential operators

Lo(z',8:,8:)u = du+ Y 6a07u+

laj=2m

T@n) oo oo [ izin™ Fopg [t 2)) d,

£(0)

where a, = ay(z'), |2’| > R,
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Li(a',0:,0:)u = Bu+ Y ak(z))0%u+

laj=2m

Loeh, oam(@) [ (<igia)™ Fpsilut,2))

where
a4 (2") = Bi(2') aa(2’) + (1 - Bi(2")) aaly®);
a,t; (.’.L") = aa(x’)f z’ € B26(yk)!
a’;(z’) = ﬂa(yk), z' ¢ B35(yk)1 k= 1921-'-1N'

By the choice of § we can assume that coefficients of the operator L; are
almost constants.
We consider a series of the Cauchy problem:

Li(z', 8y, 0:)up = pp(t,z') f(zn), t>0, = € Ry, (20)
uklt=0=0, k=0,1,...,N.

The solution to the Cauchy problem (20) is written in the operator form
uk(t! 1‘.') =T2k(.fnuk)v k'_"ov 1’--'1N’ (21)
where T20(f1 #) = T‘l(f’“)i Tzk(fs Juk) = T2(f1#‘k)| k= L2,.. -;Nr opera-

tors Ty, T are defined in Remarks 1, 2. The solution to the Cauchy problem
(12), (13) will be found as the sum

N
u(t,z) = Y ou(=*) TH(F, o 9). (22)
k=0

Here the function g(t,z") € Ly,(R;}) is an unknown. Apply the operator
L°(z',d;,8;) to the function u(t,z) from (22) and after simple transforma-
tions, we obtain for g(t, z’) the Fredholm equation of the second kind

g{ta z') = Sg(g(t,:t')) + .u(t! 2'). (23)
Here
N
Sa(g(t,2") = F7HO0) - i D bao(2')OGRILTE(Fr 0k 9, o
4,k=0 |s|+|o|=2m

le|<2m-1

bss (') are known functions, which are ditermined by the coefficients a, (z’).
Estimate the norm of the operator S3(g(t,z’)):
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N
1S2(9), Ley(RIN S Ca Y. 3. NOLTF(F0k9) lan=0, Lon(RY)|
::0'0"52”1—1

< @219, L2H(RD, (24)

N
Ci=@m-ONY g Y supplbae(a)]- 10241
k=0 |si+|o|=2m
lo|<2m~1

Here we have used the inequality (18). From equation (23) with allowance
for estimaties (19), (24), we obtain

llg, Lay(RIN < (1 -g2) 7 Iy Lay(RI)I-

By applying the method of successive approximations to equation (23), we

find g(t,z’). Substituing it into (22) we obtain the solution to the Cauchy

problem (12), (13). The function A(t, z’) is calculated by formulae (17).
The uniqueness is proved in a standard way. a
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