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On iterative solving of linear algebraic
equations in p-h-versions of finite
element methods

V.P.Il'in and S.S.Radionov

The goal of this paper is investigation of the efficiency of iterative preconditioned cojugate
gradient methods for solving linear systems of equations which arise in p-h-version of
finite element methods. The results of numerical experiments are presented for the model
boundary value problem with different values of k, p and iterative parameters. Some
conclusions on the comparative costs of algorithms are made on the base of analysis of
matrix structure of linear systems.

1. Introduction

We consider an efficiency of modern iterative algorithms in application for
sparse linear systems of equations in p -h-versions of finite element methods
[1]. The aim is to compare the numerical costs for different values of p,
h and some variants of iterative methods for different input data. For
simplicity the Poisson equation

2y 0%
_@;Ty"’zﬂz’w (1.1)

is solved in a square computational domain with the Dirichlet or Neumann
conditions on the different parts of boundary.

In Section 2 the structures of local and global stiffness matrices are
described for the square elements. Section 3 includes the formulas of sym-
metric successive over relaxation method in the efficient Eisenstat imple-
mentation with conjugate gradient acceleration, see [2,3,4]. The discussion
on the estimates of computer costs is presented in comparison with the di-
rect Cholesky factorization algorithm. In the last section we present and
discuss the results of numerical experiments to analyse separately the in-
fluence of preconditioning, iterative parameters, neccessary exactness and
characteristics of boundary value problems.
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2. The matrices of p-h-finite element methods
For standard square element in a local coordinates
R={-1<z<1, -1<y<1}

there are used three types of basic functions with the total number N; =
(p+1)%
4 nodal functions

1+kzx 141y

Niy = 5 T k,l==%1; (2.1)
4(p — 1) side functions
S = Qule |14 1EDTE2 22 k41 =1,

Qm(z) = \/2”‘;’ 1 / Pn(#)d7, 03

1
- m! dzm

m= 112$"‘9p—1a

Pu(2) = 2= m,

(p = 1)? internal functions

Iy = Qk(z) - Qu(y), k,I=1,...,p-1. (2.3)
We unify the basic functions into set ¢ = {¢,(z,y)} with the ordering
¢ ={N,S,1},

where N, § and I mean the subsets of nodal, side and internal functions.
In more detail

N = {Nl,hN—l 1,N1 _1,N—1,—1}7
§ = {81, 815V 80 85D,
o) S(” n s S(P"l)},

0,1 0,-1>"""7~0,~1
= {11’1, “as 7I1,'p—15I2,17 . --;IZ,p—-ly Ve st——l,h e 1Ip—1.p'—1}-

It is natural to connect the different basic functions with geometric
object of element. We will consider the nodal functions corresponded to
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the mesh points, the groups Sl(fo], S(_kl),g, S((fl), S({f_),l, k=1,...,p~1, of
side function corresponded to the right, left, upper and low element sides,

and the groups Iz g, g =1,...,p—1; I;;,¢g=1,...,p— 1 corresponded to
k-th vertical or I-th horizontal line inside the element.
Local stiffnes matrix is defined as

a={agy}, ¢¢=12,...,(p+1)>°

Here a, , is scalar product
9.9

(7] dpy 0 Oy
Agq = (g, Pg) = ] ( 1. Tha + Pa . 2% ) dedy.  (2.4)
R . .

0z Oz dy Oy

The block structure of matrix A is of the following type:

NN NS NI
A=| SN 8§ SI
IN IS 1II

Here NN, 55 and IT denote the square submatrices of the orders 4, 4(p—1)
and (p—1)? which correspond to scalar products of nodal, side and internal
basic functions. The blocks NS = (SN), ST =(15)' and NI = (IN) =0
are rectangular submatrices.

In particular, the matrix

|
|
|

Ot Dt D=t QIR

D= WD W= B

NN =

D= Ol s D=t
WL D[rt Dt Q|

has 16 nonzero entries. The matrix S5 is block diagonal one with the block
of order 2:

S5 S5 0 0

S 5 0 0
S8 = 2 1

0 0 &5 5

0 0 S S5

One diagonal block corresponds to the vertical mesh intervals and the other
one to horisontal. The subblocks §; correspond to connections between
the basic functions from the common sides, and S; - from the opposite.
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These subblocks have the same tridiagonal structures (between each pair
of nonzero diagonals there is one zero diagonal):

r -

Sk

+
0

0
+

+
0

0
+

So, the matrix S5 has 8(3p — 7) nonzero elements. Of course, the above
consideration is valid for p > 3. If p = 2, the matries S, are scalar values
in fact, and for p = 3, S; are diagonal matries.

The matrix (of block order p — 1)

B 0 -C o0
0 B 0 0
-C 0
Il = 0 0
0 -C
o . '~ 0 B 0
0 -C 0 B |

includes diagonal positive definite submatrix C, diagonal square blocks of
order p — 1 with three nonzero diagonals (as Sy)

[+ 0
0 '._ '._ ., 0

-0
0 + |

and the total nonzero entries 1 for p =2 and (p—1)(5p—13) for p > 3. It
is useful to remark that if side and internal functions at each element side
or “inner line” will be numbered in “red-black” ordering (firstly — all odd
functions and secondly - even), then S;, S; and B become block diagonal
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matrices of block order 2, and each subblocks will be “usual” tridiagonal
matrix. Nondiagonal block NS has the form

= [NS}, NSQ, NS3, NS4]

[ - - 0 0] [+ + 0 --- 0]
_+ + 0 0 - =0 --0

NSI—_+0 0$NS2—+_0 01|’
 + - 0 0| | -+ 0 0

- -0 0] [+ + 0 0]
_|-+0 0 _|+ -0 0
Ns=14 4 0 o NS 0 .0
L+ - 0 0 | | - + 0 -+ 0]

Here the numbers of total and nonzero entries are 16(p—1) and (32).The
blocks NSy, NS2, NS3, NS4 have p— 1 columns and are corresponded to
the sets of basic functions ST, ST, Sos S(’,’"_l; Above “-” and “4”
denote the signs of matrix nonzero entries.

The matrix 51 is rectangular one and has 4 x (p — 1) block structure

[ S(l} S(Z] SF,)O_I) T
.S (—11) ,0 S (—21} o " S (—pl_,(} )
SI=\| ) <o (=)
SO,l S[),l S
L S[(),IL S(()?L S(p 1)

with the square blocks of the equal same order p — 1. The blocks .5'{:'3)
and S(m)o are diagonal matrices for m = 1,2 and zero — for others m. The

blocks S, (m 1) and S( ) have nonzero entries in the two first columns at the
row with number m only. So, the matrix ST has the total 4(p — 1)2 entries

and 8(p — 1) nonzero elements. In more detail, the entries of matrix block
ST are defined by the scalar products of basic functions:

([ -1/v6, forl=1, m=k,
(SU,Ly) = { -1/3v10, fori=2, m =k,
0, otherwise,

r —1/\/6, fori=1, m=k,
(S(—T,)mfk.f) = 1 —1/3\/ﬁ, fori=2, m=k.

0, otherwise,
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-1/v6, forl=1, m=k,
(S((Jn;)ka,l) ={ -1/3/10, forl=2, m=k,

0, otherwise,"

—1/\/6‘, forl=1, m=k,
(5§, Ikg) = { =1/V3, forl=2, m=k,

0, otherwise.

In the block NS there are only the following nonzero entries:

(1,1, S67h) = (M, 1,510)

-1 2\/6, m=1,
= (N11,5%h) = (N11,557) { /

—1/6\/-1_6, m=2,
(N, 11510)) = (INy, 1,3(m))

1/2v6, m=1

Ny, S§™ No11, 8™ = ’ '

( 1,1 ) ( 1,1 10) {1/6@, m=2,

(N1 I,S( )) = (N—l,—lsS(_n;,)O)

-1/2v6, m=1

= (Ny1,S) = (N_y,-1,8) = ’ ’

(Mo, 807') = (N-1-2,50%1) 1/6v10, m =2,
(No1,-1,587) = (N-14,852)

1/2v6, m=1

= (Ny1, S = (N_1,-1, S7g) ’ ’

( 1,1 1,0) ( 1,-1 ) -—l/ﬁm, m =2

Nonzero entries of diagonal block §§ are constructed by the scalar products
of basic functions corresponded to the common sides:

2 1
3t em-1Em+3)
-1
2/2m + 1)(2m + 5)(2m + 3)’

m' =m,

(sk7 57 ) =

m' =m+ 2,
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and corresponded to the opposite sides only:

1 1
. 3 2(2m -1)(2m+3)’
(507, 5L = 1
y M=
2y/(2m + 1)(2m + 5)(2m + 3)
And at last, nonzero entries of block IT are:
2
(Tets Do) = (2m — 1)(2m + 3)
( 2
(2n - 1)(2n + 3)’

fork=k'=m, l=1U=n,

0 fork=kK=m, I'£#1, I' £1+2,
LT or l=l'=m, K#k, kK#k+2,

_ 1 fork=k'+2=m,l=U'=n
| V@nt+D@n+5)(2n+3) or i=l+2=m, k=k=n.

For describing the global stiffness matrix A we have to define the or-
dering of all basic functions. Let the computational domain be a square
divided into n X n elements by meshlines z; = zo + th, y; = Yo + Jh;
i,j=0,1,...,n, h is some meshsize. So, there are n? elements, (n + 1)?
nodes, n(n + 1) vertical sides (segments between nodes) and n(n + 1) hor-
izontal sides. The total number of unknowns and the order of the global
system of equations

Au=f, A=D-L-U, (2.5)
with square matrix A equals to
N=(n+1)+2p-un+1)+(p-1)’n"=(p+1)%  (26)

Here D = diag(A) and L, U are strictly low and upper triangular parts
of matrix A.

In (2.5) u = {ux} means the global vector which entries are numbered
in the following way:

node entries in the row-by-row ordering -
k=1+(j-Dn+1); 45=12,...,n+1,
vertical side entries in the similar ordering —

k=m+1)24+1,...,(n+ 1)} +(p—1)(n+ )n,



26 V.P. Il'in, SS Radionov

horizontal side entries —
k=(n+1)n+1+@-Dr]j+1,...,(n+1)?+2(p-1)(n+ 1)n,
internal eﬁtries in the element-by-element ordering —
k=(n+1)n+1+2(p~-1)n]+1,...,N.

Such matrix A is constructed without taking into account the boundary
conditions and is called unconstrained matrix. For obtaining the resulting
constrained matrix it is necessary to modify the rows of the matrix A and
right side vector f in (2.5), corresponded to the boundary nodes and sides.

If some basic function is connected with the boundary side or node
with the Neumann condition, then corresponding row of matrix A doesn’t
change. In the case of the Dirichlet condition the row becomes with the
unit at the main diagonal and zero other entries.

The structure of the global stiffness matrix for the described ordering
can be presented as a similar local one:

GNN GNS 0
GSN GS§S GSI
0 GIS GII

A=

Here blocks are

GN N - square submatrix of order (n + 1)2,
GSS - square block of order 2(p — 1)n(n + 1),
GII - square submatrix of order (p — 1)Zn?,

GNS = (GSN)' — rectangular matrix with (n + 1)? rows and
2(p - 1)n(n + 1) columns,

GSI = (GIS) — rectangular matrix of the form
[2(p = D)n(n + 1)]- [(p - 1)*n?].

Let us consider the structure of each block now (in an unconstrained form,
i.e., without considering of boundary condition). Matrix GNN is nine-
diagonal with the semi-bandwidth d = n+2. In other words, this matrix is
block tridiagonal of block order n + 1 and each block is tridiagonal one (of
order n + 1). Nonzero entries of GN N equal to 16/3 at the main diagonal
and 2/3 at the others. The total number of nonzero entries of GN N equals
to '

QNN =(3n + 1)2.
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Submatrix GSS is block-diagonal of block order 2 (first block is corre-
sponded to the vertical sides and the second - to horizontal ones. Each
diagonal block GSSk, k = 1,2, is block-diagonal matrix of block order n
with the equal blocks GSSy at the main diagonal (GSSi = diag{GSSo}),
GSSp is block-tridiagonal matrix of block order n + 1 with the subblocks
S11 = diag{$1}, S22 = diag{S:}, which are block-diagonal matries. Here
S1, S2 are the same as in S5, see above. In other words, GSS is nine-
diagonal with semi-bandwidth d = (p — 1)n:

S11 | S22
_ S22 | S11 | S22 _ GSS, 0
G S22 | S11 | S22 |’ Gl 0 |GSS; |
S22 | Su

So, the total number of nonzéro entries of GS S equals to
Qss =2n(3n+1)(3p-17).

This equality is valid for ¢ > 3. For p =2 and p = 3 the values (3p—7)
have to be replaced by 1 and 2 correspondingly. The biggest diagonal block
GI1I is block-diagonal matrix of block order n? and the order of each block
is (p — 1)? (it is exactly the local stiffness matrix I, see above). So the
taotal number of nonzero entries of GII equals to

Qrr = n*(p— 1)(5p - 13)

for p > 3 and Q1 = n? for p = 2.

Offdiagonal block GN S has (n + 1)? rows, 2(p - 1)n(n + 1) columns
and in general 24 nonzero entries in the each row. Maximum distance from
nonzero entry to main diagonal equals to 2n(n + 1)(p — 1) approximately.

In block form GNS can be divided by vertical line into two equal
subblocks the left one is corresponded to the vertlca.l” side functions and
right — to the “horizontal” functions.

The left subblock is presented as two-block-diagonal matrix with n + 1
block rows and n block columns. Corresponding sub-subblocks are identical
rectangular matrices with n+ 1 rows, (n+1)(p—1) columns and 6 nonzero
diagonals for p > 3 (3 - for p = 2).

The right subblock is block-tridiagonal matrix with n+1 block rows and
columns. Each sub-subblock is matrix with n + 1 rows, n(p — 1) columns
and 4 nonzero diagonals for p > 3 (2 - for p = 2).
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GNS: ........... P Peieredcearaerteeiiiiaas

Block GSI = (GI.S')' has 2(p — 1)n(n + 1) rows, (p — 1)*n? columns

and

in general 4 nonzero entries in the each row. The biggest distance from

nonzero entry to main diagonal equals to (p — 1)2n? approximately.
In block form GSI is divided by vertical line into two equal

sub-

blocks. The left one corresponds to vertical sides and presents the block-
diagonal matrix (of block order n) with identical sub-subblocks, consisted

of ((n 4 1)(p — 1) rows, n(p — 1) columns and 4 nonzero diagonals.

The

right subblock indcludes n + 1 block rows, n block columns and two block

diagonals with identical sub-subblocks consmted of n(p - 1) columns
nonzero diagonals.
The total number of nonzero entries of GSI equals to

Qs = 8%,
and of matrix A -
Q4 = QNN + Qss + Q1 +2Qns + 2Qs1 ~ n*(12+ 5p?).
The la.siz_‘a.p"plr‘oximate equality is valid for p > 3, and

Qa~5Tn*forp=3, Qa=48nforp=2
3. An iterative algorithms
We apply the preconditioned conjugate gizidient methods in the form
e = f— Au®, p° =B—1T05
k+1 _ ’U,k + Otkpk, ap = (Tk, B_lTk)/(Apk,pk)
k41 _ ok _ C!kAPk, pk'+1 = B-lpAt 4 BioF,
B = (T‘k+1-, B"1Tk+1)/(7'k,B_'17'k).'

u

T

and

(3.1)
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Here B is symmetric preconditioning matrix
=(G-L)G(G-U) | (32)

with some diagonal matrix G = 1/wD, 0 < w < 2, corresponded to the
well-known Symmetric Successive Over Relaxation (SSOR) method.

Now we describe an efficient implementation of iterative process (3.1),
based on some modification of Eisenstat’s idea [4]. Let us introduce the
vectors

= Uy, p*=Upt, #=1L;%* f=1IL;'f,
B =Ly, U,=L,=GY*-G" WU (33)
and matrix _ ‘ ‘ .
A= L7AU, = (E- ) +(E- 1)
+(E - f,)-l(éE - D)E -0)71,
L=gG2Lg 2, 0 =G VG2, 34
D =G DGR
Then from 3.1 for new vectors there is equivalent iterative pracess
' 7 — f_'.- A, 5 =7, ' '
gkt = gk + akﬁk,' Fh+1 _ 7k —-ak}iﬁk, (3.5)
P = P 4 Bt |
with identity preconditioning matrix K = L,J 'K U = F -and the same

parameters ok, Bk.
It is essentual, that multiplication the vector by the matrix A is cheap
enough opera.tmn ,
Pt = (B~ L)' + ¢, -
—k 7y—1 —k 7k =k A -k (36)
“‘(E—U) " =p"+(2E - D)q
For not very sparse matrix A (more than 3 nonzero entries in each row
in average) the implementation of formulas(3.9) is twice cheaper approxi-
mately, in compare with (3.1). Of course, it is supposed that the matrices L,
U and D are computed before iterations and resulting vector u™ = U, 11‘;"
is computed after the iterations.
It is evidently that matrix A is positive definite, but only for p = 1 it
is of the Stiltjes type (non-positive offdiagonal elements).
An estimates of the convergence velocity of SSOR-iterations for such
kind of equations is unknown and our goal is only to make experimental
investigations.
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4. The results bf numerical experiments

The iterations in experinients were performed until the validity of inequality

Be* /11l e (41)

for given small enough e¢.

Our main criteria of efficiency of algorithms is the number of itera-
tions. The total number of arithmetic operations for solution of system is
evaluated approximately by

Q = ne - (ne + 1) (4.2)

where n, is the cost of multiplication A x §, n, = 10N is the rest cost
of conjugate gradient algorithm per one iteration and n. is the number of
iterations.
As followes from (3.6), the values n, can be estimated by the approxi-
mate equality ' '
Mg = 2(QA + N)o

"where N, Q4 are the order and the total number of nonzero entries of
matrix A. By means of evaluation of @4, N for different p we can write

2[(3n+1)2 4+ (n+ 1)~ 2002, p=1,
- 104n?, p=2,
132n2, p=3,
2[n2(12+ 5p%) + (1 +pn)?, p>3.

Calculations were made in double precisions on the IBM PC AT with
coprocessor and frequency 12 Mg, in the environment MS-DOS 4.0 with
available core ~550 Kbyte which permitted to compute variants for p < 17
only.

In the following tables there are numerical results for the model prob-
lem in the unit square. @ = (0,1) x (0,1) with f(z,y) = 0 in (1.1) and
the Neumann boundary condition du/0n = g(z,y) except one angle point
of the computational square with the Dirichlet condition. The boundary
conditions are defined from the choosen exact solution

1 1
a?+ 2?2 a’-z

Mg

u,:Re( 2), a=105 z=z+v-1y. (43)

In each cell of Table 1 there are the numbers of iterations (above) for
SSOR-preconditioner, w = 1.5, ¢ = 10~°, and numbers of unknowns below
for different n and p.
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Table 1. Numbers of unknowns and iterations for SSORCG, e = 10™%, w = 1.5

n\p| 1 2 3 4 6 8 9 12 | 16

) 3 8 13 | 18 | 25 | 33 | 35 [ 49 | 62
4 9 16 | 25 | 49 | 81 | 100 | 169 | 289

. 7 15 | 19 | 25 | 36 | 44 | 46 | 59 [ 74
9 25 | 49 | 81 | 169 | 289 | 361 | 625 | 1089

. 9 20 [ 21 | 30 | 38 | 46 | 48 | 62 | 76
25 | 81 | 169 | 289 | 625 | 1089 [ 1369 | 2401 | 4225

8 14 | 22 | 23 | 33 | 42 | 51 | 52 - -

81 | 289 | 625 | 1089 | 2401 | 4225 | 5329 | - -

16 20 | 26 | 27 | 36 - - - - -

289 | 1089 | 2401 | 4225 | - - - - -

33 | 36 - - - - - - -

3| 1024 | 3260 | - - - - - - -

Table 2. Time costs of iterative solution (SSORCG, ¢ = 10~°, w = 1.5) and
computing of matrices

n\p 1 2 3 | 4 . 6 8 9 12 16
1 2.3 2.9 3.8 4.7 7.8 12.9 16.8 36.3 87.3
0.4 0.6 0.9 1.3 2.4 4.4 5.4 12.0 24.2
2 3.3 4.6 6.2 7.8 12.9 20.8 25.8 50.6 | 115.1
0.6 1.1 2.3 4.2 10.0 19.3 24.3 51.1 | 107.2
4 5.6 8.5 12.3 15.6 25.6 40.0 49.7 94.0 | 205.0
0.8 3.8 7.8 16.3 38.3 74.9 95.9 | 206.2 | 427.9
8 11.3 22.3 30.6 40.4 66.1 | 105.0 | 129.7 - -
2.6 13.9 30.7 66.2 | 161.9 | 321.9 | 404.6 - -
16 36.4 117.4 | 151.9 | 193.0 - - - - -
10.7 61.4 | 137.0 | 280.5 - - - - -
31 255.5 | 1172.6 - - - - - - -
59.2 304.7 - - - - - - -

Table 2 includes the time costs of iterative solution and computing of
the global stiffness matrices (in seconds) for the same experiments.

For analysing of the influence of values ¢ in (4.1) on the numbers of
iterations and the accuracy of iterative solution u* we show in Table 3 the
values of k. and the errors

6= ” Uey ” - " Ufe " (4.4)

| ez




32 V.P. Il’in, 5.5. Radionov

for the similar experiments (SSORCG, w = 1.5) with € = 1073, 1074,
10~% and p = 2 only (e, and uy. are exact and finite element solution,

Il wll= (Au,u))"/?).

Table 3. The numbers of iterations and errors of iterative solutions (p = 2,
w = 1.5)

e\ n 1 2 4 8 16 31
10-3 7 11 13 15 19 29
3.9.1071 | 24-107* [ 1.1-107* [ 44-107%2 | 1.1-1072 | 8.9.10™*
10~4 8 13 17 18 22 33
3.9.10°' | 24.107" | 1.1-107 [ 44-107%2 | 1.1-107% | 8.9.107*
10-5 8 15 20 22 26 36
39.107' | 24.107? {1.1-10"! | 44-10"% | 1.1-107% | 8.9.107*

Let us make one more observation — what values of p and n are optimal
for necessary accuracy A. In Table 4 there are for different p the values
of the time ¢, of SSORCG iterations (in seconds, w = 1.5), numbers of
elements n, (in one direction) and numbers of corresponding iterations
under condition

no, = min{n : § < A}.
In every cell the upper value corresponds to A = 1072 and low to A = 10~*.

Table 4. The values of iteration time costs and errors for different p and n,(p, A)

? \ no 3 4 6 8 12 14 15 16
. 117 83 60 43 51 17 20 24
0 259 181 125 120 113 77 89 107
n 15 9 5 3 2 1 1 1
0 21 13 7 5 3 2 2 2
5 8.107*[8.107* | 4-107*[2-107* |6-10"% [3-10"* | 2.10*
8.10~°[6.10°%{7.-10~% [5.10"% |1-10"% [3-107% |1.-1075 | 4.107®

For understanding the sources of efficiency of the preconditioned con-
jugate gradient method it is usefull to obtain separately the influence of
preconditioning and conjugate gradient acceleration. In Table 5 we give the
numbers of iterations (¢ = 10~° as in Table 1) for SSOR-steepest descent
(SSORSD) method (w = 1.5, B¢ = 0 in (3.1) or (3.8)) and for “explicit”
conjugate gradient iterative process (in (3.1) B = E is identity matrix).

It is important to remark that for large enough =, p the numbers of

arithmetical operations per one iteration are approximately the same for
each method ~ SSORCG, SSORSD and explicit CG.
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Table 5. The numbers of iterations for SSORSD (above)
and explicit CG (below)

n\p 2 3 4 6 8 9 12 16
1 41 39 99 177 | 275 | 275 | 489 | 727
7 13 20 37 53 60 88 | 120
9 49 63 107 | 183 | 263 | 265 | 445 | 655
20 28 41 58 78 79 | 111 | 133
4 117 139 165 | 219 | 291 | 313 | 479 | 699
33 37 57 74 91 88 1 125 | 152
8 349 393 | 427 | 491 | 555 | 583 - -
45 49 64 84 | 102 | 101 - -
16 1151 | 1259 | 1351 - - -~ - -
72 75 90 - - - - -

We didn’t make the search of the optimal iterative parameter. But
some experiments are presented in Table 6 for SSORCG, ¢ = 1075, In each
cell the upper number corresponds to w = 1.1, the middle — to w = 1.2 and

the lower — to w = 1.3.

Table 6. Numbers of iterations for

w (1.1, 1.2, 1.3), SSORCG, € = 10~°

different

a\p| 2 3 4 8 | 12 | 16
~ | 10| 15| 26 | 40 | 53
1 7 | 10 | 13 | 27 | 40 | 53
7 - - - — -
- |15 | 21 | 35 | 49 | 61
2 13 | 16 | 21 | 36 | 49 | 63
13 ] - - | - - -
- | 17 | 25 | 39 | 53 | 64
4 17 | 17 | 25 | 39 | 53 | 65
17 | - - - - -
- |19 [ 28 | 44 | - -
8 19 | 19 | 27 | 45 | - -
19 | - - - - -
- |or | 32| - - -
16 | 26 | 27 | 33 | - - -
25 | - | - - - ~

In some sense, the considered discrete boundary value problem (the
Dirichlet condition in one point only) is the worst. Intuitively, for the
other boundary value conditions the number of iterations has to be de-
crease. An additional experiments confirm such conjecture. For example,
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we give in Table 7 the numbers of iterations for the Dirichlet boundary
value problem with the conditions, corresponded to exact solution of the
Laplace equation u = sin 7z - shry/shr. In each square of Table 7 the
numbers are appropriated to € = 10~%, 107%, 1077, zero initial data u° and
w=15.

Table 7. Numbers of iteration for the Dirichlet boundary
value problem (e = 10%,1075,10"7)

n\p 1 2 3 4
1,1,1 | 6,6,6 | 9,11,12 | 11,16,19
5,6,7 |11,15,19 | 13,19,25 | 17,25,32

8 6,8 ,10 | 11,18,25 | 12,19,26 | 16,27,38
16 8,11,14 | 13,20,27

There are similar pictures for another Dirichlet boundary value prob-
lems with different solutions. The analysis of preceding expenmental data
permits to make some preliminary conclusions.

a. The application of conjugate gradient acceleration has very high effi-
ciency (in compare with steepest descent) for every values of n and p. The
speed up by SSOR-preconditioner for large n, p is approximately two, for
small n and p the preconditioning effect decreases.

b. The sensivity of SSORCG method to values of iterative parameter w is
small enough and differences in time costs are approximately 10-20 percent
(an optimal values wop = 1.1 +1.3).

c. The increasing of “stop-iteration” criteria € in (4.1) from 10~° to 1073
doesn’t change the resulting accuracy practically, see Table 3.

d. For given accuracy the optimal pairs (n, p) correspond to minimal n = 1
or 2 (in the sense of minimal iteration time cost).

Of course, there are a lot of open questions on the application and op-
timization of iterative methods for solving high order finite element equa-
tions:

— The choosing of iterative parameters and criteria € for necessary
accuracy A of numerical solution or given values n and p;

— The role of “implicitness” of incomplete factorization methods for
efficiency of iterative process;
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— Adapting of iterative algorithms for different properties of original
continuous problem (coefficients of equations, boundary conditions
domain shape and so on);

¥

'~ The influence of uknowns ordering on the constructing of optimal
iterative processes.

These and other aspects present the wide field of activity in the topic
of consideration to find the main goal: the search of optimal method for
solving a class of problems with given accuracy.
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